Polyamide Electrospun Nanofibers Functionalized with Silica and Titanium Dioxide Nanoparticles for Efficient Dye Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of SiO2 Nanoparticles
2.3. Preparation of PA Electrospun Solution
2.4. Preparation of Nanofibrous Mats Loaded with Silica (SiO2) NPs
2.5. Preparation of Nanofibrous Mats Loaded with Titanium Dioxide (TiO2) NPs
2.6. Preparation of Nanofibrous Mats Loaded with Both SiO2 and TiO2 Nanoparticles
2.7. Characterization
2.8. Mechanical Testing
2.9. Antimicrobial Activity
2.9.1. Microorganism and Growth Conditions
2.9.2. Disk Diffusion Technique
2.10. Adsorption Studies
3. Results and Discussion
3.1. Characterization of Silica-Nanoparticles
3.2. Characterization of Electrospun Nanofibers Loaded with Nanoparticles
3.3. Mechanical Properties
3.4. Antibacterial Effect
3.5. Methylene Blue (MB) Adsorption
3.5.1. Effect of Contact Time and Adsorption Kinetics
3.5.2. Effect of MB Concentration and Adsorption Isotherms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, X.Q.; Shao, Z.D.; Liu, Q.; Xie, Z.; Zhao, F.; Zheng, Y.M. Flexible and porous TiO2/SiO2/carbon composite electrospun nanofiber mat with enhanced interfacial charge separation for photocatalytic degradation of organic pollutants in water. J. Colloid Interface Sci. 2019, 553, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Mosoarca, G.; Popa, S.; Vancea, C.; Dan, M.; Boran, S. Removal of Methylene Blue from Aqueous Solutions Using a New Natural Lignocellulosic Adsorbent—Raspberry (Rubus idaeus) Leaves Powder. Polymers 2022, 14, 1966. [Google Scholar] [CrossRef] [PubMed]
- Khulbe, K.C.; Matsuura, T. Art to use electrospun nanofibers/nanofiber based membrane in waste water treatment, chiral separation and desalination. J. Membr. Sci. Res. 2019, 5, 100–125. [Google Scholar] [CrossRef]
- Adam, M.R.; Othman, M.H.D.; Kurniawan, T.A.; Puteh, M.H.; Ismail, A.F.; Khongnakorn, W.; Rahman, M.A.; Jaafar, J. Advances in adsorptive membrane technology for water treatment and resource recovery applications: A critical review. J. Environ. Chem. Eng. 2022, 10, 107633. [Google Scholar] [CrossRef]
- Nayl, A.A.; Abd-Elhamid, A.I.; Awwad, N.S.; Abdelgawad, M.A.; Wu, J.; Mo, X.; Gomha, S.M.; Aly, A.A.; Bräse, S. Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification. Polymers 2022, 14, 1594. [Google Scholar] [CrossRef] [PubMed]
- Jamil, T.; Munir, S.; Wali, Q.; Shah, G.J.; Khan, M.E.; Jose, R. Water Purification through a Novel Electrospun Carbon Nanofiber Membrane. ACS Omega 2021, 6, 34744–34751. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Feng, J.; Fan, M.; Pi, Y.; Hu, L.; Han, X.; Liu, M.; Sun, J.; Sun, J. Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review. RSC Adv. 2015, 5, 14610–14630. [Google Scholar] [CrossRef]
- Göktaş, R.K.; MacLeod, M. Remoteness from sources of persistent organic pollutants in the multi-media global environment. Environ. Pollut. 2016, 217, 33–41. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, F.; Li, Z.; Cheng, Z.; Huang, H.; Yang, M. Electrospinning preparation and anti-infrared radiation performance of silica/titanium dioxide composite nanofiber membrane. RSC Adv. 2021, 11, 23901–23907. [Google Scholar] [CrossRef]
- Gaidau, C.; Petica, A.; Ignat, M.; Popescu, L.M.; Piticescu, R.M.; Tudor, I.A.; Piticescu, R.R. Preparation of silica doped titania nanoparticles with thermal stability and photocatalytic properties and their application for leather surface functionalization. Arab. J. Chem. 2017, 10, 985–1000. [Google Scholar] [CrossRef]
- Al-Hamoud, K.; Shaik, M.R.; Khan, M.; Alkhathlan, H.Z.; Adil, S.F.; Kuniyil, M.; Assal, M.E.; Al-Warthan, A.; Siddiqui, M.R.H.; Tahir, M.N.; et al. Pulicaria undulata extract-mediated eco-friendly preparation of TiO2 nanoparticles for photocatalytic degradation of methylene blue and methyl Orange. ACS Omega 2022, 7, 4812–4820. [Google Scholar] [CrossRef]
- Habiba, U.; Siddique, T.A.; Li Lee, J.J.; Joo, T.C.; Ang, B.C.; Afifi, A.M. Adsorption study of methyl orange by chitosan/polyvinyl alcohol/zeolite electrospun composite nanofibrous membrane. Carbohydr. Polym. 2018, 191, 79–85. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Male, K.B.; Nesterenko, P.N.; Brabazon, D.; Paull, B.; Luong, J.H.T. Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl. Mater. Interfaces 2013, 5, 8796–8804. [Google Scholar] [CrossRef] [PubMed]
- Salama, A. Preparation of CMC-g-P(SPMA) super adsorbent hydrogels: Exploring their capacity for MB removal from waste water. Int. J. Biol. Macromol. 2018, 106, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Nicola, R.; Muntean, S.-G.; Nistor, M.-A.; Putz, A.-M.; Almásy, L.; Săcărescu, L. Highly efficient and fast removal of colored pollutants from single and binary systems, using magnetic mesoporous silica. Chemosphere 2020, 261, 127737. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.; Ocares-Riquelme, J.; Poon, P.S.; Montaña, R.; Garcia, X.; Campos, K.; Hernández-Garrido, J.C.; Titirici, M.M. C-doped anatase TiO2: Adsorption kinetics and photocatalytic degradation of methylene blue and phenol, and correlations with DFT estimations. J. Colloid Interface Sci. 2019, 547, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Guarino, V.; Cruz-Maya, I.; Altobelli, R.; Abdul Khodir, W.K.; Ambrosio, L.; Alvarez Pèrez, M.A.; Flores, A.A. Electrospun polycaprolactone nanofibres decorated by drug loaded chitosan nano-reservoirs for antibacterial treatments. Nanotechnology 2017, 28, 505103. [Google Scholar] [CrossRef]
- Gohary, M.I.E.; Hady, B.M.A. El Saeed, A.A.A.; Tolba, E.; Rashedi, A.M.I.E.; Saleh, S. Electrospinning of doxorubicin loaded silica/poly(ϵ-caprolactone) hybrid fiber mats for sustained drug release. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 2. [Google Scholar] [CrossRef]
- Vineis, C.; Cruz Maya, I.; Mowafi, S.; Varesano, A.; Sánchez Ramírez, D.O.; Abou Taleb, M.; Tonetti, C.; Guarino, V.; El-Sayed, H. Synergistic effect of sericin and keratin in gelatin based nanofibers for in vitro applications. Int. J. Biol. Macromol. 2021, 190, 375–381. [Google Scholar] [CrossRef]
- Renkler, N.Z.; Cruz-Maya, I.; Bonadies, I.; Guarino, V. Electro Fluid Dynamics: A Route to Design Polymers and Composites for Biomedical and Bio-Sustainable Applications. Polymers 2022, 14, 4249. [Google Scholar] [CrossRef]
- Matulevicius, J.; Kliucininkas, L.; Martuzevicius, D.; Krugly, E.; Tichonovas, M.; Baltrusaitis, J. Design and characterization of electrospun polyamide nanofiber media for air filtration applications. J. Nanomater. 2014, 2014, 859656. [Google Scholar] [CrossRef]
- Aydin-Aytekin, D.; Gezmis-Yavuz, E.; Buyukada-Kesici, E.; Cansoy, C.E.; Alp, K.; Koseoglu-Imer, D.Y. Fabrication and characterization of multifunctional nanoclay and TiO2 embedded polyamide electrospun nanofibers and their applications at indoor air filtration. Mater. Sci. Eng. B 2022, 279, 115675. [Google Scholar] [CrossRef]
- Žagar, E.; Češarek, U.; Drinčić, A.; Sitar, S.; Shlyapnikov, I.M.; Pahovnik, D. Quantitative Determination of PA6 and/or PA66 Content in Polyamide-Containing Wastes. ACS Sustain. Chem. Eng. 2020, 8, 11818–11826. [Google Scholar] [CrossRef]
- Gao, X.; Li, Z.K.; Xue, J.; Qian, Y.; Zhang, L.Z.; Caro, J.; Wang, H. Titanium carbide Ti3C2Tx (MXene) enhanced PAN nanofiber membrane for air purification. J. Memb. Sci. 2019, 586, 162–169. [Google Scholar] [CrossRef]
- Wahid, F.; Zhao, X.-Q.; Cui, J.-X.; Wang, Y.-Y.; Wang, F.-P.; Jia, S.-R.; Zhong, C. Fabrication of bacterial cellulose with TiO2-ZnO nanocomposites as a multifunctional membrane for water remediation. J. Colloid Interface Sci. 2022, 620, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Salama, A. Recent progress in preparation and applications of chitosan calcium phosphate composite materials. Int. J. Biol. Macromol. 2021, 178, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Albukhaty, S.; Al-Bayati, L.; Al-Karagoly, H.; Al-Musawi, S. Preparation and characterization of titanium dioxide nanoparticles and in vitro investigation of their cytotoxicity and antibacterial activity against Staphylococcus aureus and Escherichia coli. Anim. Biotechnol. 2022, 33, 864–870. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, S.; Wu, H.; Lou, X. A novel folic acid-conjugated TiO2-SiO2 photosensitizer for cancer targeting in photodynamic therapy. Colloids Surf. B Biointerfaces 2015, 125, 197–205. [Google Scholar] [CrossRef]
- Tachikawa, T.; Fujitsuka, M.; Majima, T. Mechanistic insight into the TiO2 photocatalytic reactions: Design of new photocatalysts. J. Phys. Chem. C 2007, 111, 5259–5275. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386. [Google Scholar] [CrossRef]
- Shahhosseininia, M.; Bazgir, S.; Joupari, M.D. Fabrication and investigation of silica nanofibers via electrospinning. Mater. Sci. Eng. C 2018, 91, 502–511. [Google Scholar] [CrossRef]
- Gupta, K.; Singh, R.P.; Pandey, A.; Pandey, A. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. Aureus. P. Aeruginosa and E. Coli. Beilstein J. Nanotechnol. 2013, 4, 345–351. [Google Scholar] [CrossRef]
- Feifel, S.C.; Lisdat, F. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers. J. Nanobiotechnol. 2011, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Zaharudin, N.S.; Mohamed Isa, E.D.; Ahmad, H.; Abdul Rahman, M.B.; Jumbri, K. Functionalized mesoporous silica nanoparticles templated by pyridinium ionic liquid for hydrophilic and hydrophobic drug release application. J. Saudi Chem. Soc. 2020, 24, 289–302. [Google Scholar] [CrossRef]
- Saleh, S.; Salama, A.; Ali, A.M.; Saleh, A.K.; Elhady, B.A.; Tolba, E. Egyptian propolis extract for functionalization of cellulose nanofiber/poly (vinyl alcohol) porous hydrogel along with characterization and biological applications. Sci. Rep. 2023, 13, 7739. [Google Scholar] [CrossRef]
- Saravanan, S.; Dubey, R.S. Synthesis of SiO2 nanoparticles by sol-gel method and their optical and structural properties. Rom. J. Inf. Sci. Technol. 2020, 23, 105–112. [Google Scholar]
- Mehmood, Y.; Khan, I.U.; Shahzad, Y.; Khalid, S.H.; Asghar, S.; Irfan, M.; Asif, M.; Khalid, I.; Yousaf, A.M.; Hussain, T. Facile synthesis of mesoporous silica nanoparticles using modified sol-gel method: Optimization and in vitro cytotoxicity studies. Pak. J. Pharm. Sci. 2019, 32, 1805–1812. [Google Scholar]
- Darmakkolla, S.R.; Tran, H.; Gupta, A.; Rananavare, S.B. A method to derivatize surface silanol groups to Si-alkyl groups in carbon-doped silicon oxides. RSC Adv. 2016, 6, 93219–93230. [Google Scholar] [CrossRef]
- Shawky, S.M.; Abo-AlHassan, A.A.; Lill, H.; Bald, D.; EL-Khamisy, S.F.; Ebeid, E.-Z.M. Efficient Loading and Encapsulation of Anti-Tuberculosis Drugs using Multifunctional Mesoporous Silicate Nanoparticles. J. Nanosci. Curr. Res. 2016, 1, 1–9. [Google Scholar] [CrossRef]
- Gui-Long, X.; Changyun, D.; Yun, L.; Pi-hui, P.; Jian, H.; Zhuoru, Y. Preparation and characterization of raspberry-like SiO2 particles by the sol-gel method. Nanomater. Nanotechnol. 2011, 1, 79–83. [Google Scholar] [CrossRef]
- Bahrami, M.; Abenojar, J.; Martínez, M.A. Comparative characterization of hot-pressed polyamide 11 and 12: Mechanical, thermal and durability properties. Polymers 2021, 13, 3553. [Google Scholar] [CrossRef]
- Kang, E.; Kim, M.; Oh, J.S.; Park, D.W.; Shim, S.E. Electrospun BMIMPF 6/Nylon 6,6 nanofiber chemiresistors as organic vapour sensors. Macromol. Res. 2012, 20, 372–378. [Google Scholar] [CrossRef]
- Sridhara, P.K.; Masso, F.; Olsén, P.; Vilaseca, F. Strong polyamide-6 nanocomposites with cellulose nanofibers mediated by green solvent mixtures. Nanomaterials 2021, 11, 2127. [Google Scholar] [CrossRef]
- Al-Deyab, S.S.; El-Newehy, M.H.; Nirmala, R.; Abdel-Megeed, A.; Kim, H.Y. Preparation of nylon-6/chitosan composites by nanospider technology and their use as candidate for antibacterial agents. Korean J. Chem. Eng. 2013, 30, 422–428. [Google Scholar] [CrossRef]
- Ndesendo, V.M.K.; Choonara, Y.E.; Meyer, L.C.R.; Kumar, P.; Tomar, L.K.; Tyagi, C.; Du Toit, L.C.; Pillay, V. In vivo evaluation of a mucoadhesive polymeric caplet for intravaginal anti-HIV-1 delivery and development of a molecular mechanistic model for thermochemical characterization. Drug Dev. Ind. Pharm. 2015, 41, 1274–1287. [Google Scholar] [CrossRef]
- Oulidi, O.; Nakkabi, A.; Elaraaj, I.; Fahim, M.; Moualij, N. El Incorporation of olive pomace as a natural filler in to the PA6 matrix: Effect on the structure and thermal properties of synthetic Polyamide 6. Chem. Eng. J. Adv. 2022, 12, 100399. [Google Scholar] [CrossRef]
- Farias-Aguilar, J.C.; Ramírez-Moreno, M.J.; Téllez-Jurado, L.; Balmori-Ramírez, H. Low pressure and low temperature synthesis of polyamide-6 (PA6) using Na0 as catalyst. Mater. Lett. 2014, 136, 388–392. [Google Scholar] [CrossRef]
- Sun, J.; Xu, Z.; Li, W.; Shen, X. Effect of Nano-SiO2 on the Early Hydration of Alite-Sulphoaluminate Cement. Nanomaterials 2017, 3, 102. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhu, G.; Fang, J.; Chen, J. Synthesis, characterization, and photocatalysis of well-dispersible phase-pure anatase TiO2 nanoparticles. Int. J. Photoenergy 2013, 2013, 726872. [Google Scholar] [CrossRef]
- Jameel, Z.N.; Haider, A.J.; Taha, S.Y. Synthesis of TiO2 Nan particles by Using Sol-Gel Method and its Applications as Antibacterial Agents. Eng. Tech. J. 2014, 418, 3–4. [Google Scholar] [CrossRef]
- Bazbouz, M.B.; Stylios, G.K. The tensile properties of electrospun nylon 6 single nanofibers. J. Polym. Sci. B Polym. Phys. 2010, 48, 1719–1731. [Google Scholar] [CrossRef]
- Mannarino, M.M.; Rutledge, G.C. Mechanical and tribological properties of electrospun PA 6 (3) T fiber mats. Polymer 2012, 53, 3017–3025. [Google Scholar] [CrossRef]
- Wu, S.; Wang, B.; Zheng, G.; Liu, S.; Dai, K.; Liu, C.; Shen, C. Preparation and characterization of macroscopically electrospun polyamide 66 nanofiber bundles. Mater. Lett. 2014, 12, 77–80. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, W.; Wang, X.; Liu, L.; Yu, J.; Ding, B. Fluorine-free waterborne coating for environmentally friendly, robustly water-resistant, and highly breathable fibrous textiles. ACS Nano 2019, 14, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Deyab, N.M.; Ekram, B.; Badr, K.R.; Abd El-Hady, B.M.; Allam, N.K. Antiviral electrospun. polyamide three-layered mask filter containing metal oxide nanoparticles and black seed oil. ACS Omega 2022, 7, 44438–44447. [Google Scholar] [CrossRef] [PubMed]
- Hrouda, A.; Jirkovec, R.; Safka, J.; Vanierschot, M.; Denis, K.; Capek, L. Standardized tensile testing of electrospun PA6 membranes via the use of a 3D printed clamping system. Textile Res. J. 2022, 92, 2298–2305. [Google Scholar] [CrossRef]
- Han, P.; Gomez, G.A.; Duda, G.N.; Ivanovski, S.; Poh, P.S. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomater. 2023, 163, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; McCutcheon, J.R.; Rahaman, M.S. A high flux polyvinyl acetate-coated electrospun nylon 6/SiO2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling. J. Membr. Sci. 2017, 537, 297–309. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, X.; Gao, X.; Zhang, B.; Luo, Y.; Yao, X. Antimicrobial property and photocatalytic antibacterial mechanism of the TiO2-doped SiO2 hybrid materials under ultraviolet-light irradiation and visible-light irradiation. Ceram. Int. 2019, 45, 15505–15513. [Google Scholar] [CrossRef]
- Qin, Q.; Sun, T.; Yin, W.; Xu, Y.; Qin, Q.; Sun, T.; Yin, W.; Xu, Y. Rapid and efficient removal of methylene blue by freshly prepared manganese dioxide Rapid and efficient removal of methylene blue by freshly prepared manganese dioxide. Cogent Eng. 2017, 7, 1345289. [Google Scholar] [CrossRef]
- Çoruh, S.; Geyikçi, F.; Nuri Ergun, O. Adsorption of basic dye from wastewater using raw and activated red mud. Environ. Technol. 2011, 32, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Sodkouieh, S.M.; Kalantari, M.; Shamspur, T. Methylene blue adsorption by wheat straw-based adsorbents: Study of adsorption kinetics and isotherms. Korean J. Chem. Eng. 2023, 40, 873–881. [Google Scholar] [CrossRef]
- Tan, Y.; Lv, X.; Wang, W.; Cui, C.; Bao, Y.; Jiao, S. Surface-functionalization of hydrogen titanate nanowires for efficiently selective adsorption of methylene blue. Appl. Surf. Sci. 2023, 615, 156265. [Google Scholar] [CrossRef]
- Chung, J.; Sharma, N.; Kim, M.; Yun, K. Activated carbon derived from sucrose and melamine as low-cost adsorbent with fast adsorption rate for removal of methylene blue in wastewaters. J. Water Process Eng. 2022, 47, 102763. [Google Scholar] [CrossRef]
- Fiaz, R.; Hafeez, M.; Mahmood, R. Ficcus palmata leav es as a low—Cost biosorbent for methylene blue: Thermodynamic and kinetic studies. Water Environ. Res. 2019, 91, 689–699. [Google Scholar] [CrossRef]
Sample | ||||
---|---|---|---|---|
Diameter of Inhibition Zone (mm) | ||||
Pathologic Microorganisms | CTR | PST | PT | |
Gram-positive | Bacillus subtilis | NA | 25 ± 0.125 | 26 ± 0.155 |
Staphylococcus aureus | NA | 23 ± 0.279 | 20 ± 0.425 | |
Gram-negative | Escherichia coli | NA | 22 ± 0.371 | 20 ± 0.526 |
Klebsiella pneumonia | NA | 25 ± 0.293 | 22 ± 0.783 | |
Fungi | Candida albicans | 17 ± 0.24 | 19 ± 0.529 | 23 ± 0.631 |
Pseudo-First-Order Parameters | Pseudo-Second-Order Parameters | ||||||
---|---|---|---|---|---|---|---|
qe.exp (mg/g) | qe.cal (mg/g) | K1 (min−1) | R2 | qe.cal (mg/g) | K2 (g(mg min)−1) | R2 | |
PS | 20 | 89 | 1.2 × 10−3 | 0.74 | 28.6 | 6.07 × 10−4 | 0.95 |
PT | 22 | 88 | 1.3 × 10−3 | 0.73 | 30 | 6.96 × 10−4 | 0.97 |
PST | 24 | 87 | 1.4 × 10−3 | 0.79 | 33.5 | 5.82 × 10−4 | 0.97 |
Langmuir Isotherm Parameters | Freundlich Isotherm Parameters | |||||
---|---|---|---|---|---|---|
Ks (mg/L) | qm (mg/g) | R2 | P (mg/g) | n | R2 | |
PS | 10.28 | 23 | 0.98 | 3.63 | 2.32 | 0.71 |
PT | 11.6 | 26 | 0.97 | 3.71 | 2.28 | 0.68 |
PST | 7.1 | 27 | 0.98 | 5.71 | 2.72 | 0.63 |
Adsorbent | Adsorption Efficiency mg/g | References |
Freshly prepared manganese dioxide | 627.1 | [60] |
Natural lignocellulosic | 244.6 | [2] |
Magnetic mesoporous silica | 208.31 | [15] |
Raw and activated red mud | 5.86 | [61] |
Wheat straw | 131.123 | [62] |
Polydopamine-coated hydrogen titanate nanowires | 586.7 | [63] |
Activated carbon derived from sucrose and melamine | 454.57 | [64] |
Polyamide loaded with silica oxide and/or titanium dioxide | 27 | This study |
Ficus palmata leaves | 6.89 | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, S.; Salama, A.; Awad, O.M.; De Santis, R.; Guarino, V.; Tolba, E. Polyamide Electrospun Nanofibers Functionalized with Silica and Titanium Dioxide Nanoparticles for Efficient Dye Removal. J. Compos. Sci. 2024, 8, 59. https://doi.org/10.3390/jcs8020059
Saleh S, Salama A, Awad OM, De Santis R, Guarino V, Tolba E. Polyamide Electrospun Nanofibers Functionalized with Silica and Titanium Dioxide Nanoparticles for Efficient Dye Removal. Journal of Composites Science. 2024; 8(2):59. https://doi.org/10.3390/jcs8020059
Chicago/Turabian StyleSaleh, Safaa, Ahmed Salama, Ola M. Awad, Roberto De Santis, Vincenzo Guarino, and Emad Tolba. 2024. "Polyamide Electrospun Nanofibers Functionalized with Silica and Titanium Dioxide Nanoparticles for Efficient Dye Removal" Journal of Composites Science 8, no. 2: 59. https://doi.org/10.3390/jcs8020059
APA StyleSaleh, S., Salama, A., Awad, O. M., De Santis, R., Guarino, V., & Tolba, E. (2024). Polyamide Electrospun Nanofibers Functionalized with Silica and Titanium Dioxide Nanoparticles for Efficient Dye Removal. Journal of Composites Science, 8(2), 59. https://doi.org/10.3390/jcs8020059