Investigating the Electrical and Mechanical Properties of Polystyrene (PS)/Untreated SWCNT Nanocomposite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanocomposite Preparation
2.3. Mechanical Characterization
2.4. Electrical Conductivity Measurement
2.5. Viscosity Measurement
2.6. Optical Microscopy
3. Results and Discussion
3.1. Microstructural Observations
3.2. Mechanical Properties
3.3. Nanocomposite Film Conductivity
3.4. Solution Viscosity Effects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kavinkumar, T.; Manivannan, S. Thermal and dielectric properties of multi-walled carbon nanotube–graphene oxide composite. J. Mater. Sci. Mater. Electron. 2017, 28, 344–353. [Google Scholar] [CrossRef]
- Xu, H.; Song, G.; Zhang, L.; Zhao, Z.; Liu, Z.; Du, T.; Song, J.; Yang, Y.; Cheng, Y.; Wei, Y.; et al. Preparation and performance evolution of enhancement polystyrene composites with graphene oxide/carbon nanotube hybrid aerogel: Mechanical properties, electrical and thermal conductivity. Polym. Test. 2021, 101, 107283. [Google Scholar] [CrossRef]
- Goh, P.S.; Ismail, A.F.; Ng, B.C. Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances. Compos. Part A Appl. Sci. Manuf. 2014, 56, 103–126. [Google Scholar] [CrossRef]
- Parnian, P. A Short Review on: Recent Advances in the Use of Carbon Nanotubes in Additive Manufacturing of Polymer Matrix Composites. Macromol. Symp. 2022, 405, 2100339. [Google Scholar] [CrossRef]
- Meincke, O.; Kaempfer, D.; Weickmann, H.; Friedrich, C.; Vathauer, M.; Warth, H. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 2004, 45, 739–748. [Google Scholar] [CrossRef]
- Shi, X.; Hudson, J.L.; Spicer, P.P.; Tour, J.M.; Krishnamoorti, R.; Mikos, A.G. Rheological behaviour and mechanical characterization of injectable poly (propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering. Nanotechnology 2005, 16, S531. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.T.; Han, M.S.; Song, K.H.; Jung, J.W.; Lee, H.S.; Kum, C.K.; Joo, J.; Kim, W.N.; Kim, W.N. Rheological and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Polymer 2006, 47, 4434–4439. [Google Scholar] [CrossRef]
- Breuer, O.; Sundararaj, U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Compos. 2004, 25, 630–645. [Google Scholar] [CrossRef]
- Parihar, S.; Gaur, B. High-performance self-healing polymeric nanocomposite coatings. Prog. Org. Coat. 2023, 182, 107626. [Google Scholar] [CrossRef]
- Ajayan, P.M.; Stephan, O.; Colliex, C.; Trauth, D. Aligned carbon nanotube arrays formed by cutting a polymer resin—Nanotube composite. Science 1994, 265, 1212–1214. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.J.; Kar, S.; Talapatra, S.; Soldano, C.; Viswanathan, G.; Li, X.; Yao, Z.; Qu, F.S.; Avadhanula, A.; Vajtai, R.; et al. Aligned carbon nanotube− polymer hybrid architectures for diverse flexible electronic applications. Nano Lett. 2006, 6, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, C.; Gissinger, J.R.; Kumar, S.; Heinz, H. Carbon nanotube dispersion in solvents and polymer solutions: Mechanisms, assembly, and preferences. ACS Nano 2017, 11, 12805–12816. [Google Scholar] [CrossRef]
- Monthioux, M.; Smith, B.W.; Burteaux, B.; Claye, A.; Fischer, J.E.; Luzzi, D.E. Sensitivity of single-wall carbon nanotubes to chemical processing: An electron microscopy investigation. Carbon 2011, 39, 1251–1272. [Google Scholar] [CrossRef]
- Predtechenskiy, M.R.; Khasin, A.A.; Smirnov, S.N.; Bezrodny, A.E.; Bobrenok, O.F.; Dubov, D.Y.; Kosolapov, A.G.; Lyamysheva, E.G.; Muradyan, V.E.; Saik, V.O.; et al. New Perspectives in SWCNT Applications: Tuball SWCNTs. Part 2. New Composite Materials through Augmentation with Tuball. Carbon Trends 2022, 8, 100176. [Google Scholar] [CrossRef]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Rennhofer, H.; Zanghellini, B. Dispersion state and damage of carbon nanotubes and carbon nanofibers by ultrasonic dispersion: A review. Nanomaterials 2021, 11, 1469. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, P.; Abousalman-Rezvani, Z.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Polymer-functionalization of carbon nanotube by in situ conventional and controlled radical polymerizations. Adv. Colloid Interface Sci. 2021, 294, 102471. [Google Scholar] [CrossRef]
- Fujigaya, T.; Nakashima, N. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci. Technol. Adv. Mater. 2015, 16, 024802. [Google Scholar] [CrossRef]
- Alsharef, J.M.; Taha, M.R.; Khan, T.A. Physical dispersion of nanocarbons in composites—A review. J. Teknol. 2017, 79, 69–81. [Google Scholar] [CrossRef]
- Razavi, S.M.; Sadollah, A.; Al-Shamiri, A.K. Prediction and optimization of electrical conductivity for polymer-based composites using design of experiment and artificial neural networks. Neural. Comput. Appl. 2022, 34, 7653–7671. [Google Scholar] [CrossRef]
- Folorunso, O.; Hamam, Y.; Sadiku, R.; Ray, S.S.; Joseph, A.G. Parametric analysis of electrical conductivity of polymer-composites. Polymers 2019, 11, 1250. [Google Scholar] [CrossRef] [PubMed]
- Schuetze, A.P.; Lewis, W.; Brown, C.; Geerts, W.J. A laboratory on the four-point probe technique. Am. J. Phys. 2004, 72, 149–153. [Google Scholar] [CrossRef]
- Mylsamy, G.; Krishnasamy, P. A Review on Electrical Properties of Fiber-Reinforced Polymer Material: Fabrication, Measurement, and Performances. Trans. Indian Inst. Met. 2023, 76, 1–18. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Z.; Tang, J.; Li, P.; Chen, W.; Liu, P.; Li, L.; Zheng, Z. Microwave-assisted foaming and sintering to prepare lightweight high-strength polystyrene/carbon nanotube composite foams with an ultralow percolation threshold. J. Mater. Chem. C 2021, 9, 9702–9711. [Google Scholar] [CrossRef]
- Khan, M.U.; Gomes, V.G.; Farahani, T.D. Polymer nanocomposite synthesis via’in-situ’emulsion polymerization for sensor application. Chemeca 2011, 2011, 2533–2542. [Google Scholar]
- Kausar, A.; Rafique, I.; Muhammad, B. Significance of carbon nanotube in flame-retardant polymer/CNT composite: A review. Polym. Plast. Technol. Eng. 2017, 56, 470–487. [Google Scholar] [CrossRef]
- Xu, H.; Schubert, D.W. Electrical conductivity of polystyrene/poly (n-alkyl methacrylate) s/carbon nanotube ternary composite casting films. J. Polym. Res. 2020, 27, 153. [Google Scholar] [CrossRef]
- Zeimaran, E.; Akbarivakilabadi, A.; Majumder, M. Polystyrene carbon nanotube nanocomposites. Handbook of Polymer Nanocomposites. Process. Perform. Appl. Vol. B Carbon Nanotub. Based Polym. Compos. 2015, 213–244. [Google Scholar] [CrossRef]
- Wang, S.; Huang, Y.; Chang, E.; Zhao, C.; Ameli, A.; Naguib, H.E.; Park, C.B. Evaluation and modeling of electrical conductivity in conductive polymer nanocomposite foams with multiwalled carbon nanotube networks. Chem. Eng. J. 2021, 411, 128382. [Google Scholar] [CrossRef]
- Min, C.; Shen, X.; Shi, Z.; Chen, L.; Xu, Z. The electrical properties and conducting mechanisms of carbon nanotube/polymer nanocomposites: A review. Polym. Plast. Technol. Eng. 2010, 49, 1172–1181. [Google Scholar] [CrossRef]
- Tuball Graphene Nanotubes. Available online: https://tuball.com/about-tuball (accessed on 25 December 2023).
- Jakubka, F.; Schießl, S.P.; Martin, S.; Englert, J.M.; Hauke, F.; Hirsch, A.; Zaumseil, J. Effect of Polymer Molecular Weight and Solution Parameters on Selective Dispersion of Single-Walled Carbon Nanotubes. ACS Macro Lett. 2012, 1, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Kulicke, W.-M.; Kniewske, R. The shear viscosity dependence on concentration, molecular weight, and shear rate of polystyrene solutions. Rheol. Acta 1984, 23, 75–83. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Nish, A.; Doig, J.; Douven, S.; Chen, C.-W.; Chen, L.-C.; Nicholas, R.J. Polymer Structure and Solvent Effects on the Selective Dispersion of Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2008, 130, 3543–3553. [Google Scholar] [CrossRef]
- Osaki, K.; Kurata, M. Experimental Appraisal of the Doi-Edwards Theory for Polymer Rheology Based on the Data for Polystyrene Solutions. Macromolecules 1980, 13, 671–676. [Google Scholar] [CrossRef]
- Mitchell, C.A.; Bahr, J.L.; Arepalli, S.; Tour, J.M.; Krishnamoorti, R. Dispersion of Functionalized Carbon Nanotubes in Polystyrene. Macromolecules 2002, 35, 8825–8830. [Google Scholar] [CrossRef]
Sample | PS (%) | CNT (%) | Young’s Modulus (MPa) | UTS (MPa) |
---|---|---|---|---|
PS 3-CNT 0 | 3 | 0 | 2668.17 | 10.71 |
PS 3-CNT 1 | 3 | 1 | 1221.48 | 5.97 |
PS 3-CNT 2 | 3 | 2 | 3855.6 | 11.06 |
PS 3-CNT 3 | 3 | 3 | 709.83 | 4.08 |
PS 6-CNT 0 | 6 | 0 | 2189.1 | 47.87 |
PS 6-CNT 1 | 6 | 1 | 2917.4 | 17.50 |
PS 6-CNT 2 | 6 | 2 | 2778.42 | 10.72 |
PS 6-CNT 3 | 6 | 3 | 1384.68 | 4.03 |
PS 9-CNT 0 | 9 | 0 | 1464.4 | 17.13 |
PS 9-CNT 1 | 9 | 1 | 1441.14 | 8.92 |
PS 9-CNT 2 | 9 | 2 | 2496.03 | 6.93 |
Sample | PS (%) | CNT (%) | Electrical Conductivity (S/m) |
---|---|---|---|
PS 3-CNT 0 | 3 | 0 | 0.000005 |
PS 3-CNT 1 | 3 | 1 | 0.00037037 |
PS 3-CNT 2 | 3 | 2 | NA * |
PS 3-CNT 3 | 3 | 3 | 0.00125 |
PS 6-CNT 0 | 6 | 0 | NA * |
PS 6-CNT 1 | 6 | 1 | 0.0000625 |
PS 6-CNT 2 | 6 | 2 | 1.42857× 10−5 |
PS 6-CNT 3 | 6 | 3 | 0.037037037 |
PS 9-CNT 0 | 9 | 0 | NA * |
PS 9-CNT 1 | 9 | 1 | 0.090909091 |
PS 9-CNT 2 | 9 | 2 | 0.01369863 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parnian, P.; D’Amore, A. Investigating the Electrical and Mechanical Properties of Polystyrene (PS)/Untreated SWCNT Nanocomposite Films. J. Compos. Sci. 2024, 8, 49. https://doi.org/10.3390/jcs8020049
Parnian P, D’Amore A. Investigating the Electrical and Mechanical Properties of Polystyrene (PS)/Untreated SWCNT Nanocomposite Films. Journal of Composites Science. 2024; 8(2):49. https://doi.org/10.3390/jcs8020049
Chicago/Turabian StyleParnian, Pooyan, and Alberto D’Amore. 2024. "Investigating the Electrical and Mechanical Properties of Polystyrene (PS)/Untreated SWCNT Nanocomposite Films" Journal of Composites Science 8, no. 2: 49. https://doi.org/10.3390/jcs8020049
APA StyleParnian, P., & D’Amore, A. (2024). Investigating the Electrical and Mechanical Properties of Polystyrene (PS)/Untreated SWCNT Nanocomposite Films. Journal of Composites Science, 8(2), 49. https://doi.org/10.3390/jcs8020049