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Abstract: Nanocomposite materials have demonstrated excellent performance in many application
fields. Metal nanoparticle/graphene oxide composites are among the most promising composite mate-
rials for catalytic applications. In this study, nanocomposites of Au-Pd bimetallic particles/graphene
oxide were prepared from an aqueous bath and used as catalysts in the oxidation reactions of some
chemical compounds. The oxidation and exfoliation of graphite were controlled by varying the
acid treatment time. The effects of the treatment time on the properties and performance of the
prepared bimetallic-nanoparticle-supported graphene oxide catalysts were very obvious. Depending
on the treatment time, a significant improvement in the conversion efficiency ranging from 65% to
about 480%, along with a high oxidation selectivity, were achieved. The obtained findings show
that the catalytic performance of metal/graphene oxide nanocomposites can be easily maximized by
controlling the oxidation and exfoliation of graphene sheets.
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1. Introduction

Nanocomposites of graphene oxide and metal nanoparticles are among the functional
materials that have led to an important advancement in many application fields, including
energy, sensors and catalysts [1,2]. In comparison to transition-metal-based catalysts, noble
metal catalysts usually show improved catalytic activity [3]. Bimetallic nanoparticles in
particular have been shown to be highly desirable materials for catalytic applications due to
their excellent physical and chemical properties [2]. The electronic and energetic properties
of bimetallic nanoparticles have been intensively investigated in various theoretical studies.
These studies have revealed that core–shell bimetallic structures generally show improved
catalytic properties, especially when they attached to a suitable support material such
as graphene or graphene oxide (GO) [4]. The improved catalytic activity of such system
is attributed to the interaction between the metallic structures and the graphene, which
modulates the Fermi level of these materials and results in a maximized catalytic perfor-
mance [5,6]. In this context, considerable interest has been devoted to graphene-supported
Au-Pd bimetallic nanoparticle composites. Supported Pd catalysts exhibit a high catalytic
activity that can be controlled by adjusting the particle size and their interaction with
the support material [3]. Au nanoparticles also have interesting plasmonic properties for
photocatalytic applications in addition to their enhanced catalytic performance when they
are combined with other noble metals [7]. Combining Au and Pd produces bio-compatible,
electrochemically stable and electrically conductive bimetallic nanoparticles that can be
used in various catalytic applications, including fuel cells, hydrogen production, hydro-
genation and alcohol oxidation [5,8–10]. On the other hand, graphene and its derivatives are
considered highly suitable supports for Au-Pd-nanoparticle-based catalysts [5]. Graphene
exhibits a large surface area, high electrical conductivity, high thermal conductivity, good
chemical stability and high mechanical strength [5,9]. The large surface area of graphene
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provides an appropriate platform to immobilize bimetallic nanoparticles with good control
over their shape, size and size distribution [5]. Additionally, changing the sp2-to-sp3 hy-
bridization ratio as a result of graphene functionalization processes allows the tuning of
its physical properties and its performance in many catalytic applications. The presence
of functional groups also facilitates successful attachment of the metallic particles to the
functionalized graphene surface [11]. The use of Au-Pd bimetallic nanoparticles along with
graphene-based supports for catalytic applications has been addressed in many studies.
A study by Zhang et al. investigated the oxidation of benzyl alcohol into benzaldehyde
using Au-, Pd- and Au-Pd/reduced graphene oxide (rGO) composites and showed that
the bimetallic-based composite exhibits the highest performance. The study attributed
the improved performance of the bimetallic-based composite mainly to the small particle
size [12]. It has also been shown that metallic nanoparticles are the main active elements
in the oxidation process of benzyl alcohol [12]. Similarly, Chen et al. have reported that a
nanocomposite of Au-Pd/GO shows a better peroxidase activity than that of Au/GO and
Pd/GO composites. According to the study, the obtained superior catalytic performance in
3,3,5,5-tetramethylbenzidine (TMB) oxidation is due to the unique core–shell structure of
the bimetallic nanoparticles, which allows for the maximum electronic interactions between
the two metals and maximizes the contact of Pd, the shell, with the reactants [13]. Bawaked
and co-workers have reported that the Au:Pd molar ratio in a graphite-supported Au-Pd
bimetallic catalyst also plays a major role in determining the catalytic activity of the catalyst
toward cis-cyclooctene conversion [14]. They achieved the best catalytic activity with a
Au/Pd molar ratio of 0.35/0.65 in the nanocomposite. Furthermore, according to their
study, the selectivity of cyclooctene oxidation into epoxide, alcohol, ketone and hydroper-
oxide remained unaffected by variations in the Au/Pd molar ratio [14]. The preparation
of a Au-Pd/GO nanocomposite with a high catalytic performance for the reduction of
4-nitrophenol into 4-aminophenol has been reported by He et al. [15]. The authors in
that study developed a simple method for preparing spherical and flower-like bimetallic
nanoparticles on GO without utilizing reducing agents or surfactants. They also found that
the nanocomposite with the flower-like nanoparticles exhibits a higher catalytic activity
than that with spherical nanoparticles [15]. Li et al. have also developed a green wet
chemical method to synthesize rGO-supported worm-like Au-Pd nanostructure composites
and utilized the prepared composites for nitrite detection. The prepared nanocomposites
showed a linear response over a wide concentration range with a fast response and a high
detection sensitivity. The study attributed the improved detection performance of the
prepared Au-Pd/rGO nanocomposite to the high surface-to-volume ratio as well as the
enhanced electrical conductivity of the rGO and bimetallic nanostructures [16]. Moreover,
the direct synthesis of a nano-alloyed Au-Pd/graphene composite without using stabilizing
molecules and with an enhanced photocatalytic performance has been reported by Zhang
et al. [17]. The study has shown that the prepared composite exhibits a high photocatalytic
activity in degrading Rhodamine B under visible light irradiation and attributed the im-
proved photocatalytic performance to the improved lifetime and efficient transfer of the
charge carriers [17]. Yu et al. have investigated the effect of the carbonaceous support
type on the performance of Au/rGO, Au/activated carbon and Au/graphite composites
in the aerobic oxidation of benzyl alcohol [18]. They have found that the catalytic per-
formance of the prepared nanocomposites strongly depends on the support type, with
the Au/rGO composite showing the highest catalytic activity. Based on the study, the
improved performance of the Au/rGO composite is attributed to the presence of surface
oxygen functional groups [18]. These studies and many others on graphene-supported
Au-Pd bimetallic catalysts have focused on investigating the effect of various parameters,
including the particle size; particle shape; Au/Pd ratio; catalyst preparation methods, in-
cluding various proposed green synthesis routes; the attachment methods of the bimetallic
particles to the support surface and the type of the carbonaceous support on the catalysts’
performance [1,4–6,9,12–18]. Yet, the influence of the preparation methods and treatment
conditions of graphene and its derivatives as support materials on the catalytic activity
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of graphene/Au-Pd bimetallic nanoparticles has rarely been investigated and requires
intensive exploration. Therefore, the current work reports an investigation of the effect of
the graphene’s oxidation treatment time on its catalytic activity with the attached bimetallic
nanoparticles. The prepared graphene oxide/Au-Pd NPs catalysts were tested for the
conversion of benzylic alcohols into some fine chemicals. The oxidation of benzylic alcohols
into benzaldehyde is of great importance in many food-related, cosmetics, perfume and
pharmaceutical industrial processes [12].

2. Materials and Methods

The Au-Pd particles/graphene oxide nanocomposites were prepared using a simple
chemical route and were characterized using different techniques. To prepare the GO, the
procedures used in our previous study on CNTs were followed [19,20]. Briefly, 10 mL of
nitric acid was mixed with 30 mL of sulfuric acid, and then 200 mg of raw graphite powder
was added to the mixture. The mixture was then heated to 75 ◦C and was kept under
continuous stirring (@ 300 rpm) for different times, from 30 min to 120 min. After the acid
treatment time was completed, the mixture was left to cool down to room temperature
and was then filtered and washed with DI water several times until a PH value of 7
was achieved. After that, the samples were left in a drying oven at 110 ◦C overnight to
remove the water. The Au-Pd bimetallic nanoparticles were grown on the GO by adding
an aqueous solution of HAuCl4 (12.25 mg/mL) and then PdCl2 (6 mg/mL) to 1000 mL
of distilled water with continuous stirring. Then, 0.65 mL of polyvinyl alcohol aqueous
solution (10 mg/mL) was added as a stabilizing ligand. After 15 min, 0.82 mL of a 0.2 M
NaBH4 fresh aqueous solution was added as a reducing agent under stirring for 30 min.
Then, the GO support (0.495 g) was introduced into the mixture, along with a few drops of
concentrated sulfuric acid (H2SO4), and left under stirring for another hour. The resulting
catalyst was recovered using filtration and was then dried for 24 h at 110 ◦C. The Au/GO
and Pd/GO nanocomposites (with the GO treated for 60 min) were also prepared using
the same procedures described above, and their catalytic performance was evaluated
and compared with that of the Au-Pd/GO nanocomposite samples. To test the catalytic
performance of the nanocomposite samples, 20 mg of the nanocomposite catalysts was
added to 2 mL of benzyl alcohol in a reactor under oxygen pressure of 1 bar, 1000 rpm
cycles and 120 ◦C for 2 h. After completing the reaction, the samples were left to cool
down to room temperature and were then centrifuged to recover the catalyst. Finally, a
sample from each catalyst vial was withdrawn and examined using the Varian CP-3800
gas chromatograph (GC). Table 1 summarizes the samples used in this study and their
preparation conditions.

Table 1. The prepared Au-Pd/GO nanocomposite samples.

Sample Structure Graphite Treatment Treatment Time

G 0 Au-Pd/Graphite No -
G 1 Au-Pd/GO Yes 30 min
G 2 Au-Pd/GO Yes 60 min
G 3 Au-Pd/GO Yes 90 min
G 4 Au-Pd/GO Yes 120 min

3. Results

The prepared GO-supported Au-Pd bimetallic nanoparticle composites were investi-
gated using various techniques. Figure 1 shows SEM images of the graphite sample before
(Figure 1a) and after (Figure 1b,c) the exfoliation of the GO layers. It can be seen from the
figure that after the chemical treatment and exfoliation of the three-dimensional graphite
structure, a few layers graphene oxide is produced. No obvious presence of the grown
Au-Pd bimetallic nanoparticles on the surface of the exfoliated GO layers was observed in
the SEM images due to their small size. However, EDS analysis of the prepared samples
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confirmed the presence of the elements Au and Pd, as shown in Figure 2, which indicates
the formation of the bimetallic nanoparticles on the support material.
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Figure 2. (a) EDS analysis and band gap variation in GO samples treated at different times, (b) EDS
spectrum of GO sample and (c) EDS spectrum of Au-Pd-supported GO nanocomposite.

The effect of the GO treatment time on the composition of the prepared sample was
investigated by collecting the EDS spectra of the samples. Figure 2a shows the variation in
the carbon-to-oxygen ratio in the GO samples as a function of the treatment time. It can be
seen from the figure that the C/O ratio in the case of the untreated sample (graphite sample)
is about 40 and decreases as the treatment time increases to about 1.44 for the sample
oxidized for 120 min. The decrease in the C/O ratio is mainly due to the increase in the
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oxygen content in the sample as a result of the oxygen functional groups’ attachment to the
graphene layers. The results indicate that the density of these functional groups increases
with the treatment time. The figure also shows the variation in the band gap of the produced
GO layer with the different used treatment times. The relation (αhv) = A (hv − Eg)n was
used to calculate the band gap of the GO layers where α is the absorption coefficient, hν is
the incident photons’ energy, A is a constant, Eg is the band gap of the GO layers and n is a
parameter that has the values ½ and 2 for direct and indirect transitions, respectively [21].
It can be seen from the figure that the band gap values of the GO samples increase with the
treatment time. The increase in the band gap when increasing the treatment time can be
attributed to the introduced oxygen functional groups. An increase in the band gap upon
graphene oxidation has been reported in various studies [22].

Figure 2b,c show a comparison of the EDS spectra of the GO before and after the
growth of the Au-Pd nanoparticles. The top spectrum (2b) shows the presence of carbon and
oxygen in the oxidized graphene sample and confirms the presence of oxygen functional
groups in the sample. The EDS spectrum at the bottom (2c) shows an elemental analysis of
the nanocomposite sample and confirms the growth of the Au-Pd nanoparticles as the Au
and Pd elements are present in the sample in addition to the C and O of the GO layers. The
atomic ratio of Au to Pd (Au/Pd) was found from the EDS analysis to be about 3.75 in the
nanocomposite samples.

Figure 3 shows the TEM studies of the prepared nanocomposite samples. Figure 3a
shows the exfoliated GO sheet with a few-layers structure. In Figure 3b, a magnified image
of a GO sheet is shown, where it directly confirms the successful growth of Au-Pd bimetallic
nanoparticles on the oxidized graphene sheets. The immobilization of Au-Pd nanoparticles
onto graphene sheets has been shown to occur through covalent bonding in various
studies [9,23,24]. Moreover, Figure 3b shows that the grown spherical nanoparticles are of
different sizes and are uniformly distributed over the GO sheets. The magnified image in
the inset of Figure 3b does not show any presence of core–shell or hetero-structure growth
of the bimetallic nanoparticles, which suggests the formation of alloyed nanoparticles.
The size distribution of the bimetallic nanoparticles is shown in Figure 3c. The grown
nanoparticles exhibit a narrow size distribution, as seen from the figure, with an average
size of 3.18 ± 0.05 nm. The small nanoparticle size with a high surface area is expected to
significantly contribute to the catalytic performance of the prepared nanocomposites.

Figure 4a illustrates the XRD patterns of the prepared nanocomposite samples. The
peak at 2θ of about 25.8◦ is the (002) diffraction peak of the GO [25]. The intensity of
the peak is high for the sample treated for 30 min and decreases as the treatment time is
increased to 60, 90 and 120 min, along with an obvious broadening of the peak, which
indicates the clear effect of the treatment time on the structural properties of the GO sheets.
Moreover, a slight shift in the peak position toward low 2θ values is seen from the figure
with an increasing treatment time. This shift in the (002) peak position indicates an increase
in the interplanar distance, which can be attributed to the incorporation of the oxygen
functional groups on and between the GO layers [26]. The interplanar distance for the
treated GO samples was estimated from the XRD patterns using the relation nλ = 2dsinθ,
where n is the reflection order, λ is the X-ray wavelength, d is the interplanar distance and θ

is the X-ray diffraction angle [27]. The interplanar distance values were found in the range
of 0.351 to 0.354 with an increasing acid treatment time. These values are higher than the
interplanar distance of graphite (0.34 nm), indicating the successful insertion of oxygen
functionalities between the GO layers [28]. Another low-intensity peak can be observed in
the figure at 2θ ≈ 44◦, which is the diffraction peak of the (200) plane of Au. The diffraction
peak at 2θ≈ 72.8◦ at a position between the (220) plane of Pd (JCPDS#05-0681) and the (311)
plane of Au (JCPDS#04-0784) may indicate the formation of alloyed Au-Pd nanoparticles,
which supports the observations from the TEM images of the grown nanoparticles [12]. The
increase in the intensity of this peak with an increasing GO treatment time also indicates
the improvement in the crystallinity of the grown bimetallic nanoparticles and their density
in the prepared samples. The last peak at about 87◦ is the diffraction peak from the Pd’s



J. Compos. Sci. 2024, 8, 82 6 of 10

(222) atomic plane [12]. The presence of these peaks confirms the successful formation
of the Au-Pd nanoparticles on the GO surface as alloyed nanoparticles, with probably a
greater Au content at the core and a greater Pd ratio at the particle surface.
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Figure 3. (a) TEM image of exfoliated graphene oxide, (b) a magnified TEM image of graphene oxide
showing the successful growth of uniformly distributed Au-Pd bimetallic nanoparticles with the
inset showing a magnified image of a single nanoparticle and (c) a histogram distribution of Au-Pd
bimetallic nanoparticle size with a mean value of 3.18 ± 0.05 nm.

The effect of the acid treatment on the prepared sample is also shown in Figure 4b. A
clear variation in the diffraction peak of the GO can be seen clearly from the figure. As
the treatment time increases, the peak FWHM increases. This increase in the peak FWHM
is an indication of the GO’s crystallinity deterioration, which results from converting the
crystalline sp2 carbon hybridization into amorphous sp3 carbon hybridization after the
introduction of the oxygen functionalities onto the graphene surface [29,30].

Figure 4c shows the FTIR spectra of the prepared nanocomposite samples with the
presence of many absorption bands. The peak at about 3500 is the specific peak of O-
H stretching, which mainly results from the attachment of the hydroxyl groups to the
graphene’s surface [6]. Other absorption bands corresponding to C-H, C=O, C=C and C-O
stretching can also be seen at 2921, 1750, 1648 and 1070, respectively. The absorption band
appearing at about 1210 cm−1 is attributed to the epoxy C-O-C bending and that at about
1324 cm−1 is the carboxyl C–OH bending vibration [11,12,31]. It is also interesting to note
that the intensity of the stretching O-H band is slightly reduced after the nanoparticles’
growth and with an increasing treatment time, which could be linked to the grown particles’
density in the samples. The oxygen-containing functionalities can assist with the trapping of
Au and Pd ions and hence the formation of bimetallic nanoparticles, along with diminishing
the absorption intensities of these functionalities [2,8,9]. This effect can also be seen from
the comparison given in Figure 4d between the FTIR spectrum of the GO sample and that
of the sample after the attachment of the Au-Pd nanoparticles. It is also seen from the
figure that the absorption band intensity of the oxygen functionalities is reduced after the
formation of the composite.
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Figure 4. (a) XRD patterns of the GO/Au-Pd bimetallic particle nanocomposites, (b) widening of the
FWHM of the GO peak with the different treatment conditions, (c) FTIR spectra of the GO/Au-Pd
bimetallic particle nanocomposites and (d) FTIR spectra of the GO layers and GO/Au-Pd bimetallic
particle nanocomposites.

The catalytic performance of the Au-Pd/GO nanocomposite samples was tested
for converting benzyl alcohol into benzaldehyde, which is considered to be among the
most important reactions in many industrial processes. The reaction mechanism of benzyl
alcohol’s conversion into fine chemicals using a Au-Pd/graphene catalyst has been reported
in various previous studies [32,33]. Figure 5 shows the performance evaluation results of
the prepared nanocomposite samples. The selectivity toward converting benzyl alcohol
into benzaldehyde is shown in Figure 5a. All the samples show a high selectivity in the
oxidation of benzyl alcohol into benzaldehyde of more than 95%. The Au-Pd/graphite
sample shows the highest selectivity (~99.8%) while the GO-supported samples exhibit a
selectivity in the range of 95–96.3%. The samples also show low selectivity in the oxidation
of benzyl alcohol into toluene in the range of 3.7–5.0%.

In addition to the evaluation of the selectivity of the nanocomposite samples, the
conversion performance of the Au-Pd/GO nanocomposite samples was also evaluated in
comparison with the Au-Pd/graphite nanocomposite sample. The performance compar-
ison was obtained using the equation ∆P

P % =
∣∣∣ PAu:Pd/G−PAu:Pd/GO

PAu:Pd/G

∣∣∣× 100. Figure 5b shows
the comparison results of the different prepared samples with the graphite-supported
nanoparticle sample. It is seen from the figure that as the treatment time of the graphite
increases, the catalytic performance of the samples significantly increases and reaches a
high value of about 480% for the bimetallic nanoparticle sample supported on the 120 min
treated GO. This improvement in the catalytic performance of the treated samples can be
attributed to the presence of the functional groups on the graphene surface after the acid
treatment. Increasing the treatment time breaks the C-C bonds and introduces oxygen
functionalities with a high density. These functional groups serve as nucleation centers that
facilitate the growth/attachment of the Au-Pd bimetallic nanoparticles [2,34]. Therefore,
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the samples treated for a longer time are expected to have, due to the effective exfoliation
of the graphene layer, a high nanoparticle density and hence the observed enhancement in
the catalytic performance. Moreover, to further investigate the catalytic performance of
the prepared samples, the performance of the GO nano-sheets, Au/GO nanocomposite
and Pd/GO nanocomposite was evaluated and compared with that of the Au-Pd/GO
nanocomposite for the GO sample treated for 60 min, as shown in Figure 5b. As seen from
the figure, the Au-Pd/GO sample showed the highest performance, followed by Au/GO,
Pd/GO and finally the GO sample, which exhibited the lowest performance. The improved
performance of the bimetallic sample was expected, as similar observations have been
reported elsewhere [12]. However, the achieved performance enhancement via controlling
the oxidation of GO, the support material, highlights the significance of the findings of the
current study. These findings show the importance of the acid treatment conditions and
the possibility of utilizing their parameters to significantly boost the catalytic activity of the
graphene-based nanocomposite catalysts.
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Figure 5. The performance of the prepared nanocomposite samples in benzyl alcohol oxidation: (a) se-
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performance enhancement of Au-Pd/GO nanocomposite samples with different GO treatment times
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4. Conclusions

Nanocomposites of Au-Pd bimetallic particles/graphene oxide were successfully pre-
pared and utilized as catalysts in the oxidation reactions of some chemicals. The acid
treatment time was utilized to control the oxidation level and exfoliation of the graphite.
The EDS analysis revealed a decrease in the C/O ratio when increasing the treatment time,
which indicates an increase in the oxygen content in the treated samples. The increase in
the oxygen content was also found to be accompanied by an increase in the band gap of the
treated GO samples. Microscopic studies showed highly exfoliated graphene layers with a
uniform growth of Au-Pd bimetallic nanoparticles in the size range of a few nanometers.
XRD studies also confirmed the growth of the nanoparticles and showed a clear crystallinity
disturbance in the graphene layers as a result of the increased acid treatment time. The
evaluation of the catalytic performance of the prepared bimetallic-nanoparticle-supported
graphene oxide showed a significant improvement in the conversion performance of up
to 480% in comparison with the untreated-graphite-supported samples and with a high
conversion selectivity of benzyl alcohol into benzaldehyde. The improved catalytic perfor-
mance with an increasing GO treatment time is attributed to the enhanced dispersion of the
GO sheets and the increased density of the attached bimetallic nanoparticles. Additionally,
the catalytic performance of both the Au/GO and Pd/GO nanocomposites and that of
GO nano-sheets was evaluated and was found to be lower than that of the bimetallic
Au-Pd/GO nanocomposites. The results showed that the acid treatment time used to
oxidize graphene is a key factor in improving its properties as a supporting material for
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Au-Pd bimetallic nanoparticles and for improving their catalytic performance. Exploring
the effect of a wider treatment time range and different treatment temperatures on the
nanocomposites’ catalytic properties and the related catalytic performance would be of
great importance.
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