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Abstract: Fiber coatings protect the glass surface of fiber from extrinsic environmental factors. The
coating of shape memory alloy over fiber is useful in sensor fabrication where the state of deformation
is affected by the phase transformation of the coated material. In addition, coated plastic fibers can
be used in elevated temperature environments. To this end, the present research aims to investigate
the effect of the Ni-Ti-Sn composite coating over the fiber. Homogeneous particle distribution,
agglomeration, porosity and the ability to obtain uniform coating thickness have been general
concerns in fiber coatings. Hence, the present study comprehensively investigated the mechanical
and thermal behavior as well as morphological properties of Ni-Ti-Sn nanopowders deposited on
polymer fiber optics. Five sets of polyamide-coated samples with different Ni-Ti-Sn proportions
were fabricated and characterized. Morphological studies confirmed that an even coating thickness
enhanced the mechanical integrity and optical performance. The optimum composition demonstrated
superior tensile strength of 29.5 MPa and a 25% increase in elongation compared to the uncoated
sample. The Ni-Ti-Sn alloy composition investigated in the present study is promising for industrial
applications where thermal stability and mechanical performance are warranted.

Keywords: polymer fiber; nanopowder coating; Ni-Ti-Sn alloy; thermal analysis; product innovation

1. Introduction

Fiber optics are an essential part of the telecommunication and networking industry
due to its lightweight nature, accessibility, and effective data transmission [1,2]. It has
been observed that the development of optical fibers has played a significant role in the
revolutionizing procedure for data communication systems by enabling faster transmission
over longer distances [3]. Coatings on optical fibers significantly improve mechanical,
thermal, and optical properties that have enhanced the strength of such fibers operating
under various environmental conditions. The term “fiber coating” refers to a protective
layer applied to the optical fiber and is usually made from materials such as acrylate,
polyimide, or silicone that protect the fibers from physical damage, environmental effects,
and mechanical stress, which would lead to signal deterioration or even fiber failure [4–6].
These coatings have particular importance for the reliability and efficiency of fiber optic
communication systems underlying contemporary digital infrastructure in telecommuni-
cations, data transmission, and networking. While impressive progress has occurred, the
field of fiber optics still faces challenges such as mechanical degradation, vulnerability to
environmental elements, and signal loss, further emphasizing continuous research into
fiber coatings for the sake of performance and durability in optical fibers. To date, extensive
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studies have been performed and reported in the open literature with a range of fiber
coating materials based on polymers, metals, and/or ceramics [7,8]. A polymer-based
coating has been extensively used because of its intrinsic flexibility, ease of application, and
protection provided to the fibers against external threats such as moisture and chemical
attack [9]. These coatings represented an important advance in the 1970s, which coincided
with the commercialization of polymer-coated optical fibers, supposing their extensive
application in terrestrial and underwater fiber optic communication networks. With the
invention of different polymer materials like silicone and acrylate, it protected against
their mechanical damage, water ingression, and deterioration that would result from en-
vironmental exposure. However, while these polymer-derived coatings have provided
aspects of protection, more advanced coating materials must be employed in aggressive
environments, such as at high temperatures and in corrosive media.

Subsequent advances in fiber coating technology encouraged further studies into
metallic and alloy coatings, offering even greater mechanical durability, corrosion resistance,
and thermal stability. Research into metal coatings such as Ni, Ti, and Sn has been carried
out to establish their potential in improving the performance of optical fibers, especially
for industrial and high-performance applications [10,11]. Nickel contributes excellent
electromagnetic interference shielding, titanium provides temperature stability, and tin
contributes to electrical conductivity. The resulting properties make the metal coatings
more desirable in extreme application conditions such as those encountered in aerospace,
automotive, and biomedical sectors [12,13]. Despite the many benefits of such metal
coatings, how to combine the metals in optimal alloys remains one of the most active gaps
in knowledge relating to fiber coatings. Traditional deposition processes have also faced
challenges in achieving uniform coatings with precise thickness control, which is critical
to the performance and reliability of fiber optic systems in the industry [14,15]. Recent
studies have shown promise in the use of alloy coatings to enhance fiber performance,
particularly the Ni-Ti-Sn alloy. The Ni-Ti-Sn alloys are a unique combination of mechanical,
thermal, and corrosion-resistant properties that make them particularly suitable for high-
performance fiber optics. The addition of nickel and titanium in the alloy significantly
increases its strength and durability, whereas the addition of tin enhances both the electrical
conductivity and thermal stability of the alloy [16–18]. Flash evaporation, which is known
for producing high-quality and very uniform coatings with much careful control over
thickness and composition, has emerged as an exceptionally effective method for applying
Ni-Ti-Sn alloy coatings. Flash evaporation allows for the controlled deposition of thin
alloy films onto the fibers’ surface, thus ensuring a uniformly distributed coating with
enhancement in mechanical integrity [19,20]. The application of a Ni-Ti-Sn coating on fibers
remains rather under-investigated in the literature until now; thus, this area opens up vast
opportunities for further research related to the effectiveness of such a coating in enhancing
fiber performance against harsh environmental conditions [21].

Despite the promising results, there is still a gap in the research literature regarding
the optimization of Ni-Ti-Sn alloy coatings for specific industrial applications [22]. For
instance, polyamide is one of the common materials used in belt drive systems and optical
cables. The critical concern with the use of this plastic material under high stress is its
tendency to break without warning, which could potentially lead to industrial failure.
While previous studies have shown that metal coatings have the potential to enhance
the durability and performance of optical fibers [23], the unique combination of nickel,
titanium, and tin has not been fully explored on polyamide optical fibers. Addressing the
aforementioned research gap will improve the performance and reliability of polyamide
fiber in various industrial applications. To this end, this paper examines the mechanical
and thermal behavior of Ni-Ti-Sn polyamide-coated samples. Findings obtained from the
present study ascertain potential applications of Ni-Ti-Sn polyamide-coated samples in
structural health monitoring and biomedical devices.
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2. Materials and Methods
2.1. Material

The principal single-mode optical fiber, coated with polyamide, was procured from a
local store. It had a 1 mm diameter, 0.5 mm core diameter and length of 200 mm. Ni, Ti,
and Sn(Tin) nanopowder was acquired from SRL chemicals, India.

2.2. Fabrication of Ni-Ti-Sn Coating on Fiber

The flash evaporation method was used to deposit a Ni-Ti-Sn thin-film composite
coating onto a plastic optical fiber cable. Flash evaporation is an excellent technique to
produce thin and uniform coatings that are essential in optics, electronics, and many other
industrial applications. In fact, the purity and control produced via this technique on
its films make it irreplaceable in the field of materials science and engineering. In flash
evaporation, the source material in the form of a fine wire or powder will be continually
fed into the hot evaporation chamber [24,25]. The polyamide–host material was mounted
onto an in situ rotatable fixture that allows the uniform deposition of a Ni-Ti-Sn coating
on its entire circumference. Prior to coating, the host material was pre-strained to 5% by
mechanical loading, and the experimental setup was cleaned with acetone. The adjustment
in rotational speed within the system assisted in varying the thickness of the coating [26,27].

The process was carried out under a high-vacuum environment at 5 × 10−5 Mbar
pressure and at room temperature (20 ◦C). A detailed scheme of the flash evaporation
process is shown in Figure 1a. Firstly, an appropriate volume percentage of Ni-Ti powders
and Sn powders was mixed for 30 min. After the homogeneous mixing of powders, the
mixture was placed into a tungsten boat within the evaporation chamber. A current of
120 A was applied to evaporate the Ni-Ti-Sn powder from the tungsten boat. At the same
time, the rotational speed of the in situ fixture was adjusted between 100 and 300 rpm to
evenly coat the composite material over the entire circumference of the host optical fiber.
The coating duration takes 30 min inclusive of a 20-min cooling period. The average coating
thickness of the samples was about 0.50 µm, and it was measured using microscopic images.
Table 1 summarizes the developed samples and their compositions, where the composition
of Ti is the same for all sets and the amounts of Ni and Sn were manipulated to evaluate
the efficiency of the coated polyamide optical fiber material.
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Figure 1. (a) Schematic illustration of flash evaporation process of coating optical fiber with Ni-Ti-Sn
nanopowders. (b) Digital image of optical fiber used in the study. HPM images of uncoated fiber at
(c) 5× and (d) 20× magnification.



J. Compos. Sci. 2024, 8, 526 4 of 13

Table 1. Experimental compositions of fiber coating using Ni-Ti-Sn.

Sample Ni (%) Ti (%) Sn (%)

Set 1 47.8 50.2 2.0
Set 2 48.3 50.2 1.5
Set 3 48.1 50.2 1.7
Set 4 48.5 50.2 1.3
Set 5 48.8 50.2 1.0

2.3. Characterization of Coated Samples

A high-power microscope was used to study the morphology of optical fibers coated
with different quantities of Ni-Ti-Sn elements. This microscopic analysis allowed for
observing the surface texture, homogeneity of the coating, and any possible defects that
may affect the performance of the fibers. Surface analysis with better resolution was
conducted using a field emission scanning electron microscope (SEM), model JSM-7600F
(JEOL Inc., Tokyo, Japan) with an accelerating voltage of 2–5 kV. The FESEM images
before and after the fracture of Ni-Ti-Sn-coated fibers were carried out to study the coating
smoothness, distribution of particles, and surface characteristics, which would give a
complete microstructural view for the coated fibers. In addition to the morphological
analysis, the samples were analyzed using Fourier Transform Infrared (FTIR) spectroscopy
to determine the intensity of Ni-Tn-Sn in each of the coated fibers. The coated fibers were
placed on a KBr pellet and scanned from 4000 to 500 cm−1.

Tensile testing was performed according to the ASTM D3822 standard to investigate
the mechanical performance of the coated samples in terms of strength, elasticity, and
elongation using an Instron universal tensile testing machine (6800 Series, Norwood, MA,
USA). The testing provided valuable information on the mechanical stability of the coated
fibers and its efficacy under stress conditions to be estimated.

Thermogravimetric analysis (TGA) was performed to investigate the change in mass
in the coated samples with rising temperature, which provided useful information on the
thermal stability of the coated samples. This test was performed using a Perkin Elmer TGA
4000 equipped with Pyris software. Tests were conducted up to an upper temperature
limit of 600 ◦C, and the resultant data were analyzed to evaluate the thermal degradation
properties of the coated and uncoated fiber samples.

Thermal behavior and the determination of appropriate heat treatment temperatures
of coatings were evaluated by differential thermal analysis (DTA) using the STA-6000
device. Thermal analysis in nanopowder-coated fiber was performed at a heating rate of
10 ◦C/min. α-alumina was used as the reference material, and the increasing rate was set
at 10◦ C/min. The appropriate heat treatment, to achieve the desired crystalline phase in
the coatings, was performed for 2 h in an electric furnace at the maximum crystallization
temperature determined by DTA.

3. Results and Discussion
3.1. Morphology Studies

Coating surfaces were examined at several levels of magnification to evaluate char-
acteristics such as the thickness and evenness of the coating, its ability to adhere, and
the presence of any flaws such as cracks, cavities, or inclusions. A HPM (high-pressure
microscope) was used to acquire images of regions of interest, while Olympus imaging
software was used for in-depth analysis, such as measuring characteristics and creating
thorough reports. Figure 1b depicts the digital image of uncoated optical fibers used in
the study. The microscopic view of uncoated fiber under HPM is shown in Figure 1c,d
at 5× and 20× magnification, respectively. The uncoated fibers have a range of surface
flaws, such as noticeable scratches, debris, and irregularities, with measurements indicating
deficiencies of 0.022 mm, 0.046 mm, and 0.070 mm. These flaws indicate a deficiency in the
fiber-protective layer, which might result in the degradation and malfunction of the object.
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Figure 2 shows the HPM images of Ni-Ti-Sn-coated fibers at three different magnifica-
tions with varying compositions. The row of a, b, and c in Figure 2 denotes the HPM images
captured at 5×, 20×, and 50× magnification. Fibers coated with the Set 1 (Figure 2—Set1)
composition showed an even surface and fewer imperfections, suggesting that the coating
has enhanced the overall quality of the surface where it measures 0.111 mm and 0.047 mm
in the coated samples, indicating a significant decrease in both the size and occurrence of
surface irregularities compared to the untreated samples. The comparison highlights the
efficacy of the Set 1 coating in improving surface quality, offering superior protection, and
perhaps prolonging the lifetime and dependability of the material. The layers of Ni-Ti-Sn-
coated fibers are clearly shown in Figure 2-Set 1b, which further affirms the even coating of
the nanopowders. Figure 2-Set1c depicts the magnified view of Ni-Ti-Sn layers coated on
optical fiber. The Set 2 optical images shown in Figure 2-Set2a-c exhibit pronounced surface
features, including significant ridges and valleys with notable measurements of 0.056 mm,
0.03 mm, and 0.06 mm, which suggest a coarser and more irregular surface texture. These
images indicate that Set 2 may have issues with surface flatness and uniformity. In con-
trast, Figure 2-Set 3a-c images show a surface that is more uniform and smoother. The
measurements, which encompass 0.175 mm and smaller defect areas such as 0.007 mm and
0.01 mm, suggest a superior surface finish with fewer and smaller defects. This comparison
emphasizes that Set 3 coating has a superior performance in delivering a surface that is free
of defects and more uniform, which can considerably improve the material’s functional
properties and durability. The measurements for the Set 4 composition coated on the fiber
were 0.026 mm, 0.09 mm, and 0.03 mm, revealing a relatively rough surface with visible
imperfections such as debris and surface flaws. This suggests that the Set 4 coating process
faces challenges in achieving a completely smooth and uniform surface. Set 5 samples had
dimensions of 0.098 mm2, 0.037 mm, and 0.025 mm, respectively. In both cases, the surfaces
showed minor imperfections characterized by rough and irregular coating coverage; there
is, however, a slight diminution in size and the numbers of imperfections compared to
the previous Set 4. By comparison, Set 5 allows a close-to-better quality of the surface in
Figure 2-Set5-a-c. Nevertheless, there still exists residual roughness with associated debris
to show that neither of the two coating processes achieves optimal smoothness. These
results underscore the necessity for additional refinement of the coating techniques to
improve surface uniformity.
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3.2. Field Emission Scanning Electron Microscope (FESEM)

Field Emission Scanning Electron Microscopy (FESEM) was employed to analyze
the surface morphology of the Ni-Ti-Sn coated fibers. The surface roughness and particle
distribution will be emphasized in the present analysis. The FESEM images shown in
Figure 3a are for the Set 1 coated fiber. The micrograph shows a fiber surface, which is
significantly clean, with few impurities, which indicates a smooth coating. On the other
hand, the FESEM image of Set 2 (Figure 3b) shows a slightly rougher surface with checkered
film, indicating an unevenness in the deposition. This could be due to the uneven dispersion
of the Ni-Ti-Sn blend, where a smaller concentration of Sn and higher concentration of Ni
could result in an insufficient or undulatory coating.
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The FESEM image of Set 3 (Figure 3c) indicates that the reduction in the Ni content
and the increase in the Sn proportion created a surface with a coarser texture, and in some
regions, a voids gap was visible. These voids appear to be related to the non-uniform
nanopowder deposition on the fiber and, thus, the need for optimization in the achievement
of a homogeneous coating. On the other hand, Figure 3d represents the surface morphology
of Set 4, which displays a uniform, non-intermittent, and particle-isotropic distribution of
Ni-Ti-Sn nanopowders across the optical fiber. The continuity of the fiber structure was
confirmed by a lack of cracks and voids as well as the justified assumption of the Set 4
composition, higher in nickel and lower in tin, as being the most suitable for nanopowder
deposition on optical fibers.

Nevertheless, the FESEM image for Set 5 (with the highest Ni and lowest Sn concen-
trations) showed unsmooth morphology with visible voids and cracks. These data reveal
that the Set 5 composition is unsuitable for producing a nanocomposite coating. If all
other parameters are similar to Set 4, (in the most favorable scenario), shorter bonding
times of only one and two days should be enough. The results suggest that Set 4 appears
to be the best option, and it can be the alternative that leads to not only to the decrease
in energy consumption but also to the permanent surveillance of developed composites.
Optimization of the Ni-Ti-Sn ratios is crucial for improving coating uniformity and surface
quality on optical fibers. The insets shown in Figure 3a–e denote the elongated coated fiber
observed under FESEM.

3.3. Fourier Transform Infrared Spectroscopy Analysis

Ni-Ti-Sn-coated fibers were analyzed using Fourier Transform Infrared (FTIR) spec-
troscopy to determine the intensity of each entity in different compositions of coated fibers.
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Figure 4 shows the FTIR spectra consisting of six spectra including the uncoated fibers
and the coated fibers from Set 1 to Set 5. A significant variation of peak was observed at
850 cm−1, indicating the changes in the amount of Ni in each sample. As the amount of
Ni relatively increases from Set 1 to Set 5, the peak observed conversely showed reduced
peak height at the same wavelength [28]. No peak was observed at 850 cm−1 for the
uncoated fiber, which validates the presence of Ni in the coated fibers. The change in the
amount of Sn in the coated fiber samples was observed at 1161 cm−1 and 1392 cm−1 [29,30].
Like the trend shown by Ni, Sn denotes a lower intensity in the transmittance as the
amount of Sn increases from Set 1 to Set 5. According to the literature, a broadened
peak observed at 2955 cm−1 denotes the presence of Ti in the coated fibers. Since the
Ti composition is the same in all the sets, an insignificant change in the peak height is
notable at 2955 cm−1 [31,32]. The FTIR spectra of the uncoated fiber shows a broadened
peak at 1750 cm−1, 1595 cm−1, and 636 cm−1 indicating the presence of other elements in
the uncoated optical fiber. The uncoated optical fiber may include polyamide functional
groups such as N-H (3200–3500 cm−1), C=O (1640–1690 cm−1), and C-N (1180–1360 cm−1)
bonds. Peaks at 2800–3000 cm−1 imply aliphatic C-H stretching, whereas smaller peaks
(600–1200 cm−1) indicate bond bending or stretching. These characteristics match the
polyamide backbone perhaps with additions or contaminants. The spectrum shows amide
and hydrocarbon chains in polyamide.
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Figure 4. FTIR spectra consisting of uncoated and coated fibers with varying compositions of Ni-Ti-Sn.

3.4. Mechanical Strength

Figure 5a depicts the overall force exerted by the nanopowder-coated fibers at various
strains, while Figure 5b shows the tensile strength and elongation of the composite at
varying alloy compositions. From Figure 5b, it was seen that Set 5 exhibited the highest
tensile strength of 28 MPa, whereas the minimum tensile strength was obtained for Set 2
(26.2 MPa). Similarly, the maximum elongation at fracture was achieved by Set 5 (7.1%),
whereas Set 1 had the minimum elongation of 5.1% (Figure 5c). It is evident from the
findings above that the mechanical properties of the alloy coating are solely responsible for
the strength of the polymer fibers. Composites with higher tin content showed the highest
tensile strength and percent elongation, hence depicting better mechanical properties. The
coated fiber was compared with an uncoated fiber where the uncoated fiber had a tensile
strength of 29.6 MPa with an elongation of 5.9%. Set 1 had a tensile strength similar to
uncoated fiber (29.6 MPa), while the tensile strength of Set 4 was 29.4 MPa with varying
elongations. This indicates that Set 4 had an increased ductility with an elongation of 6.3%.
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On the other hand, Set 2 showed a decrease in tensile strength (26.2 MPa), which indi-
cates structural compromise, although its elongation was slightly higher at 5.4%. Therefore,
Set 2 might not be suitable for applications requiring high tensile integrity. Set 3 recorded a
minimal reduction in tensile strength of 28.8 MPa with a percentage elongation increase
by 5.8% indicating an equilibrious modification. Set 5 a exhibited significant increase in
elongation (7.1%), although at the expense of lower tensile strength of 28.0 MPa, which
indicates that the coating composition significantly enhances flexibility. Hence, Set 5 can be
used for applications where flexibility is desirable at the cost of tensile strength, since it has
a profound increase in ductility.

The tensile test results show the different influences of alloy coating on the mechanical
properties of polymer fibers. To this end, Set 4 has provided the best equilibrium in
offering increased ductility with minimum compromise on tensile strength. Since it offers
an optimum balance between strength and flexibility; the composition will be suitable for
applications related to moderate tensile performance with improved ductility. With such a
drastic loss in tensile strength, Set 2 would have limited use under high-stress applications,
while Set 5, with its exceptionally high ductility, would be highly suitable for applications
that require very high ductility. To this end, the authors suggest that the selection of alloy
coating needs to be based on specific mechanical requirements for the intended application
and, as such, needs to be balanced between tensile strength and elongation.

3.5. Thermogravimetric Analysis (TGA)

One or more distinct regions present in the TGA curve corresponds to different
thermal events. Initial mass loss occurs at lower temperatures, where water or some
other volatile components may be present in the sample and can evaporate and cause an
initial mass loss, which is characterized by a gradual fall in mass recorded on the TGA
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curve. The main decomposition occurs when a further increase in temperature results in
decomposition of the coating material. The temperature of onset, rate of decomposition,
and extent of mass loss reflect thermal stability and kinetics for the decomposition of the
coating [33]. Residue formation is the stage beyond the main decomposition region; some
materials may leave behind a residue due to incomplete decomposition or the presence of
inert components. The residual mass and composition can offer insights into the thermal
decomposition products and the presence of alloying elements in the coating. Asim
et al. [34] used silane coating on natural fiber with synthetic phenolic resin to achieve
remarkable thermal stability and 20–35 wt % char residue at 700 ◦C. Two thermal stability
phases were observed: 250–350 ◦C for kenaf fiber and PALF degradation and 300–500 ◦C
for phenolic resin degradation. Similarly, the thermal behavior of KMnO4-treated plantain
fiber-reinforced epoxy composites (0.025%, 0.05%, and 0.10%) was studied by Imoisili [34].
The TGA results indicate that the cellulose manganite complex has been linked to the
thermal stability of KMnO4 treated with 0.025% and 0.05% fibers. The proposed coated
synthetic fibers possess better thermal stability of 550 ◦C and 700 ◦C, which is comparatively
higher than natural fiber-coated samples.

Figure 6a depicts the TGA graph for the experimental sets. The first weight loss region
occurs between 200 and 500 ◦C with a weight of 0.01 mg. The second weight loss region
occurs between 550 and 700 ◦C. This weight loss is caused by the decomposition reaction of
the nanopowders. The uncoated fiber shows a minor mass loss of 0.50%, suggesting high
thermal stability with minimal degradation. Set 1 exhibits a small increase in mass (0.57%),
which could be attributed to experimental errors such as contamination or oxidation. Set 2
and Set 3 show minor mass losses of 1.41% and 0.02%, respectively, indicating good thermal
stability with minimal degradation. Set 4 demonstrates a moderate mass loss of 2.05%,
pointing to some degradation or volatilization of the coating. Set 5 showed a significant
mass loss of −12.84%, indicating substantial degradation or a high volatile content in the
coating, which suggests that this coating might not be thermally stable compared to the
other compositions.
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3.6. Differential Thermal Analysis (DTA)

Figure 6b shows the DTA plots of coated fibers and uncoated baseline. The uncoated
fiber had a melting point of 425.0 ◦C, which was used as the reference. Set 1 had a consider-
ably lower melting point of 379.5 ◦C, indicating this coating lowers the thermal stability
of the fiber. In contrast, the melting points for Set 2 and Set 4 were significantly higher at
431.7 ◦C and 433.4 ◦C, respectively, suggesting increased thermal stability compared to the
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uncoated sample. Set 3 showed a melting point of 404.1 ◦C, which was moderately high and
considered a slight improvement in stability, although it was not as significant as Set 2 and
Set 4. Set 5 shows greater weight loss compared to the uncoated sample due to the presence
of volatile compounds, reactive additives, or less thermally stable materials. Usually, metal
alloys do not completely decompose at 400 ◦C; instead, they may undergo oxidation or
phase transformations. In our results, the significant weight loss at this temperature can be
attributed to the non-metallic components of coatings.

Although Set 5 exhibited high mass loss from TGA, the high melting point at 397.6 ◦C
showed that the composite was (moderately) thermally stable, although it was compro-
mised by the coating instability. More importantly, DTA results showed the correlation of
noticeable thermal transitions with mechanical integrity for the alloy coatings. For instance,
Sets 2 and 4 had higher melting points; hence, their enhanced thermal stability allowed the
composite to be relatively more viable compared to Set 1, which exhibited a lower melting
point with significant mass loss (reduced thermal resistance). Despite high flexibility, Set
5 exhibited a lower melting point and higher mass loss in TGA. The DTA and TGA data
provided the complete thermal behavior of the nanopowder-coated fibers. Coatings of
Set 2 and Set 4 have better thermal stability, and as such, such coatings will be deemed
suitable for applications that require improved heat resistance as opposed to coatings of
Set 1, where the action of thermal stresses results in lower melting points and instability.

3.7. Fractured Fibers—Microscopic Vision

The surface morphology of fractured Ni-Ti-Sn nanopowder-coated fibers was exam-
ined using FESEM to analyze the failure characteristics post-fracture. These images provide
detailed insights into surface defects, particle detachment, and coating integrity at the
fracture sites. Figure 7a(i) shows the cross-sectional FESEM image of the fractured Set 1
fiber, while Figure 7a(ii) reveals pronounced surface roughness and severe cracks at the
fracture zone. Particle detachment is evident along the fiber surface, indicating that the
Ni-Ti-Sn composition in Set 1 lacks sufficient durability to withstand mechanical stress,
particularly under harsh conditions. The severity of the observed cracks suggests the
composition is unsuitable for applications requiring high structural integrity.
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Figure 7b(i) shows the cross-sectional region of Set 2 fibers, while Figure 7b(ii) shows
a rough yet less severely cracked surface compared to Set 1. The reduced fracture severity
suggests that increasing the amount of Ni and reducing Sn improves the coating’s mechani-
cal durability. The tightly packed structure of these layers in Set 2 lacks the gap through
which it can easily rupture by applying a load.
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Figure 7c(i) shows the cross-sectional image of Set 3 where fewer voids and cracks on
the surface morphology were seen, indicating enhanced adhesion between the Ni-Ti-Sn
film and the substrate’s medium. Therefore, the composition of Set 3 ascertains enhanced
coating adhesion and fracture resistance compared to previous sets. Figure 7d shows that
the fractured surface was damaged, rough and uneven with the visible presence of voids,
all of which can be caused by the detachment of the particles under mechanical stress. This
indicates that the composition of Set 4 did not provide enough hardness for the composite.
Figure 7e shows the SEM images of Set 5 where the fracture pattern noticed a minor void
presence and a few cracks. In addition, the surface was more rigid compared to other
surfaces, which indicates that Set 5 hardened during the coating process. The increased
hardness likely promotes adhesion and enhanced the strength of the whole structure, all of
which indicates that Set 5 has better fracture resistance compared to the other compositions.

4. Conclusions

The present study comprehensively studied the mechanical and thermal properties
of alloy-coated polymer fibers. The metallurgical microscopic characterizations showed
that the coatings were well dispersed within the coated layer, and Set 5 (48.8% Ni, 50.2%
Ti, and 1% Sn) exhibited the most even surface among other compositions. Mechanical
testing showed that Set 5 had a tensile strength of 29.5 MPa, which was quite similar
to that of an uncoated fiber at 29.6 MPa although with increased elongation at fracture
by 25%. The uniform thickness of the coating of 0.50 µm and SEM imaging verified the
accurate deposition process that contributed toward improved mechanical performance.
Coated fibers subjected to load exhibited low level of stress and deformation compared to
uncoated samples, hence ascertaining that coating treatment enhanced mechanical integrity.
To this end, alloy-coated fibers with superior thermal stability, mechanical strength, and
optical clarity hold great potential in applications related to fiber optics and structural
health monitoring among other advanced engineering areas. The results obtained from
the present study allow further possibilities of research into coating techniques, long-term
durability, and material optimization strategies.
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