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Abstract: In additive manufacturing (AM), one of the most popular procedures is material extrusion
(MEX). The materials and manufacturing parameters used in this process have a significant impact on
a printed product’s quality. The purpose of this work is to investigate the effects of infill percentage
and filament orientation on the mechanical properties of printed structures. For this reason, the
characterisation of polylactic acid (PLA) was done numerically using the finite element method and
experimentally through mechanical tests. The experiments involved three-point bending and tensile
tests. The results showed that mechanical performance is highly dependent on these processing
parameters mainly when the infill percentage is less than 100%. The highest elastic modulus was
exhibited for structures with filament align at 0◦ and 100% infill, while the lowest one was verified for
specimen filament aligned at 0◦ and 30% infill. The results demonstrated that the process parameters
have a significant impact on mechanical performance, particularly when the infill percentage is less
than 100%. Structures with filament aligned at 0◦ and 100% infill showed the maximum elastic
modulus, whereas specimens with filament oriented at 0◦ and 30% infill showed the lowest. The
obtained numerical agreement indicated that an inverse method based only on the load–displacement
curve can yield an accurate value for this material’s elastic modulus.

Keywords: elastic modulus; experimental characterisation; finite element method; material extrusion

1. Introduction

Additive manufacturing (AM) first emerged in the 1980s for developing models
and prototypes, expanding the digital chain beyond computer-aided design (CAD) or
reverse engineering. The main advantages of additive manufacturing (AM) over other
traditional manufacturing processes were rapidly identified, including the capacity to form
complex geometries while reducing human interaction and product development time
and cost [1,2]. Binder jetting (BJT), material extrusion (MEX), directed energy deposition
(DED), material jetting (MJT), powder bed fusion (PBF), sheet lamination (SHL), and vat
photopolymerization (VPP) are examples of additive manufacturing (AM) processes [3].

MEX is the second most widely used three-dimensional printing (3DP) technology
because of its simplicity and accessibility of utilisation [4,5]. The advanced 3DP technique
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for producing polymeric products is also referred to as fused filament fabrication or FFF.
Through layer-by-layer melting and extrusion of a polymeric filament, this method pro-
duces three-dimensional structures. The fundamental idea behind the FFF production
process is to melt the raw material to make it easier to form new shapes [6].

Low-melting-point polymers such as polylactic acid (PLA), polyamide (PA), acryloni-
trile butadiene styrene (ABS), polyvinyl acetate (PVA), and polycarbonate (PC) are the
principal components adopted in MEX [7]. In this technology, PLA is widely utilised. It
is a biodegradable thermoplastic made from crops fermented like potatoes or maize. Its
primary characteristics, when applied to FFF production techniques, are low glass transi-
tion temperature, high processability, low ductility, decreased resilience, and decreased
volumetric contraction [8].

The material, structural elements, and manufacturing variables all affect the me-
chanical characteristics of MEX-printed parts. Among the manufacturing and structural
characteristics are layer height, contour number, raster width, raster angle, infill percentage,
fill pattern, air gap, build orientation, print speed, and extruder temperature. Component
characteristics are influenced differently by various combinations and degrees of parameter
variation (Figure 1) [9,10].
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Figure 1. Schematic illustration of applicable analysed process parameters.

Numerous studies have been conducted over time to optimise and comprehend the
influence of these parameters using a variety of materials, given the myriad combinations
of parameters to be selected in this manufacturing technique.

Three responses, namely tensile, flexural, and impact strength, were examined by
Sood et al. [11] in relation to five significant production parameters: layer thickness, orien-
tation, raster angle, raster width, and air gap of printed ABS parts. The majority of these
parameters can affect the printed parts’ tensile characteristics, and porosity between layers
can lead to weak structures, according to the authors’ findings.

Baich et al. [12] considered the implications of infill concepts and printing time on the
mechanical response (tensile, compressive, and flexural strength) of ABS printed parts. As
expected, high infill density not only offers greater strength but also increases production
costs due to the increased amount of material required.

Harpool and collaborators [13] studied the tensile strength of PLA components with
four distinct infill patterns: rectilinear, diamond, hexagonal, and solid. According to the
findings, the infill design has a considerable influence on the mechanical qualities of the
printed objects.
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The impact of process parameters, such as build direction, infill percentage, infill
pattern, printing speed, extrusion temperature, and layer height, on the mechanical tensile
properties of printed parts was experimentally investigated by Alafaghani et al. [14]. The
authors discovered that the tensile properties are hardly affected by printing speed, infill
density, or infill pattern.

Behzadnasab and Yousefi [15] investigated the effects of nozzle temperature settings
on the mechanical behaviour of 3D-printed samples. The authors discovered that as the set
nozzle temperature increased to 240 ◦C, the strength of PLA 3D-printed parts increased,
although degradation was observed when nozzle temperatures were set higher than 240 ◦C
polymer, which is the common upper bound of set temperature restraint of 3D printing of
polymeric materials. Furthermore, the printing speed can have an impact on the mechanical
properties of the printed parts. Setting a high printing speed can result in inadequate layer
bonding, decreasing the mechanical strength of the parts [16].

Bardiya et al. [17] chose the three main process parameters to investigate: layer
thickness, build orientation, and infill density. It was determined that the maximum
impact strength of 3D-printed PLA parts can be achieved by employing a layer thickness of
0.2 mm, a layer orientation of 30◦, and an infill density of 80%.

The study by Abeykoon et al. [18] was concentrated on the mechanical, thermal, and
morphological properties of 3D-printed specimens under several processing conditions,
including infill pattern, density, and speed, as well as with various printing materials.
In the end, the best process parameters for the best performance of the various printing
materials were a linear fill pattern, 100% infill density, 90 mm/s infill speed, and a set
nozzle temperature of 215 ◦C.

In none of the above referred studies was the mechanical behaviour of 3D-printed
components predicted using a combination of numerical modelling and experimental data.
The cited authors used conventional methods to measure basic mechanical properties in
the experimental characterisation. To date, there have been no studies examining the use
of contactless full-field experimental techniques to assess the mechanical performance of
3D-printed materials and validate measurement protocols.

In this study, two experimental mechanical tests—the three-point bending (TPB) and
tensile ones—were used to assess the impact of filament orientation and infill percentage on
the overall stiffness. As a way to acquire tensile stress–strain curves and the fundamental
mechanical properties of the material (PLA), two methods were combined to monitor
discrete and full-field data. Numerical modelling was performed to simulate the influence
of infill percentage on the PLA response for filament orientations both at 0◦ and 90◦.
Notably, this study goes beyond conventional approaches employed in previous studies by
incorporating a combination of numerical modeling and experimental data, integrating
non-contact full-field experimental techniques to evaluate the mechanical performance of
3D-printed materials. By doing so, this study aims to bridge the gap between theoretical
predictions and practical results, thereby improving the understanding of the mechanical
behaviour of 3D-printed components. Furthermore, this work introduces a unique focus
on filament orientation and fill percentage, two crucial factors that influence the overall
stiffness of 3D-printed structures.

2. Materials and Methods
2.1. Preparation of Specimens

Using a Creatbot® model F430 machine (3D printing technology, Zhengzhou, China),
PLA samples were created using MEX technology. Flashforge Technology Co., Ltd. (Jinhua,
China) supplied 1.75 mm diameter PLA filament (Primavalue®, 3DPrima, Malmö, Sweden).
CAD models such as parallelepipedals and dogbones (Figure 2a,b) were developed in
accordance with ISO 20753 and ISO 3167 type A, the corresponding testing standards
for three-point bending (TPB) and tensile tests. The STL file format was adopted for
slicing operations in the CreatWare V6.5.1 print control programme. G-code files were
generated based on geometrical and printing settings (Table 1). Twenty-four specimens
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were printed to undergo TPB tests, three for each orientation with 30% and 100% infill.
Thirty-two specimens were printed with four filament orientations (0◦/90◦, 45◦/−45◦, 0◦,
and 90◦) and infill percentages of 30% and 100% for the tensile tests. Tensile tests were
also conducted with 50% and 75% for filament orientations at 0◦ and 90◦ relative to the
loading axis aiming to evaluate more deeply the impact of the elastic modulus with the
infill percentage (Figure 3a,b). The elastic moduli E_1 and E_2 were identified through
specimens with filaments oriented at 0◦ and 90◦, respectively.
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Figure 2. Specimen geometries: (a) three-point bending: l = 80; h = 4; W = 10 (mm) and
(b) dogbone: b1 = 10; b2 = 20; h = 4; l1 = 80; l2 = 110; l3 = 170; r = 25; L0 = 75; L = 115 (mm).

Table 1. Printing parameters.

Quality

Layer height (mm) 0.1
Extrusion width (mm) 0.4

Flow (%) 100
Perimeters 2

Fill
Top layers 4

Print speed (mm/s) 40

Speed and Temperature

Bottom layers 4
Print temperature (◦C) 210

Close bed after layer (◦C) 100
Bed temperature (◦C) 45

Using varying orientations and infill percentages, specimens for TPB and tensile
testing were printed (Figure 3), with the corresponding effective dimensions (width, length,
and thickness) exhibited in Tables 2 and 3.
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Table 2. Average values of specimen dimensions (height h and width W) printed with different
orientations and infill percentages (values in mm).

Orientations

0◦/90◦ 45◦/−45◦ 0◦ 90◦

Infill

30%
h 4.28 4.28 4.22 4.28

W 9.97 10.01 10.01 10.07

100%
h 4.12 4.22 4.15 4.18

W 9.97 9.96 9.99 9.99

Table 3. Average values of specimen dimensions (thickness h and width b1) printed with different
orientations and infill percentages (dimensions in mm).

Orientations

0◦/90◦ 45◦/−45◦ 0◦ 90◦

Infill

30%
h 4.25 4.39 4.19 4.22

b1 9.98 9.98 10.04 10.09

100%
h 4.24 4.30 4.10 4.23

b1 10.04 10.10 10.08 10.15

50%
h - - 4.20 4.24

b1 - - 10.04 10.16

75%
h - - 4.22 4.26

b1 - - 10.08 10.10

2.2. Inverse Method

As previously stated, the goal of this work is to provide a simple strategy for identify-
ing the elastic performance of PLA by combining experimental and numerical data through
optimisation. Thus, the three-point bending (TPB) and tensile tests were selected as the
two experimental tests. The chosen method entails identifying the printed PLA’s elastic
characteristics that mimic the experimentally determined mechanical response (P-d curve)
(Figure 4).
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2.2.1. Three-Point Bending Tests

Bending tests were conducted according to the ISO 178 [19] standard using servo-
electrical material testing equipment (MicroTester INSTRON 5848, Instron®, Norwood,
MA, USA) under displacement control (5.0 mm/min). An acquisition frequency of 5 Hz
was selected, and a 2 kN load cell was used. At room temperature (25 ◦C, 65◦RH), the
displacement {δ) and load (P) were recorded, and the loading span (L) was 60 mm. Twenty-
four specimens were tested (for 30 and 100% infill percentages) in the linear elastic region
(Figure 5).
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The modulus of elasticity along the longitudinal direction was obtained considering
the Bernoulli–Euler beam theory,

Ex =
R0 L3

4 W h3 (1)

where R0 stands for the initial stiffness, W for the width, and h for the specimen height
(Figure 2a).

2.2.2. Standard Tensile Tests

Tensile tests were accomplished at a displacement rate of 3 mm/min with a 25 kN
load cell in an Instron® 8874 Universal Testing System. These tests were performed at room
temperature (25 ◦C; 65◦RH) following ISO 527-1 [20] & ISO 527-2 [21] standard directives.
Using a gauge length L0 of 25 mm, self-centering grips were implemented with a load-
gripping distance L of 115 mm (Figure 2b). Tests were conducted on twenty-four specimens
(Figure 6), with load (P) and displacement (d) being recorded at an acquisition frequency of
20 Hz.
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2.2.3. Tensile Tests with Digital Image Correlation

DIC measurements were employed at room temperature (25 ◦C; 65% RH) using
an INSTRON® 5969 Universal Testing System equipped with a load cell of 5 kN and a
displacement rate of 5 mm/min. The parameters that were established were load-gripping
distance L (115 mm) and service length l1 (80 mm) (Figure 2b). At the grips, the applied
force P and displacement d were continuously measured at a 10 Hz acquisition rate. Since
the strain field in the linear elastic domain must remain constant throughout the mechanical
test, the central region of the specimen (located within l1 in Figure 2b) is especially suited to
measure elastic properties. This area was utilised specifically to create the speckle pattern
due to the specimen surface being sufficiently flat and regular. To create a suitable carrier
for DIC measurements, a fine matte coat was sprayed onto the specimen first, followed by
an uneven spread of black marks (Figure 7). After this process, a distinct texture with the
right isotropy and contrast could be defined due to the speckled pattern that was produced.
In terms of the matching procedure, the reference image, or non-deformed configuration, is
usually meshed into subsets designated as correlation domains, the size that determines
the spatial resolution of the measurements. In this work, post-processing operations were
carried out using the GOM Correlate 2018 software. The optical system was comprised of a
TAMRON 24-70 MM F/2.8 lens (Saitama, Japan) and an 8-bit Nikon D800E camera (Tokyo,
Japan) with a pixel resolution of 4912 × 7360 (Figure 8). The camera lens system was
prudently placed in relation to the specimen surface, adopting a precision level, ensuring a
working distance of 150 mm, which leads to a conversion factor of around 0.02 mm/pixel.
By carefully opening the lens aperture (minimum depth of field), it was possible to focus
and capture crisp photos of the speckled pattern. Still, to minimise diffraction effects
(smallest apertures), the aperture was sealed throughout the loading procedure to produce
a sufficient depth of field. By carefully controlling the shutter duration and illumination,
motion blur and pixel saturation were prevented during movement. A specified 0.2 Hz was
used for the picture capture rate, and 10–2 pixels (2 mm) was the displacement resolution
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achieved by setting the subset size and subset step to 15 × 15 pixels2 and 11 × 11 pixels2,
respectively [22].
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3. Numerical Models
3.1. Three-Point Bending Model

A numerical model was developed to mimic the three-point bending test, taking
advantage of geometrical and material symmetry, counting the actuator (Figure 9). Non-
linear geometrical analyses were accomplished usinga model composed of 1070 20-node
quadratic brick elements with 5896 nodes.
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According to the mechanical test, boundary conditions (including symmetry) were
imposed, and a vertical displacement of 5.0 mm was prescribed. The orthotropic behaviour
of PLA-layered structures (Figure 3b) was modelled by taking each layer’s thickness and
filament orientation into account. Regarding 0◦/90◦, the first layer was oriented at 0◦, the
second at 90◦, and the remaining ones resulting from the copies of these two. For a total
of 40 layers in 4 mm (h in Figure 2a), the thickness and height of each layer were set to
0.1 mm. PLA specimens (structures) were modelled for orthotropy taking into account the
elastic properties E1, E2 = E3 (found experimentally in the section that follows), υ12, υ13, υ23,
G12, G13, and G23 (Table 4). In order to replicate the mechanical behaviour of steel, elastic
isotropy was taken into consideration for the actuator (E = 210 GPa, n = 0.3) [23].

Table 4. Elastic properties of the printed PLA [24].

υ12 υ13 υ23 G12 (MPa) G13 (MPa) G23 (MPa)

0.320 0.310 0.255 1019 1019 917

3.2. Tensile Test Model

Dogbone geometry was also simplified to a quarter model trying to decrease the
computational cost. The 672 20-node quadratic brick elements were defined, with a total of
4197 nodes. Boundary conditions were defined to adequately mimic the mechanical test
(Figure 8), with a vertical displacement of 5.0 mm (Figure 10). The orthotropic behaviour of
PLA structures was mimicked using the same elastic properties as the TPB model.
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4. Results and Discussion
4.1. Three-Point Bending Tests

Load–displacement curves (Figure 11) showed an impressive degree of consistency
for each processing condition (infill and orientation), both in terms of initial stiffness (R0)
and ultimate load. This is the result of meticulous specimen preparation (implementing
the same PLA coil), as well as extremely optimal conditions during the filament-making
operation and the experimental work. Variances in the initial stiffness and ultimate load
are perceived between processing conditions (0◦/90◦, 45◦/−45◦, 0◦, and 90◦, for 30% and
100% infill). Figures 11 and 12 show the impact of infill percentage and filament orientation
on the initial stiffness along the specimen longitudinal direction. The stiffness resulting
from 100% infill is greater than that obtained for 30% infill, regardless of the orientation of
the filament. The stiffness is found to reach its maximum value for the 0◦ orientation at
30% infill, and then to reach its lowest value for 90◦, 45◦/−45◦, and the stacking sequence
0◦/90◦. This indicates that, if the infill percentage is set to 30%, an increase in stiffness of
258% is achieved when the filament is aligned with the load (0◦) compared to the orientation
90◦. With respect to the 100% infill, the referred order hardly varies for 90◦ and 45◦/−45◦

orientations. For the orientation 90◦ and 100% infill, this variation can be explained by the
presence of a more extensive and pronounced filament fusion, which is not confirmed for
the 30% infill.
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Figure 11. Experimental and numerical P-d curves for the orientations: (a) 0◦/90◦, (b) 45◦/−45◦,
(c) 0◦, and (d) 90◦ obtained in TPB tests.
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4.2. Tensile Tests

Figure 13 shows the set of load–displacement curves attained in tensile tests using
different orientations of filament (0◦/90◦, 45◦/−45◦, 0◦, and 90◦) and infill percentages
(30%, 50%, 75%, and 100%). The results show excellent reproducibility for every printing
condition once more, indicating steady conditions for material production and meticulous
preparation of test specimens. The filament orientations clearly differ from one another,
especially in terms of the percentage of infill. With reference to the load orientation, P, the
stress–strain curves from specimens with filaments oriented at 0◦ and 90◦, respectively,
were used to determine the elastic moduli E1 and E2.

According to Table 5, the initial stiffness (R0) and ultimate load (Pu) increase with infill
percentage as well as filament alignment with the loading axis (from 90◦ to 0◦). Despite
the filament orientation, the stiffest structure is always the one with 100% infill (Figure 14).
The smallest stiffness, on the other hand, is always the one corresponding to 30% infill,
independent of the filament’s deposition orientation. The stiffest specimens have 100%
infill and are oriented at 0◦, while the most flexible have 30% infill and are oriented at
45◦/−45◦.

Table 5. Resume of tensile tests.

Orientation (◦) Infill (%) R0 (N/mm) Pu (N)

0/90
30 377 593

100 1014 1676

45/−45
30 297 602

100 990 1743

0

30 585 1256

50 868 1774

75 935 1838

100 1088 2490

90

30 308 318

50 346 308

75 394 421

100 1005 1549
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Figure 13. Experimental and numerical P-d curves for the orientations: (a) 0◦/90◦, (b) 45◦/−45◦,
(c) 0◦, and (d) 90◦ obtained in tensile tests.
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Additionally, filaments oriented at 0 degrees show a gradual increase in stiffness,
whereas orientations at 90◦ and 100% infill show a more pronounced increase in stiffness in
comparison to the remaining infills. Similar behaviours may be noted for the ultimate load.

Another point worth mentioning is the ductile behaviour observed for structures
oriented at 45◦/−45◦ and 100% infill, which contrast with the remaining ones that exhibit
a more brittle nature (Figure 13b). A filament that is equally oriented relative to the loading
axis could explain this behaviour. In contrast to the ductile behaviour, specimens with 90◦

oriented filaments are clearly brittle (Figure 13d). A reasonable explanation for the referred
brittleness could be due to the sudden initiation and propagation of damage at the filament
interface, which in this case is perpendicular to the load direction.

For the combined orientations, i.e., 0◦/90◦ and 45◦/−45◦, the stiffness should appear
in the range obtained for the principal directions 0◦ and 90◦. As Figure 15 shows, it is not
possible to estimate the elastic response of 3DP PLA for combined orientations (e.g., 0◦/90◦

and 45◦/−45◦) using test results obtained at 0◦ and 90◦. It is confirmed that for 100% infill
this behaviour is not verified.
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Using the DIC technique, full-field measurements of strain were carried out in both
the x and y directions in the specimen’s central region (Figure 2b), displaying uniform
measurements in the linear–elastic domain. The strain field in the x-direction obtained in
the linear–elastic domain at three loading points on the stress–strain curve’s ascending
branch is displayed in Figure 16.

Furthermore, in specimens for which DIC measurements were not performed, a strain
gauge was employed within the service length l1 for 30% and 100% infill, for all filament
orientations (Figure 17). Although DIC is a more time-consuming technique compared
to the employment of a strain gauge, it allows verifying whether the strain-field in the
specimen central region is homogeneous. This technique was applied to a limited number
of specimens, namely those with extreme values of infill (30% and 100%), since in those
conditions it is possible to reveal more notorious mechanical differences in the material
mechanical response. For the remaining specimens, with infill percentages of 30%, 50%,
75%, and 100%, the less time-consuming technique (strain gauge) was employed. The
plotted curve for the strain gauge data was created by taking mean values into consideration.
Once more, it is evident that the outcomes are highly consistent with one another. There is a
discernible variation between the infill percentages, as would be predicted based on earlier
findings. Effectively, more compact structures (100% infill) have higher tensile strength and
elastic stiffness than less compact ones (30% infill).



J. Compos. Sci. 2024, 8, 55 15 of 20J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 16. Strain field along the loading direction in tensile test relatively to 0°orientation and 30% 
infill obtained with DIC technique. (a), (b) and (c) correspond to indentified points in the above 
stress-strain curve. 

Furthermore, in specimens for which DIC measurements were not performed, a 
strain gauge was employed within the service length 𝑙ଵ for 30% and 100% infill, for all 
filament orientations (Figure 17). Although DIC is a more time-consuming technique com-
pared to the employment of a strain gauge, it allows verifying whether the strain-field in 
the specimen central region is homogeneous. This technique was applied to a limited 
number of specimens, namely those with extreme values of infill (30% and 100%), since in 
those conditions it is possible to reveal more notorious mechanical differences in the ma-
terial mechanical response. For the remaining specimens, with infill percentages of 30%, 
50%, 75%, and 100%, the less time-consuming technique (strain gauge) was employed. 
The plotted curve for the strain gauge data was created by taking mean values into con-
sideration. Once more, it is evident that the outcomes are highly consistent with one an-
other. There is a discernible variation between the infill percentages, as would be pre-
dicted based on earlier findings. Effectively, more compact structures (100% infill) have 
higher tensile strength and elastic stiffness than less compact ones (30% infill). 

Figure 16. Strain field along the loading direction in tensile test relatively to 0◦orientation and 30%
infill obtained with DIC technique. (a), (b) and (c) correspond to indentified points in the above
stress-strain curve.

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 16 of 20 
 

 

  
(a) (b) 

Figure 17. Stress–strain curves for the orientations: (a) 0° and (b) 90° obtained in standard tensile 
tests and with DIC. 

The elastic modulus (E) was then obtained for filament orientated at 0° and 90° (Fig-
ure 17). One can notice that the obtained value of E is slightly higher in tests using a strain 
gauge (standard tests) compared to those carried out with DIC (13% on average). How-
ever, the latter technique yields more information (full-field measurements) than the for-
mer, based on measurements conducted in two specimen sections (gauge fittings). 

Figure 18 reveals that the modulus of elasticity for 100% infill remains higher than 
that for 30%, regardless of filament orientation. Specimens with filaments oriented at 0° 
to the loading axis exhibit a higher elastic modulus than those oriented at 90°. Further-
more, differences among 30% infill are greater than those observed for 100% infill. A plau-
sible reason for the behaviour observed for 30% infill in the orientation 0° may be due to 
a more effective contribution of the less constrained aligned filaments than the fully filled 
(fused filament) structures, i.e., 100%. 

 
Figure 18. Elastic modulus corresponding to filament orientation considering 30% and 100% infill 
relatively standard tensile tests and with DIC (MPa). 

The elastic modulus was determined for filament aligned at 0° and 90° (Figure 19) 
thus enabling more precise analysis of the impact of the infill percentages (i.e., 50% and 
75% infill, in addition to 30% and 100%), leading to 𝐸ଵ and 𝐸ଶ, respectively. 

0

10

20

30

40

50

60

70

0 0.005 0.01 0.015 0.02 0.025

St
re

ss
, σ

 (
M

Pa
)

Strain, ε

0º 30%
30% DIC
100%
100% DIC

0
5

10
15
20
25
30
35
40
45

0 0.005 0.01 0.015

St
re

ss
, σ

(M
Pa

)

Strain, ε

90º 30%
30% DIC
100%
100% DIC

1680

855

1942

961

2938
2856

3282
3172

0

500

1000

1500

2000

2500

3000

3500

0º 90º

El
as

tic
 M

od
ul

us
,E

(M
Pa

)

Orientations

30% DIC
30% Standard
100% DIC
100% Standard

Figure 17. Stress–strain curves for the orientations: (a) 0◦ and (b) 90◦ obtained in standard tensile
tests and with DIC.
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The elastic modulus (E) was then obtained for filament orientated at 0◦ and 90◦

(Figure 17). One can notice that the obtained value of E is slightly higher in tests using a
strain gauge (standard tests) compared to those carried out with DIC (13% on average).
However, the latter technique yields more information (full-field measurements) than the
former, based on measurements conducted in two specimen sections (gauge fittings).

Figure 18 reveals that the modulus of elasticity for 100% infill remains higher than
that for 30%, regardless of filament orientation. Specimens with filaments oriented at 0◦ to
the loading axis exhibit a higher elastic modulus than those oriented at 90◦. Furthermore,
differences among 30% infill are greater than those observed for 100% infill. A plausible
reason for the behaviour observed for 30% infill in the orientation 0◦ may be due to a more
effective contribution of the less constrained aligned filaments than the fully filled (fused
filament) structures, i.e., 100%.

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 16 of 20 
 

 

  
(a) (b) 

Figure 17. Stress–strain curves for the orientations: (a) 0° and (b) 90° obtained in standard tensile 
tests and with DIC. 

The elastic modulus (E) was then obtained for filament orientated at 0° and 90° (Fig-
ure 17). One can notice that the obtained value of E is slightly higher in tests using a strain 
gauge (standard tests) compared to those carried out with DIC (13% on average). How-
ever, the latter technique yields more information (full-field measurements) than the for-
mer, based on measurements conducted in two specimen sections (gauge fittings). 

Figure 18 reveals that the modulus of elasticity for 100% infill remains higher than 
that for 30%, regardless of filament orientation. Specimens with filaments oriented at 0° 
to the loading axis exhibit a higher elastic modulus than those oriented at 90°. Further-
more, differences among 30% infill are greater than those observed for 100% infill. A plau-
sible reason for the behaviour observed for 30% infill in the orientation 0° may be due to 
a more effective contribution of the less constrained aligned filaments than the fully filled 
(fused filament) structures, i.e., 100%. 

 
Figure 18. Elastic modulus corresponding to filament orientation considering 30% and 100% infill 
relatively standard tensile tests and with DIC (MPa). 

The elastic modulus was determined for filament aligned at 0° and 90° (Figure 19) 
thus enabling more precise analysis of the impact of the infill percentages (i.e., 50% and 
75% infill, in addition to 30% and 100%), leading to 𝐸ଵ and 𝐸ଶ, respectively. 

0

10

20

30

40

50

60

70

0 0.005 0.01 0.015 0.02 0.025

St
re

ss
, σ

 (
M

Pa
)

Strain, ε

0º 30%
30% DIC
100%
100% DIC

0
5

10
15
20
25
30
35
40
45

0 0.005 0.01 0.015

St
re

ss
, σ

(M
Pa

)

Strain, ε

90º 30%
30% DIC
100%
100% DIC

1680

855

1942

961

2938
2856

3282
3172

0

500

1000

1500

2000

2500

3000

3500

0º 90º

El
as

tic
 M

od
ul

us
,E

(M
Pa

)

Orientations

30% DIC
30% Standard
100% DIC
100% Standard

Figure 18. Elastic modulus corresponding to filament orientation considering 30% and 100% infill
relatively standard tensile tests and with DIC (MPa).

The elastic modulus was determined for filament aligned at 0◦ and 90◦ (Figure 19)
thus enabling more precise analysis of the impact of the infill percentages (i.e., 50% and
75% infill, in addition to 30% and 100%), leading to E1 and E2, respectively.

As a result, it was possible to determine that, for both orientations, the elastic modulus
consistently increases with the infill percentage. Regarding the 90◦ filament orientation,
only the first three infill percentages (30% to 75%) show a consistent trend, with the
100% infill showing a noticeably higher percentage. Again, the highest elastic modulus
is obtained for the filament oriented at 0◦ (i.e., E1) and 100% infill, while the lowest is
obtained for 90◦ and 30% infill.

For the orientation at 90◦ (i.e., E2), a less pronounced increase of the elastic modulus
is observed in the infill interval 30–75%, compared to the one observed at 0◦ (i.e., E1). In
contrast to the remaining structures, the orientation at 90◦ exhibits a much more pronounced
growth rate of E in the 75% to 100% transition than the orientation at 0◦. This difference
may be attributed to a greater amount of filament contact and a corresponding decrease
in the percentage of air gap. It is possible to conclude that 100% infill structures are less
affected by filament orientation than the others.
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Figure 19. Elastic modulus for 0◦ and 90◦ filament orientation considering 30%, 50%, 75% and 100%
infill relatively to standard tensile tests (values in MPa).

Poisson’s ratio values (nyx = −ey/ex) were measured for filaments oriented at 0◦

and 90◦ (n21 and n12, respectively), with 30% and 100% infill (Figure 20), i.e., structures
evaluated with DIC. The result, that the Poisson’s ratio is lower in 30% infill than in 100%
infill, is consistent with a more compliant structure when the number of filaments per
unit volume is lower along the transverse direction (y-direction in Figure 2b). Figure 20
indicates that the orientation at 90◦ and 100% infill yielded the highest Poisson’s ratio value.
This may be justified by the structure’s greater sensitivity to longitudinal loads resulting
in transversal deformation for a considerable condensed material, i.e., 100% infill. Since
less-compact structures (30% infill) exhibit more air gaps, such behaviour is not observed.
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4.3. Numerical Modelling

For both the filament orientations of 0◦ and 90◦, the elastic properties selected for the
FE analysis to simulate the TPB test were meant to reproduce the initial stiffness R0 that was
measured experimentally (Figure 11). For the orientations 0◦ and 90◦ (Figure 11c,d), the
values of the elastic moduli E1 and E2 were set to the ones obtained experimentally using
Equation (1), taking into account the remaining parameters as in Table 4. The numerical
approximation obtained was found to be reasonably close to the experimental data.

Analogously, DIC’s experimental results were used to set the elastic properties that
were used to simulate the tensile test. Replicating the experimental elastic stiffness with
accuracy, a distinct linear response (P-d curve) was obtained (Figure 13c,d). Notably,
the obtained numerical agreement suggests that the elastic modulus of this material
can be accurately determined using an inverse method that solely relies on the load–
displacement curve.

5. Conclusions

Three-point bending tests were adopted to evaluate the initial stiffness of polylactic
acid (PLA)-made parts obtained using material extrusion (MEX). The orientations of the
tests were 0◦/90◦, 45◦/−45◦, 0◦, and 90◦, with 30% and 100% infill. Both the infill percent-
age and the measurements related to the filament orientation showed consistent variations.
These results led to the conclusion that stiffness measurements in PLA parts are dependent
upon the percentage of infill, specifically within the range of 30% to 100%. Apart from the
previously mentioned experimental protocol, tensile tests were carried out using standard
procedures (strain-gauge) for the studied orientations, with additional infill percentages in
the range of 30–100% for filament oriented at 0◦ and 90◦. To assess the elastic properties
(Young moduli), digital image correlation technique (DIC) was used due to the accuracy of
those methods depending on the homogeneity of the strain field. The subsequent findings
demonstrated that using standard operating procedures made it possible to measure elastic
properties accurately. Standard methods were then used to assess the influence of the
infill on the elastic moduli for the investigated filament orientations in greater detail. This
study also demonstrated that the failure mode (ductile or brittle) in 3D-printed PLA parts
under tensile loading is determined by the filament arrangement (combined orientations)
rather than the infill percentage. Remarkably, the effect of material orientation on the
elastic modulus with regard to the loading axis can be determined more precisely using the
uniaxial tensile test than is possible with the TPB test. Recognizing that TPB test results are
highly sensitive to loading span provides a very plausible explanation for this. In addition,
the elastic modulus was shown to increase with the infill percentage regardless of filament
orientation. A clear linear response (P-δ curve) was obtained by properly reproducing
the experimental elastic stiffness. By achieving a strict numerical agreement on the P-δ
curves that emerged from the experimental testing, the inverse approach provided for the
numerical determination of the material’s modulus of elasticity.
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