Comprehensive Investigation of Hardness, Wear and Frictional Force in Powder Metallurgy Engineered Ti-6Al-4V-SiCp Metal Matrix Composites
Abstract
:1. Introduction
2. Materials and Methods/Methodology
3. Results and Discussion
3.1. Hardness Analysis
3.2. Wear Analysis
3.3. Frictional Force Analysis
4. Conclusions
- The SiC (wt.%) is the dominant parameter for the increase in hardness, wear and frictional force, followed by PVA binder (wt.%) and compression pressure (Ton/sq.inch).
- During the fabrication of the Ti-6Al-4V-SiCp composite specimen, to achieve maximum hardness and minimal wear and frictional force, the factors SiCp (15 wt.%), compaction pressure (4 ton/sq. inch) and PVA binder (3 wt.%) are preferred.
- From the obtained data, a response surface model of the second order has been created for all the output parameters. Given that the projected and measured values are rather close, it can be used to accurately predict the hardness, wear and frictional force of Ti-6Al-4V-SiCp composite specimens as they are processed.
- Further, microstructural analysis reveals that 15(wt.%) of SiCp has resulted in the formation of the α-phase of titanium and silicon carbide, which caused an increase in hardness values compared to 20 (wt.%) of SiCp. With the intermediate SiC content (15 wt.%), the microstructure is optimized, providing a balanced combination of reinforcement and matrix properties reducing the wear and frictional force.
- From atomic force microscopy, it is observed that the 15 wt.% SiC sample reveals a smoother and more controlled surface. The wear behavior at this intermediate SiC content achieves a balance between abrasive and adhesive wear mechanisms, resulting in a relatively more uniform wear profile and reduced surface roughness.
- The findings highlight that in industrial applications involving Ti-6Al-4V-SiCp composites, optimizing the SiC content (15 wt.%), compaction pressure (4 ton/sq. inch), and PVA binder (3 wt.%) can lead to superior hardness, reduced wear, and frictional force, enhancing the overall performance and durability of such composite materials.
- For potential future research, exploring advanced microstructural analyses and surface characterization techniques could further refine our understanding of the relationships between composition, microstructure, and mechanical properties, allowing for even more precise control and tailoring of composite materials for specific industrial applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, B.A.; Murugan, N. Metallurgical and mechanical characterization of stir cast AA6061-T6–AlNp. Compos. Mater. Des. 2012, 40, 52–58. [Google Scholar]
- Tzamtzis, S.; Barekar, N.S.; Babu, N.H.; Patel, J.; Dhindaw, B.K.; Fan, Z. Processing of advanced Al/SiC particulate metal matrix composites under intensive shearing—A novel rheo-process. Compos. Part A Appl. Sci. Manuf. 2009, 40, 144–151. [Google Scholar] [CrossRef]
- Tabrizi, S.G.; Babakhani, A.; Sajjadi, S.A.; LÜ, W.J. Microstructural aspects of in-situ TiB reinforced Ti−6Al−4V composite processed by spark plasma sintering. Trans. Nonferrous Met. Soc. China 2015, 25, 1353–1714. [Google Scholar]
- Kimi, Y.; Choim, J.; Kimy, J.; Lee, Y.Z. Friction and wear behavior of titanium matrix (TiB + TiC) composites. Wear 2011, 271, 1962–1965. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Huang, L.J.; Liu, B.X.; Lin, G.E.N.G. Hot deformation behavior of in-situ TiBw/Ti6Al4V composite with novel network reinforcement distribution. Trans. Nonferrous Met. Soc. China 2012, 22, 465–471. [Google Scholar] [CrossRef]
- Recep, C.; Muharrem, P. The effect of reinforcement volume ratio on porosity and thermal conductivity in Al−MgO composites. Mater. Res. 2012, 15, 1057–1063. [Google Scholar]
- Kok, M. Production of Metal Matrix (Al2O3-Reinforced) Composite Materials and Investigation of Their Machinability by Ceramic Tools; Firat University: Elazıg, Turkey, 2000. [Google Scholar]
- Purazrang, K.; Kainer, K.U. Fracture toughness behavior of a magnesium alloy metal-matrix composite produced by the infiltration technique. Composites 1991, 22, 456–462. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Ray, S. Influence of process parameters on the porosity content in Mg–alumina cast particulate composite produced by vortex method. Trans. Am. Foundry Soc. 1988, 214, 775–782. [Google Scholar]
- Montealegre, M.; Neubauere, A.; Torralba, J.M. Influence of nano-reinforcements on the mechanical properties and microstructure of titanium matrix composites. Compos. Sci. Technol. 2011, 71, 1154–1162. [Google Scholar] [CrossRef]
- Koli, D.K.; Agnihotri, G.; Purohit, R. Properties and characterization of Al−Al2O3 composites processed by casting and powder metallurgy routes. Int. J. Latest Trends Eng. Technol. 2013, 2, 486–496. [Google Scholar]
- Usca, Ü.A.; Uzun, M.; Kuntoglu, M.; Şap, S.; Giasin, K.; Pimenov, D.Y. Tribological aspects, optimization and analysis of Cu-B-CrC composites fabricated by powder metallurgy. Materials 2021, 14, 4217. [Google Scholar] [CrossRef] [PubMed]
- Chintada, S.; Dora, S.P.; Kare, D.; Pujari, S.R. Powder metallurgy versus casting: Damping behavior of pure aluminum. J. Mater. Eng. Perform. 2022, 31, 9122–9128. [Google Scholar] [CrossRef]
- Kumar, D.R.; Loganathan, C.; Narayanasamy, R. Effect of glass in aluminium matrix on workability and strain hardening behavior of powder metallurgy composite. Mater. Des. 2011, 32, 2413–2422. [Google Scholar] [CrossRef]
- Gräbner, M.; Wiche, H.; Treutler, K.; Wesling, V. Micromagnetic properties of powder metallurgically produced Al composites as a fundamental study for additive manufacturing. Appl. Sci. 2022, 12, 6695. [Google Scholar] [CrossRef]
- Abdizadeh, H.; Ebrahimifard, R.; Baghchesara, M.A. Investigation of microstructure and mechanical properties of nanoMgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study. Compos. Part B 2014, 56, 217–221. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, G. Casting defects and properties of cast A356 aluminum alloy reinforced with SiCp particles. Compos. Sci. Technol. 1993, 47, 51–56. [Google Scholar] [CrossRef]
- Hull, D.; Clyne, T.W. An Introduction to Composite Materials, 2nd ed.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Usca, Ü.A.; Şap, S.; Uzun, M.; Giasin, K.; Pimenov, D.Y. Evaluation of mechanical and tribological aspect of self-lubricating Cu-6Gr composites reinforced with SiC–WC hybrid particles. Nanomaterials 2022, 12, 2154. [Google Scholar] [CrossRef]
- Sap, S.; Turgut, A.; Uzun, M. Investigation of microstructure and mechanical properties of Cu/Ti–B–SiCp hybrid composites. Ceram. Int. 2021, 47, 29919–29929. [Google Scholar] [CrossRef]
- Milan, M.T.; Bowen, P. Tensile and fracture toughness properties of SiCp reinforced Al alloys: Effects of particle size, particle volume fraction, and matrix strength. J. Mater. Eng. Perform. 2004, 13, 775–783. [Google Scholar] [CrossRef]
- Umasankar, V.; Anthony, M.X.; Karthikeyan, S. Experimental evaluation of the influence of processing parameters on the mechanical properties of SiC particle reinforced AA6061 aluminium alloy matrix composite by powder processing. J. Alloys Compd. 2014, 582, 380–386. [Google Scholar] [CrossRef]
- Ghit, C.; Popescu, I.N. Experimental research and compaction behavior modelling of aluminum-based composites reinforced with silicon carbide particles. Comput. Mater. Sci. 2012, 64, 136–140. [Google Scholar] [CrossRef]
- Diler, E.A.; Ipek, R. An experimental and statistical study of interaction effects of matrix particle size, reinforcement particle size and volume fraction on the flexural strength of Al–SiCp composites by P/M using central composite design. Mater. Sci. Eng. A 2012, 548, 43–55. [Google Scholar] [CrossRef]
- George, T.; Rajkumar, R.; Richard, F. Powder Metallurgy Aluminium & Light Alloys for Automotive Applications Conference. In 1 st International Conference on Powder Metallurgy Aluminum & Light Alloys for Automotive Applications; Jandeska, W.F., Jr., Chernenk, R.A., Eds.; MPIF: Princeton, NJ, USA, 1998; pp. 35–42. [Google Scholar]
- Nayak, K.C.; Date, P.P. Development of constitutive relationship for thermo-mechanical processing of Al-SiC composite eliminating deformation heating. J. Mater. Eng. Perform. 2019, 29, 5323–5343. [Google Scholar] [CrossRef]
- Rosso, M. Ceramic and metal matrix composites: Routes and properties. J. Mater. Process. Technol. 2006, 175, 364–375. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, Z.; Fan, G.; Ji, G.; Zhang, J.; Xu, R.; Shan, A.; Li, Z.; Zhang, D. Effect of particle size on the thermal and mechanical properties of aluminum composites reinforced with SiC and diamond. Mater. Des. 2016, 90, 845–851. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, W.; Xu, B.; Shu, G.; Li, Q. Microstructure and mechanical properties of Al–SiCnanocomposites synthesized by surface-modified aluminium powder. Metals 2018, 8, 253. [Google Scholar] [CrossRef]
- Shorowordi, K.M.; Laoui, T.; Haseeb, A.S.M.A.; Celis, J.P.; Froyen, L. Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: A comparative study. J. Mater. Process. Technol. 2003, 142, 738–743. [Google Scholar] [CrossRef]
- Tosun, G.; Kurt, M. The porosity, microstructure and hardness of Al-Mg composites reinforced with micro particle SiC/Al2O3 produced using powder metallurgy. Compos. Part B 2019, 174, 106965. [Google Scholar] [CrossRef]
- Tekmen, C.; Ozdemir, I.; Cocen, U.; Onel, K. The mechanical response of Al-Si-Mg/SiC composite: Influence of porosity. Mater. Sci. Eng. A 2003, 360, 365–371. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Q.; Yang, S.; Chen, Z.; Liu, Q.; Jiang, Z. Microstructural evolution of hybrid aluminum matrix composites reinforced with SiC nanoparticles and graphene/graphite prepared by powder metallurgy. Prog. Nat. Sci. Mater. Int. 2020, 30, 192–199. [Google Scholar] [CrossRef]
- Poletti, C.; Merstallinger, A.; Schubert, T. Degischer, Materialwissenschaft und Werkstofftechnik. In Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe; Wiley-Vch: Weinheim, Germany, 2004; Volume 35, pp. 741–749. [Google Scholar]
- Peters, M.; Leyens, C. Titan und Titanlegierungen; Wiley VCH: Weinheim, Germany, 2002. [Google Scholar]
- Godfrey, T.; Goodwin, P.S.; Ward, C.M. Titanium’99. In Proceedings of the Ninth World Conference of Titanium, Saint-Petersburg, Russia, 7–11 June 1999; pp. 1868–1877. [Google Scholar]
- Djanarthany, S.; Viala, J.; Bouix, J. Development of SiC/TiAl composites: Processing and interfacial phenomena. Mater. Sci. Eng. A 2001, 300, 211–218. [Google Scholar] [CrossRef]
- Sap, S.; Uzun, M.; Usca, Ü.A.; Pimenov, D.Y.; Giasin, K.; Wojciechowski, S. Investigation on microstructure, mechanical, and tribological performance of Cu base hybrid composite materials. J. Mater. Res. Technol. 2021, 15, 6990–7003. [Google Scholar] [CrossRef]
- Oh, J.C.; Golkovski, M.G.; Lee, S. Improvement of hardness and wear resistance in SiC/Ti−6Al−4V surface composites fabricated by high-energy electron beam irradiation. Mater. Sci. Eng. A 2003, 351, 98–108. [Google Scholar] [CrossRef]
- Abderrazak, H.; Abdellaoui, M. Synthesis and characterization of nanostructured silicon carbide. Mater. Lett. 2008, 62, 3839–3841. [Google Scholar] [CrossRef]
- Shetty, R.; Hegde, A. Taguchi based fuzzy logic model for optimization and prediction of surface roughness during AWJM of DRCUFP composites. Manuf. Rev. 2022, 9, 2. [Google Scholar]
- Karthik, S.R.; Londe, N.; Shetty, R.; Nayak, R.; Hegde, A. Optimization and prediction of hardness wear and surface roughness on age hardened Stellite 6 alloys. Manuf. Rev. 2022, 9, 10. [Google Scholar]
- Shetty, A.; Hegde, N.T.; Vaz, A.C.; Srinivasan, C.R. A study on the effect of Radiometric Variations on A Fuzzy Stereo Matching Algorithm: A Statistical Analysis. Eng. Sci. 2021, 16, 269–280. [Google Scholar] [CrossRef]
- Shetty, N.; Herbert, M.; Shetty, R.; Shetty, D.S.; Vijay, G.S. Soft computing techniques during drilling of bi-directional carbon fiber reinforced composite. Appl. Soft Comput. 2016, 31, 466–478. [Google Scholar] [CrossRef]
- Shetty, R.; Barboza, A.B.V.; Kini, L.G. Empirical study on stress distribution zone during machining of dracs using finite element analysis, taguchi’s design of experiments and response surface methodology. ARPN J. Eng. Appl. Sci. 2022, 14, 2576–2582. [Google Scholar]
- Shetty, R.; Kumar, S.; Mallagi, R.; Keni, L. L16 Orthogonal Array-based Three-Dimensional Finite Element Modeling for cutting force and chip formation analysis during dry machining of Ti-6Al-4V. J. Adv. Manuf. Syst. 2021, 20, 123–134. [Google Scholar] [CrossRef]
- Shetty, R.; Gurupur, P.R.; Hindi, J.; Hegde, A.; Naik, N.; Ali, M.S.S.; Patil, I.S.; Nayak, M. Processing, Mechanical Characterization and Electric discharge machining of Stir cast and Spray forming based Al-Si alloy reinforced with ZrO2 particulate composites. J. Compos. Sci. 2022, 6, 323. [Google Scholar] [CrossRef]
- Hegde, A.; Shetty, R.; Chiniwar, D.S.; Naik, N.; Nayak, M. Optimization and Prediction of Mechanical Characteristics on Vacuum Sintered Ti-6Al-4V-SiCp composites using Taguchi’s Design of experiments, Response Surface Methodology and Random Forest Regression. J. Compos. Sci. 2022, 6, 339. [Google Scholar] [CrossRef]
Constituents | V | Al | O | Fe | N | C | H | Y | Ti |
---|---|---|---|---|---|---|---|---|---|
wt.% | 4 | 6.1 | 0.11 | 0.16 | 0.01 | 0.02 | 0.0011 | 0.0013 | Bal |
Compound | Si | Al2O3 | C | Fe2O3 | SiO2 | CaO | S | P | SiC |
---|---|---|---|---|---|---|---|---|---|
wt.% | 1.43 | 0.24 | 1.18 | 0.67 | 0.8 | 0.15 | 0.05 | 0.33 | Bal |
Levels | (A) SiC (wt.%) | (B) Compression Pressure (Ton/sq.inch) | (C) PVA Binder (wt.%) |
---|---|---|---|
1 | 10 | 3 | 3 |
2 | 15 | 4 | 4 |
3 | 20 | 5 | 5 |
Levels | (A) SiC (wt.%) | (B) Compression Pressure (Ton/sq.inch) | (C) PVA Binder (wt.%) |
---|---|---|---|
1 | 10 | 3 | 3 |
2 | 20 | 5 | 5 |
Source | Deg. F | Seq. SS | Adj. SS | Adj. MS | F | p | p% |
---|---|---|---|---|---|---|---|
A | 2 | 5.03901 | 5.03901 | 2.51950 | 1035.67 | 0.000 | 77.99 |
B | 2 | 0.11244 | 1.28403 | 0.05622 | 23.11 | 0.000 | 1.85 |
C | 2 | 1.28403 | 1.28403 | 0.64202 | 263.91 | 0.000 | 19.87 |
A × B | 4 | 0.02969 | 0.02969 | 0.00742 | 3.05 | 0.084 | 0.22 |
A × C | 4 | 0.01975 | 0.01975 | 0.00494 | 2.03 | 0.183 | 0.15 |
B × C | 4 | 0.00130 | 0.00130 | 0.00033 | 0.13 | 0.965 | 0.009 |
Residual error | 8 | 0.01946 | 0.01946 | 0.00243 | |||
Total | 26 | 6.50569 |
Source | Deg.F | Seq. SS | Adj. MS | F | P |
---|---|---|---|---|---|
Regression | 9 | 4991.39 | 554.599 | 329.4 | 0.000 |
Residual Error | 9 | 15.15 | 1.684 | ||
Total | 18 | 1.89670 |
Source | Deg.F | Seq. SS | Adj. SS | Adj. MS | F | p | p% |
---|---|---|---|---|---|---|---|
A | 2 | 0.000074 | 0.000074 | 0.000037 | 882.99 | 0.000 | 76.99 |
B | 2 | 0.000002 | 0.000002 | 0.000001 | 23.80 | 0.000 | 2.072 |
C | 2 | 0.000019 | 0.000019 | 0.000010 | 226.42 | 0.000 | 19.76 |
A × B | 4 | 0.000000 | 0.000000 | 0.000000 | 1.16 | 0.397 | 0.101 |
A × C | 4 | 0.000002 | 0.000002 | 0.000000 | 10.30 | 0.003 | 0.899 |
B × C | 4 | 0.000000 | 0.000000 | 0.000000 | 0.88 | 0.516 | 0.076 |
Residual Error | 8 | 0.000000 | 0.000000 | 0.000000 | |||
Total | 26 | 0.000098 |
Source | Deg.F | Seq. SS | Adj. MS | F | P |
---|---|---|---|---|---|
Regression | 9 | 0.000072 | 0.000008 | 109.20 | 0.000 |
Residual Error | 9 | 0.000001 | 0.000000 | ||
Total | 18 | 0.000073 |
Source | Deg.F | Seq. SS | Adj. SS | Adj. MS | F | P | P% |
---|---|---|---|---|---|---|---|
A | 2 | 7.56571 | 7.56571 | 3.78286 | 844.61 | 0.000 | 64.75 |
B | 2 | 1.47715 | 1.47715 | 0.73858 | 164.91 | 0.000 | 12.64 |
C | 2 | 2.52232 | 2.52232 | 1.26116 | 281.58 | 0.000 | 21.58 |
A × B | 4 | 0.15284 | 0.15284 | 0.03821 | 8.53 | 0.006 | 0.654 |
A × C | 4 | 0.05719 | 0.05719 | 0.01430 | 3.19 | 0.076 | 0.244 |
B × C | 4 | 0.02856 | 0.02856 | 0.00714 | 1.59 | 0.266 | 0.121 |
Residual Error | 8 | 0.03583 | 0.03583 | 0.00448 | |||
Total | 26 | 11.8396 |
Source | D.F | Seq. SS | Adj. MS | F | P |
---|---|---|---|---|---|
Regression | 9 | 47.6928 | 5.2992 | 54.60 | 0.000 |
Residual Error | 9 | 0.8735 | 0.0971 | ||
Total | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hegde, A.; Nayak, R.; Bolar, G.; Shetty, R.; Ranjan, R.; Naik, N. Comprehensive Investigation of Hardness, Wear and Frictional Force in Powder Metallurgy Engineered Ti-6Al-4V-SiCp Metal Matrix Composites. J. Compos. Sci. 2024, 8, 39. https://doi.org/10.3390/jcs8020039
Hegde A, Nayak R, Bolar G, Shetty R, Ranjan R, Naik N. Comprehensive Investigation of Hardness, Wear and Frictional Force in Powder Metallurgy Engineered Ti-6Al-4V-SiCp Metal Matrix Composites. Journal of Composites Science. 2024; 8(2):39. https://doi.org/10.3390/jcs8020039
Chicago/Turabian StyleHegde, Adithya, Rajesh Nayak, Gururaj Bolar, Raviraj Shetty, Rakesh Ranjan, and Nithesh Naik. 2024. "Comprehensive Investigation of Hardness, Wear and Frictional Force in Powder Metallurgy Engineered Ti-6Al-4V-SiCp Metal Matrix Composites" Journal of Composites Science 8, no. 2: 39. https://doi.org/10.3390/jcs8020039
APA StyleHegde, A., Nayak, R., Bolar, G., Shetty, R., Ranjan, R., & Naik, N. (2024). Comprehensive Investigation of Hardness, Wear and Frictional Force in Powder Metallurgy Engineered Ti-6Al-4V-SiCp Metal Matrix Composites. Journal of Composites Science, 8(2), 39. https://doi.org/10.3390/jcs8020039