Photocatalytic Decomposition of Rhodamine B and Selective Oxidation of 5-Hydroxymethylfurfural by β-Bi2O3/Bi12SiO20 Nanocomposites Produced by Laser
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Material Characterization Methods
2.3. Photocatalytic Activity Testing
2.4. Electrochemical Activity Testing
3. Results and Discussion
3.1. Characterization of Particle Structure and Morphology
3.2. Optical Properties of NC Particles
3.3. Photocatalytic Properties of NC Particles
3.3.1. Decomposition of Rh B
3.3.2. Selective Oxidation of HMF
3.4. Electrochemical Properties of NC Particles
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Chen, Z.; Zhao, W.; Liu, C.; Qian, X.; Zhang, M.; Wei, G.; Khan, E.; Ng, Y.H.; Ok, Y.S. Recent advances in photodegradation of antibiotic residues in water. Chem. Eng. J. 2021, 405, 126806. [Google Scholar] [CrossRef]
- Rafiq, A.; Ikram, M.; Ali, S.; Niaz, F.; Khan, M.; Khan, Q.; Maqbool, M. Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J. Ind. Eng. Chem. 2021, 97, 111–128. [Google Scholar] [CrossRef]
- Subhiksha, V.; Kokilavani, S.; Khan, S.S. Recent advances in degradation of organic pollutant in aqueous solutions using bismuth based photocatalysts: A review. Chemosphere 2022, 290, 133228. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Yang, S.; Li, H. Electro- and photocatalytic oxidative upgrading of biobased 5-hydroxymethylfurfural. ChemSusChem 2022, 15, e202102581. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xu, R.; Jia, X.; Liu, Z.; Chen, H.; Lu, T. Recent advances in the photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Biomass Convers. Biorefinery 2023. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, H.; Gu, B.; Tang, Q.; Cao, Q.; Fang, W. Sunlight-driven photocatalytic oxidation of 5-hydroxymethylfurfural over a cuprous oxide-anatase heterostructure in aqueous phase. Appl. Catal. B 2023, 320, 122006. [Google Scholar] [CrossRef]
- Nam, J.-W.; Pham, V.N.; Ha, J.M.; Shin, M.; Lee, H.; Youn, Y.-S. Photocatalysis of Cr- and Fe-doped CeO2 nanoparticles to selective oxidation of 5-hydroxymethylfurfural. Nanomaterials 2023, 13, 44. [Google Scholar] [CrossRef]
- Davis, K.A.; Yoo, S.; Shuler, E.W.; Sherman, B.D.; Lee, S.; Leem, G. Photocatalytic hydrogen evolution from biomass conversion. Nano Converg. 2021, 8, 6. [Google Scholar] [CrossRef]
- Low, J.; Dai, B.; Tong, T.; Jiang, C.; Yu, J. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 2019, 31, 1802981. [Google Scholar] [CrossRef]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Xu, M.; Yuan, H.; Chen, Y.; Zhang, J.; Luo, K.; Zhang, J.; You, B. Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation. Appl. Surf. Sci. 2019, 476, 632–640. [Google Scholar] [CrossRef]
- Wang, K.; Yoshiiri, K.; Rosa, L.; Wei, Z.; Juodkazis, S.; Ohtani, B.; Kowalska, E. TiO2/Au/TiO2 plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible-light irradiation. Catal. Today 2022, 397–399, 257–264. [Google Scholar] [CrossRef]
- Hasija, V.; Raizada, P.; Sudhaik, A.; Sharma, K.; Kumar, A.; Singh, P.; Jonnalagadda, S.B.; Thakur, V.K. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review. Appl. Mater. Today 2019, 15, 494–524. [Google Scholar] [CrossRef]
- Ahmad, I.; Zou, Y.; Yan, J.; Liu, Y.; Shukrullah, S.; Naz, M.Y.; Hussain, H.; Khan, W.Q.; Khalid, N.R. Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Adv. Colloid Interface Sci. 2023, 311, 102830. [Google Scholar] [CrossRef] [PubMed]
- Emeline, A.V.; Rudakova, A.V.; Ryabchuk, V.K.; Serpone, N. Recent advances in composite and heterostructured pho-toac-tive materials for the photochemical conversion of solar energy. Curr. Opin. Green Sustain. Chem. 2022, 34, 100588. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, Q.; Huo, C.; Yin, Z.; Shi, Q.; Tao, J.; Su, F.; Cao, S. Constructing flower-like TiO2/Bi2O3 p-n heterojunction with enhanced visible-light photocatalytic performance. J. Alloys Compd. 2023, 950, 169889. [Google Scholar] [CrossRef]
- Goodarzi, N.; Ashrafi-Peyman, Z.; Khani, E.; Moshfegh, A.Z. Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts 2023, 13, 1102. [Google Scholar] [CrossRef]
- Song, Y.; Bao, Z.; Gu, Y. Photocatalytic enhancement strategy with the introduction of metallic Bi: A review on Bi/semiconductor photocatalysts. Chem. Rec. 2023, e202300307. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Z.; Shen, S.; Zhong, W.; Cao, S. Advances in designing heterojunction photocatalytic materials. Chin. J. Catal. 2021, 42, 710–730. [Google Scholar] [CrossRef]
- Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J. A Review of Direct Z-Scheme Photocatalysts. Small Methods 2017, 1, 1700080. [Google Scholar] [CrossRef]
- Yuan, D.; Sun, M.; Tang, S.; Zhang, Y.; Wang, Z.; Qi, J.; Rao, Y.; Zhang, Q. All-solid-state BiVO4/ZnIn2S4 Z-scheme composite with efficient charge separations for improved visible light photocatalytic organics degradation. Chin. Chem. Lett. 2020, 31, 547–550. [Google Scholar] [CrossRef]
- Rengifo-Herrera, J.A.; Pulgarin, C. Why five decades of massive research on heterogeneous photocatalysis, especially on TiO2, has not yet driven to water disinfection and detoxification applications? Critical review of drawbacks and challenges. Chem. Eng. J. 2023, 477, 146875. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Deng, F.; Liu, J.; Gao, X.; Huang, J.; Xu, J.; Feng, Z.; Chen, Z.; Han, L. Novel organic/inorganic PDI-Urea/BiOBr S-scheme heterojunction for improved photocatalytic antibiotic degradation and H2O2 production. Chin. Chem. Lett. 2022, 33, 5200–5207. [Google Scholar] [CrossRef]
- Li, F.; Zhu, G.; Jiang, J.; Yang, L.; Deng, F.; Arramel; Li, X. A review of updated S-scheme heterojunction photocatalysts. J. Mater. Sci. Technol. 2024, 177, 142–180. [Google Scholar] [CrossRef]
- Prabhakar Vattikuti, S.V.; Zeng, J.; Ramaraghavulu, R.; Shim, J.; Mauger, A.; Julien, C.M. High-throughput strategies for the design, discovery, and analysis of bismuth-based photocatalysts. Int. J. Mol. Sci. 2023, 24, 663. [Google Scholar] [CrossRef] [PubMed]
- Sivasubramanian, P.; Chang, J.; Nagendran, S.; Dong, C.; Shkir, M.; Kumar, M. A review on bismuth-based nanocomposites for energy and environmental applications. Chemosphere 2022, 307, 135652. [Google Scholar] [CrossRef]
- Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M. Metastable β-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxido clusters. Dalton Trans. 2013, 42, 1047–1056. [Google Scholar] [CrossRef]
- Shu, S.; Wang, H.; Li, Y.; Liu, J.; Liu, J.; Yao, J.; Liu, S.; Zhu, M.; Huang, L. Fabrication of n-p β-Bi2O3@BiOI core/shell photocatalytic heterostructure for the removal of bacteria and bisphenol A under LED light. Colloids Surf. B 2023, 221, 112957. [Google Scholar] [CrossRef]
- Shuk, P.; Wiemhöfer, H.-D.; Guth, U.; Göpel, W.; Greenblatt, M. Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics 1996, 89, 179–196. [Google Scholar] [CrossRef]
- Hu, R.; Xiao, X.; Tu, S.; Zuo, X.; Nan, J. Synthesis of flower-like heterostructured β-Bi2O3/Bi2O2CO3 microspheres using Bi2O2CO3 self-sacrifice precursor and itsvisible-light-induced photocatalytic degradation of o-phenylphenol. Appl. Catal. B 2015, 163, 510–519. [Google Scholar] [CrossRef]
- Huang, Y.; Wei, Y.; Wang, J.; Luo, D.; Fan, L.; Wu, J. Controllable fabrication of Bi2O3/TiO2 heterojunction with excellent visible-light responsive photocatalytic performance. Appl. Surf. Sci. 2017, 423, 119–130. [Google Scholar] [CrossRef]
- Park, S.; Jun, J.; Kim, H.W.; Lee, C. Preparation of one dimensional Bi2O3-core/ZnO-shell structures by thermal evaporation and atomic layer deposition. Solid State Commun. 2009, 149, 315–318. [Google Scholar] [CrossRef]
- Wu, Y.; Chang, X.; Li, M.; Hei, X.; Liu, C.; Zhan, X. Studying the preparation of pure Bi12SiO20 by Pechini method with high photocatalytic performance. J. Sol-Gel Sci. Technol. 2021, 97, 311–319. [Google Scholar] [CrossRef]
- Weber, M.; Rodriguez, R.D.; Zahn, D.R.T.; Mehring, M. γ-Bi2O3—To Be or Not To Be? Comparison of the Sillenite γ-Bi2O3 and Isomorphous Sillenite-Type Bi12SiO20. Inorg. Chem. 2018, 57, 8540–8549. [Google Scholar] [CrossRef]
- Isik, M.; Surucu, G.; Gencer, A.; Gasanly, N.M. Electronic, optical and thermodynamic characteristics of Bi12SiO20 sillenite: First principle calculations. Mater. Chem. Phys. 2021, 267, 124711. [Google Scholar] [CrossRef]
- Oberschmid, R. Absorption Centers of Bi12GeO20 and Bi12SiO20 crystals. Phys. Stat. Sol. A 1985, 89, 263–270. [Google Scholar] [CrossRef]
- Attard, A.E. Fermi level shift in Bi12SiO20 via photon-induced trap level occupation. J. Appl. Phys. 1992, 71, 933–937. [Google Scholar] [CrossRef]
- Zhang, Q.; Ravindra; Xia, H.; Zhang, L.; Zeng, K.; Xu, Y.; Xin, C. Microwave hydrothermal synthesis of a Bi2SiO5/Bi12SiO20 heterojunction with oxygen vacancies and multiple charge transfer for enhanced photocatalytic activity. Appl. Surf. Sci. 2022, 581, 152337. [Google Scholar] [CrossRef]
- Dadashi, S.; Poursalehi, R.; Delavari, H.H. Formation, gradual oxidation mechanism and tunable optical properties of Bi/Bi2O3 nanoparticles prepared by Nd: YAG laser ablation in liquid: Dissolved oxygen as genesis of tractable oxidation. Mater. Res. Bull. 2018, 97, 421–427. [Google Scholar] [CrossRef]
- Hassan, S.S.; Hubeatir, K.A.; Al-Haddad, R.M.S. Characterization and antibacterial activity of silica-coated bismuth (Bi@SiO2) nanoparticles synthesized by pulsed laser ablation in liquid. Optik 2023, 273, 170453. [Google Scholar] [CrossRef]
- Shabalina, A.V.; Fakhrutdinova, E.D.; Golubovskaya, A.G.; Kuzmin, S.M.; Koscheev, S.V.; Kulinich, S.A.; Svetlichnyi, V.A.; Vodyankina, O.V. Laser-assisted preparation of highly-efficient photocatalytic nanomaterial based on bismuth silicate. Appl. Surf. Sci. 2022, 575, 151722. [Google Scholar] [CrossRef]
- Flores-Castaneda, M.; Camacho-Lopez, S. Si nanoparticle decorated Bi2O2CO3 2D nanocomposite synthesized by femtosecond laser ablation of solids in liquids and aging. Opt. Laser Technol. 2023, 158, 108891. [Google Scholar] [CrossRef]
- Amendola, V.; Amans, D.; Ishikawa, Y.; Koshizaki, N.; Scire, S.; Compagnini, G.; Reichenberger, S.; Barcikowski, S. Room-Temperature laser synthesis in liquid of oxide, metal-oxide core-shells, and doped oxide nanoparticles. Chem. Eur. J. 2020, 26, 9206–9242. [Google Scholar] [CrossRef]
- Goncharova, D.A.; Kharlamova, T.S.; Reutova, O.A.; Svetlichnyi, V.A. Water-ethanol CuOx nanoparticle colloids prepared by laser ablation: Colloid stability and catalytic properties in nitrophenol hydrogenation. Colloids Surf. A Physicochem. Eng. 2021, 613, 126115. [Google Scholar] [CrossRef]
- Forsythe, R.C.; Cox, C.P.; Wilsey, M.K.; Müller, A.M. Pulsed laser in liquids made nanomaterials for catalysis. Chem. Rev. 2021, 121, 7568–7637. [Google Scholar] [CrossRef]
- Shabalina, A.V.; Golubovskaya, A.G.; Fakhrutdinova, E.D.; Kulinich, S.A.; Vodyankina, O.V.; Svetlichnyi, V.A. Phase and structural thermal evolution of Bi-Si-O catalysts obtained via laser ablation. Nanomaterials 2022, 12, 4101. [Google Scholar] [CrossRef]
- Svetlichnyi, V.A.; Fakhrutdinova, E.D.; Nazarova, T.S.; Kulinich, S.A.; Vodyankina, O.V. Comparative study of bismuth composites obtained via pulsed laser ablation in a liquid and in air for photocatalytic application. Solid State Phenom. 2020, 312, 172–178. [Google Scholar] [CrossRef]
- Golubovskaya, A.G.; Fakhrutdinova, E.D.; Svetlichnyi, V.A. Bismuth silicates: Preparation by pulsed laser ablation and photocatalytic activity. Proc. SPIE 2021, 12086, 120861Y. [Google Scholar] [CrossRef]
- Svetlichnyi, V.A.; Shabalina, A.V.; Lapin, I.N.; Goncharova, D.A.; Kharlamova, T.S.; Stadnichenko, A.I. Comparative Study of Magnetite Nanoparticles Obtained by Pulsed Laser Ablation in Water and Air. Appl. Surf. Sci. 2019, 467–468, 402–410. [Google Scholar] [CrossRef]
- Yang, J.; Xie, T.; Liu, C.; Xu, L. Facile Fabrication of Dumbbell-like β-Bi2O3/Graphene Nanocomposites and Their Highly Efficient Photocatalytic Activity. Materials 2018, 11, 1359. [Google Scholar] [CrossRef]
- Valencia, G.K.; Lopez, A.; Hernandez-Gordillo, A.; Zanella, R.; Rodil, S.E. Stabilized β-Bi2O3 nanoparticles from (BiO)4CO3(OH)2 precursor and their photocatalytic properties under blue light. Ceram. Int. 2018, 44, 22329–22338. [Google Scholar] [CrossRef]
- Steele, J.A.; Lewis, R.A. In situ micro-Raman studies of laser-induced bismuth oxidation reveals metastability of β-Bi2O3 microislands. Opt. Mater. Express. 2014, 4, 2133–2142. [Google Scholar] [CrossRef]
- Isik, M.; Delice, S.; Gasanly, N.M.; Darvishov, N.H.; Bagiev, V.E. Temperature-dependent band gap characteristics of 20 single crystals. J. Appl. Phys. 2019, 126, 245703. [Google Scholar] [CrossRef]
- Hou, D.; Hu, X.; Wen, Y.; Shan, B.; Hu, P.; Xiong, X.; Qiao, Y.; Huanga, Y. Electrospun sillenite Bi12MO20 (M = Ti, Ge, Si) nanofibers: General synthesis, band structure, and photocatalytic activity. Phys. Chem. Chem. Phys. 2013, 15, 20698. [Google Scholar] [CrossRef]
- Dou, L.; Jin, X.; Chen, J.; Zhong, J.; Li, J.; Zeng, Y.; Duan, R. One-pot solvothermal fabrication of S-scheme OVs-Bi2O3/Bi2SiO5 microsphere heterojunctions with enhanced photocatalytic performance toward decontamination of organic pollutants. Appl. Surf. Sci. 2020, 527, 146775. [Google Scholar] [CrossRef]
- Isari, A.A.; Payan, A.; Fattahi, M.; Jorfi, S.; Kakavandi, B. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Appl. Surf. Sci. 2018, 462, 549–564. [Google Scholar] [CrossRef]
- Hu, X.; Mohamood, T.; Ma, W.; Chen, C.; Zhao, J. Oxidative decomposition of Rhodamine B dye in the presence of VO2+ and/or Pt(IV) under visible light irradiation: N-deethylation, chromophore cleavage, and mineralization. J. Phys. Chem. B 2006, 110, 26012–26018. [Google Scholar] [CrossRef]
- Fernández-Castro, P.; Vallejo, M.; San Román, M.F.; Ortiz, I. Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species. J. Chem. Technol. Biotechnol. 2015, 90, 796–820. [Google Scholar] [CrossRef]
- Li, J.; Xu, Y.; Zhang, M.; Wang, D. Determination of Furfural and 5-Hydroxymethylfurfural in Biomass Hydrolysate by High-Performance Liquid Chromatography. Energy Fuels 2017, 31, 13769–13774. [Google Scholar] [CrossRef]
- Franca, J.R.; Souza, P.B.; Dias, J.G.; Perdomo, A.D.P.; Linhares, A.A.; Bassoli, W.R.B.; Schafer, D.; Pasa, A.A.; Cid, C.C.P. Photocurrent in Bi2Se3 films electrodeposited with predominance of the orthorhombic phase. Electrochim. Acta 2023, 463, 142791. [Google Scholar] [CrossRef]
- Attard, A.E. Theory of origins of the photorefractive and photoconductive effects in Bi12SiO20. J. Appl. Phys. 1991, 69, 44–55. [Google Scholar] [CrossRef]
- Frejlich, J. Photorefractive Materials: Fundamental Concepts, Holographic Recording and Materials Characterization; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 19–43. ISBN 978-0-471-74866-3. [Google Scholar]
- Murashkina, A.A.; Bakiev, T.V.; Artemev, Y.M.; Rudakova, A.V.; Emeline, A.V.; Bahnemann, D.W. Photoelectrochemical behavior of the ternary heterostructured systems CdS/WO3/TiO2. Catalysts 2019, 9, 999. [Google Scholar] [CrossRef]
Sample | KN, min−1 | ||
---|---|---|---|
λ = 375 nm | λ = 410 nm | λ = 470 nm | |
BSO | 0.031 | 0.005 | 0.003 |
10-Bi2O3/90-BSO | 0.038 | 0.017 | 0.009 |
50-Bi2O3/50-BSO | 0.100 | 0.038 | 0.028 |
50-Bi2O3/50-BSO (mix) | 0.053 | - | - |
90-Bi2O3/10-BSO | 0.093 | 0.070 | 0.080 |
10-Bi2O3/90-BSO (mix) | 0.057 | - | - |
Bi2O3 | 0.043 | 0.069 | 0.060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golubovskaya, A.G.; Kharlamova, T.S.; Gavrilenko, E.A.; Fakhrutdinova, E.D.; Vodyankina, O.V.; Kulinich, S.A.; Svetlichnyi, V.A. Photocatalytic Decomposition of Rhodamine B and Selective Oxidation of 5-Hydroxymethylfurfural by β-Bi2O3/Bi12SiO20 Nanocomposites Produced by Laser. J. Compos. Sci. 2024, 8, 42. https://doi.org/10.3390/jcs8020042
Golubovskaya AG, Kharlamova TS, Gavrilenko EA, Fakhrutdinova ED, Vodyankina OV, Kulinich SA, Svetlichnyi VA. Photocatalytic Decomposition of Rhodamine B and Selective Oxidation of 5-Hydroxymethylfurfural by β-Bi2O3/Bi12SiO20 Nanocomposites Produced by Laser. Journal of Composites Science. 2024; 8(2):42. https://doi.org/10.3390/jcs8020042
Chicago/Turabian StyleGolubovskaya, Aleksandra G., Tamara S. Kharlamova, Ekaterina A. Gavrilenko, Elena D. Fakhrutdinova, Olga V. Vodyankina, Sergei A. Kulinich, and Valery A. Svetlichnyi. 2024. "Photocatalytic Decomposition of Rhodamine B and Selective Oxidation of 5-Hydroxymethylfurfural by β-Bi2O3/Bi12SiO20 Nanocomposites Produced by Laser" Journal of Composites Science 8, no. 2: 42. https://doi.org/10.3390/jcs8020042
APA StyleGolubovskaya, A. G., Kharlamova, T. S., Gavrilenko, E. A., Fakhrutdinova, E. D., Vodyankina, O. V., Kulinich, S. A., & Svetlichnyi, V. A. (2024). Photocatalytic Decomposition of Rhodamine B and Selective Oxidation of 5-Hydroxymethylfurfural by β-Bi2O3/Bi12SiO20 Nanocomposites Produced by Laser. Journal of Composites Science, 8(2), 42. https://doi.org/10.3390/jcs8020042