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Abstract: This article explores the processing of structural, thermal, and dielectric properties of
polypropylene (PP) polymer nanocomposites modified with Ni0.9Zn0.1Fe2O4. The PP/Ni0.9Zn0.1Fe2O4

nanocomposites are manufactured by the melt-processing method using a Brabender Polyspeed B.
The XRD and FTIR structural investigations assure good incorporation of Ni0.9Zn0.1Fe2O4 into the PP
matrix. It should be noted that adding Ni0.9Zn0.1Fe2O4 NPs to the PP polymer matrix enhances the
polymer’s thermal stability. Utilizing the Coats–Redfern model, kinetic thermodynamic parameters
such as activation energy (Ea), enthalpy (∆H), entropy (∆S), and Gibbs free energy (∆G*) are deduced
from TGA data. The dielectric results showed an increase in ε′ with the introduction of nanoparticles
into the PP matrix. As the content of Ni0.9Zn0.1Fe2O4 NPs in these nanocomposite films increases, the
loss tangent values decrease at higher frequencies while increasing at lower frequencies. The estimated
εs and ε∞ of PP nanocomposites using Cole–Cole plots reveal an improvement when NPs are added
to PP. We believe that the proposed work suggests a relevant step towards the practical application of
PP/Ni0.9Zn0.1Fe2O4 nanocomposites.

Keywords: Ni0.9Zn0.1Fe2O4; polypropylene nanocomposite; TGA kinetics; dielectric constant

1. Introduction

The thermal, mechanical, and electrical properties of polymer nanocomposites have
generated great interest in academic research [1–4]. Polymer nanocomposites can have
enhanced thermal stability, improved heat resistance, and higher thermal conductivity.
The thermal conductivity of polymer nanocomposites can be increased by the addition
of nanoparticles with high thermal conductivity, such as graphene, carbon nanotubes,
or metal particles. Surprisingly, even small amounts of nanofillers can revolutionize the
properties of polymer composites compared to pure polymer [5–9]. Therefore, polymer
nanocomposites have found wide application in many fields, including electromagnetic
shielding, charge storage capacitors, microwave absorbers [10–12], EM detectors [13], optical
integrated circuits, sensors, medical devices, aerospace, packaging materials, consumer
goods, and so on [14]. Various scientific methodologies can be used to adapt the physical
properties of polymeric nanomaterials for a specific application. The physical and chemical
properties of polymer nanocomposites are related to the shape, size, and content of the
nanoparticles [15–24]. Since it offers amazing properties that can be used in catalysis,
biomedicine, high-density information storage devices, transformer cores, electromagnetic
interference (EMI) suppressors, rod antennas, gas detecting, and environmental remediation,
nano-ferrite is subject to substantial research [25–29].

Polypropylene (PP) is readily available and cost-effective from refineries across the
world. Its low density makes it easy to process using melt-processing methods [30–33].
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Furthermore, its high chemical resistance makes PP ideal for packaging, automobiles, and
other applications [34–36]. Therefore, scientists have been actively studying polypropylene
nanocomposites to enhance the physical properties of pure PP [35,37–54]. There are research
works related to the preparation and investigation of thermal and dielectric properties
of polypropylene nanocomposites. This is an active area of research with great potential
for developing new materials with improved properties. Siddiqui et al. [40] successfully
manufactured new magnetic bionanocomposites of graphene bonded to magnetically mod-
ified polypropylene (as the polymer matrix). The overall conductivity of the composites
was significantly improved. Rheological experiments demonstrated that increasing the
nanofiller concentration led to an enhancement of viscoelastic characteristics, exhibiting
more solid-like behavior. The dispersion of the nanofillers within the PP matrix created
conductive connections, resulting in innovative PP/MCNC composites with an 800% in-
crease in shielding efficiency compared to pure PP. Bendaoued et al. [43] demonstrated
that nanofillers were synthesized using the sol-gel process and incorporated as fillers in
polypropylene composites to enhance the thermal, rheological, and interfacial compatibility
of the final material. The addition of nano-TiO2 improved the thermal degradation stability
of polypropylene. The results revealed that incorporating nano-TiO2 into the polypropylene
matrix increased the degree of crystallinity. Due to its superior thermal and viscoelastic
properties, including high storage and loss moduli and degree of crystallinity, the nanocom-
posite PP@5% TiO2 is a suitable candidate for application in the manufacture of recycled
wind turbine blades. Rishaban et al. [42] referred to the significantly improved mechanical
and thermal stability of the created polymer/multi-layered graphene nanocomposites.
P. Tambe et al. [32] demonstrated that the NaOH-treated halloysite nanotubes (H.N.Ts)
are superior fillers for reinforcing the PP matrix. This modification is cost-effective for the
industry because NaOH is available in large quantities at a lower cost than other synthetic
organic modifiers. In comparison to clean PP and H.N.Ts-filled PP nanocomposites, the me-
chanical characteristics enhancement is greatest for the 3 wt.% NaOH-treated H.N.Ts-filled
PP nanocomposites. Uo Uyor et al. [39] studied the mechanical, thermal, and dielectric
properties of sandwich-structured BN-BaTiO3-BN/PP nanocomposites. Hydrothermal and
assembly processes were used to create the BN-BaTiO3-BN sandwich nanoparticles. A
rheometer prepared the nanocomposites using the melt compounding process. The pre-
pared PP nanocomposites exhibited improved thermal properties above 20 ◦C. Additionally,
the dielectric constant increased by nearly 132%, from 2.02 at 100 Hz for pure PP to 4.68
for PP/5BN-15BT nanocomposite. Moreover, the nanocomposite maintained a low loss of
approximately 0.05 at 100 Hz. L.G. Furlan et al. [38] discussed the role of processing condi-
tions on the thermal and mechanical properties of PP nanocomposites. Using a co-rotating
twin-screw extruder, polypropylene montmorillonite (PP-MMT) nanocomposites were fab-
ricated. Their findings demonstrated that a medium shear intensity profile, as opposed to a
high one, produced a greater improvement in mechanical properties. The dispersion and
interaction of MMT particles within the PP matrix influenced the reinforcement effect. Patil
et al. [35] studied the mechanical and thermal properties of polypropylene (PP)/multiwall
carbon nanotubes (MWCNTs) nanocomposites. They fabricated the nanocomposites using
compression molding equipment. The mechanical and thermal behavior of the nanocom-
posites was then evaluated using ASTM standards. The results revealed that adding
MWCNTs to the PP matrix enhanced both mechanical and thermal properties. The highest
tensile strength (62.80%) was measured at 1.2 wt.% MWCNT loading. At 1.5 wt.%, impact
strength and hardness increased by 82.14% and 12.44%, respectively. However, low weight
percent increases were accompanied by subsequent drops in glass transition temperature.

The addition of Ni0.9Zn0.1Fe2O4 nanoparticles as a nanofiller to a polypropylene (PP)
polymer matrix can have significant impacts on the structure, thermal, and dielectric proper-
ties of the resulting composite material. Ni0.9Zn0.1Fe2O4 nanoparticles exhibit ferrimagnetic
behavior [55], possess high thermal stability [56], and have higher dielectric constants [57]
compared to the polymer matrix. Therefore, the introduction of Ni0.9Zn0.1Fe2O4 nanoparti-
cles can improve the thermal stability and dielectric constant of the composite.
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The mechanisms by which nanoparticles influence the thermal and dielectric prop-
erties of polymers are still not fully understood. Further research is needed to elucidate
these mechanisms, which will enable the rational design of nanocomposites with desired
properties. Therefore, in current research, PP/Ni0.9Zn0.1Fe2O4 nanocomposites were syn-
thesized using the melt-processing method. The aim of this research is to investigate the
effect of adding Ni0.9Zn0.1Fe2O4 nanoparticles (NPs) to the PP matrix on the structural,
thermal, and dielectric properties. XRD and FTIR analysis to confirm the dispersion and
interaction between the NPs and the polymer. The addition of NPs has improved the
thermal resistance of the polymer, potentially leading to applications in high-temperature
environments. Using TGA data and the Coats–Redfern model, the activation energy, en-
thalpy, entropy, and Gibbs free energy associated with the thermal degradation process
were determined. The introduction of NPs influences the dielectric constant (ε’) and loss
tangent of the material. By analyzing the Cole–Cole plots, the static and high-frequency
permittivities (εs and ε∞) of the nanocomposites were estimated, potentially leading to
advancements in electrical insulation or dielectric materials.

2. Materials and Methods
2.1. Materials

Ferric nitrate AR (Fe(NO3)3·9H2O, M.W 404, ALPHA CHEMIKA, Maharashtra, India
99%), nickel nitrate AR (Ni(NO3)2·6H2O, M.W 290.8, Nile Company, Cairo, Egypt, 99%), zinc
nitrate AR (Zn(NO3)2·6H2O, M.W 297.49, Cairo, Egypt, 99%), commercial bovine gelatin
(Foodkum, Cairo, Egypt), and polypropylene raw material PPR-MS16 (GM1600E, SINOPEC,
Beijing, China) were used for the preparation of PP/Ni0.9Zn0.1Fe2O4 nanocomposites.

2.2. Sample Preparation and Characterization Techniques

According to Reference [58], Ni0.9Zn0.1Fe2O4 nanoparticles were synthesized us-
ing the green sol-gel autocombustion process. Nanocomposites composed of PP and
Ni0.9Zn0.1Fe2O4 nanoparticles were then successfully fabricated via the melt-processing
technique. The ratios of Ni0.9Zn0.1Fe2O4 were 0.0, 5.0, 10, and 15 wt%, as shown in Table 1.
The PP and nanoparticles were pre-dried to remove any moisture that could affect the
processing and final properties of the nanocomposite. A Brabender Polyspeed B was the
specific type of internal mixer used to mix the molten polymer with the nanoparticles under
controlled temperature and pressure. After mixing, the molten mixture was shaped into
disk shapes using a compression molding technique. The nanocomposites were stored in a
desiccator to minimize moisture absorption before characterization.

Table 1. Composition of polypropylene nanocomposites.

Sample ID Polypropylene (wt%) Ni0.9Zn0.1Fe2O4 (wt%)

PP 100 0.0
PP-NZF5 95 5.0
PP-NZF10 90 10
PP-NZF15 85 15

Structural analyses of the prepared nanocomposites were conducted using a Bruker
AXS D8 Advance diffractometer (Berlin, Germany) equipped with CuKα radiation
(λ = 0.154060 nm) and a collimator size of 480 µm. A high-performance FE-SEM Quanta
FEG 250 provided high-resolution imaging and analysis of the polymer nanocomposite
morphology. High-resolution imaging of materials and particle size at the nanoscale was
achieved using a JEM-2100 instrument (JEOL Ltd., Tokyo, Japan). Functional group identifi-
cation, molecular composition determination, and investigation of chemical bonding within
the polymer nanocomposites were performed using a JASCO FT/IR-6100 (JASCO, Tokyo,
Japan) spectrometer. Thermogravimetric analysis (TGA) of a polymer nanocomposite was
conducted using an SDT Q600 TGA/DSC (TA Instruments, New Castle, DE, USA) analyzer
with a heating rate of 10 ◦C/min. The dielectric properties of the polymer nanocomposites
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were recorded over a wide frequency range (20 Hz–2.0 MHz) using a Keysight E4980 LCR
meter (Octopart, New York, NY, USA). The thickness of the composite samples was 2.0 mm.
The electrodes were coated with gold and had an across-section area of 3.14 cm2. The
samples were pre-dried to remove moisture prior to dielectric properties measurements.

3. Results
3.1. XRD Analysis

Figure 1 demonstrates the XRD spectra of polypropylene doped with Ni0.9Zn0.1Fe2O4
nanoparticles at different weight ratios: 0.0, 5.0, 10, and 15 wt%. The diffraction pattern of
PP exhibits characteristic peaks at 14.11◦, 16.78◦, 18.47◦, 19.84◦, 21.10◦, 21.84◦, and 25.21◦,
corresponding to the lattice planes of the monoclinic crystals of (110), (040), (130), (111),
(131), (060), and (220), respectively [44,59–62]. The XRD patterns of PP/Ni0.9Zn0.1Fe2O4
nanocomposites reveal the predominant peaks of PP along with additional peaks at 36◦,
43◦, 57.26◦, and 62.90◦, indicating the presence of Ni0.9Zn0.1Fe2O4 nanoparticles within
the nanocomposites and confirming the formation of PP/Ni0.9Zn0.1Fe2O4 nanocomposite
films [63,64]. Furthermore, the shift of major Ni0.9Zn0.1Fe2O4 nanoparticle peaks in the
nanocomposite diffraction patterns towards lower angles due to crystal lattice changes
confirms the successful formation of PP nanocomposites. Ni0.9Zn0.1Fe2O4 nanoparticles in
polypropylene matrix induce strain in the lattice due to a mismatch in thermal expansion
or processing stresses. This strain disrupts atomic arrangement, increasing interplanar
spacing and shifting diffraction peaks to lower angles. Moreover, as the concentration
of nanoparticles increases in the nanocomposite, the probability of interaction and stress
transfer between the nanoparticles and the polymer matrix also increases. This can lead
to a more pronounced lattice strain in the nanoparticles, resulting in a larger peak shift at
higher weight percentages [65]. Some of the major peaks are indexed with Miller indices,
as shown in the figure.
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XRD peak broadening in PP/Ni0.9Zn0.1Fe2O4 polymer nanocomposites can be at-
tributed to several factors related to the size and strain of the crystalline phases, as well
as the presence of multiple phases. According to the Scherrer equation, smaller crystal-
lites diffract X-rays less efficiently, leading to broader peaks in the XRD pattern. This
broadening effect becomes more pronounced as the crystallite size in both the PP matrix
and the Ni0.9Zn0.1Fe2O4 nanofillers decreases. Strain within the crystal lattice caused by
imperfections, dislocations, or interfacial stresses between the PP and Ni0.9Zn0.1Fe2O4
phases can also broaden the XRD peaks. The presence of non-uniform phases or mixed
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phases within the nanocomposite can contribute to peak broadening. This can arise from
incomplete mixing of the PP and Ni0.9Zn0.1Fe2O4 components [66].

3.2. FTIR Analysis

One of the suitable techniques for studying such changes in these nanocomposite films
is FTIR spectroscopy. Figure 2 illustrates the corresponding FTIR spectra within the range
of 4000–400 cm−1 wavenumber for PP and its nanocomposites modified with different
ratios of 5, 10, and 15 wt% Ni0.9Zn0.1Fe2O4 NPs. All spectra were quite similar, with each
displaying the characteristic peaks of PP [44,67–69]. In the spectrum of PP, the vibrations of
asymmetric CH3, asymmetric CH2, stretching CH3, symmetric bending CH3, rocking CH3
or wagging CH, rocking CH3 or stretching C-C, rocking CH3 or rocking CH, and stretching
C-C were attributed to the peak locations detected at wavenumbers of 2949, 2916, 2867,
1454–1375, 1165, 997, 972, 840, and 807 cm−1, respectively [67].
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In the spectra of PP nanocomposites, additional peaks appear at wavenumbers of
1645 and 460 cm−1, which were assigned to the N-H band and octahedral complexes
of the spinel cubic structure, respectively [58,63]. These extra peaks, observed in the
nanocomposites, confirm the incorporation of Ni0.9Zn0.1Fe2O4 NPs in the PP matrix, in
agreement with the XRD results. The peak at 1645 cm−1 is assigned to the N-H stretching
vibration of adsorbed amine groups on the polypropylene matrix interacting with the Ni
sites in the spinel. This suggests that there is a chemical bonding interaction between the
amine groups on the polypropylene and the Ni atoms in the NPs. This type of interaction
can lead to improved compatibility and dispersion of the NPs within the matrix, enhancing
the mechanical and physical properties of the composite material. The peak at 460 cm−1 is
assigned to the Fe-O vibrations in the octahedral sites of the spinel structure. The presence
of Zn dopant ions can potentially affect these vibrations, leading to a shift in the peak
position or intensity. This suggests that the Zn dopant ions may be influencing the local
bonding environment around the Fe atoms in the NPs. This could, in turn, affect the
interaction between the NPs and the polypropylene matrix.

3.3. TEM Microscopy

TEM image and electron diffraction of a selected area of Ni0.9Zn0.1Fe2O4 NPs are
shown in Figure 3. As shown in the figure, nanoparticles have a spherical shape with an
average crystal size of 29 nm, and some appear as dark regions due to the agglomeration of
nanoparticles. Agglomeration is caused by the magneto-static interaction between particles.
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Furthermore, the agglomeration phenomenon can be explained as nanoparticles having a
permanent magnetic moment, which is directly proportional to their volume [58,70].
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We compared the information obtained from electron diffraction (Figure 3b) with the
bulk crystallographic data obtained from XRD. This showed a confirmation of the crystal
structure obtained from XRD.

3.4. FESEM Microscopy

Figure 4 illustrates the FESEM images of PP/Ni0.9Zn0.1Fe2O4 nanocomposite films
to investigate the morphology of the nanocomposites. The FESEM micrographs show a
good distribution of Ni0.9Zn0.1Fe2O4 nanoparticles within the PP matrix, although some
agglomeration is present. The appearance of agglomeration in the FE-SEM results (yellow
circles) agrees well with the TEM results shown in Figure 3a. This suggests a good interac-
tion between the Ni0.9Zn0.1Fe2O4 and the PP polymer matrix, confirming the formation of
nanocomposites. This finding is consistent with the XRD and FTIR results [63,64].
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3.5. Thermogravimetric Analysis

Figure 5 presents TGA/DTG plots of PP/Ni0.9Zn0.1Fe2O4 nanocomposite films. It is
clear that each curve exhibits a single degradation stage with a peak temperature within
the range of 467–499 ◦C. The peak temperature is slightly affected by the addition of
Ni0.9Zn0.1Fe2O4 NPs to the PP matrix. As the Ni0.9Zn0.1Fe2O4 NPs concentration increases,
the mass losses of PP/Ni0.9Zn0.1Fe2O4 nanocomposite films decrease, which is consis-
tent with previous research [63,71]. As the nanoparticle loading increases (10 wt% and
15 wt%), the interfacial interaction between the nanoparticles and the polypropylene matrix
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becomes more significant compared to low loadings (5 wt%). This interaction can act as
a barrier to the diffusion of volatile decomposition products, hindering the degradation
process and leading to an increase in peak temperature. In comparison to pure PP, the
addition of nanoparticles in the polymer matrix improved the thermal characteristics of
polymer nanocomposite, as listed in Table 2. The high crosslinking density and secondary
connections conferred upon Ni0.9Zn0.1Fe2O4 NPs with the polymer chains can be attributed
to the enhancement of the thermal stability of the nanocomposites. Also, the incorporation
of nanoparticles into the polymer matrix restricted polymer chain movement, reduced free
radical exchange and hence decreased heat degradation [63,72].
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Table 2. TGA data of polypropylene loaded with Ni0.9Zn0.1Fe2O4.

Ni0.9Zn0.1Fe2O4 NPs
Percentage (wt%)

Degradation Stage Mass Loss (%)

∆T (◦C) Tpeak (◦C) Mass Loss (%) ∆ m250 ∆ m350 ∆ m450 ∆ m550

0 353–594 490 99.64 0.17 0.44 22.05 99.58

5 311–594 467 97.00 0.66 2.36 44.27 97.04

10 342–596 498 94.89 0.69 1.94 8.3 94.83

15 322–596 499 92.38 0.96 2.65 9.07 92.27

The degree of conversion (α) can be used to express the reaction rate using the
following Equation (1) [73]:

α =
mi −mt

mi −m f
(1)

where mi, mf, and mt are the initial, final, and current sample mass at the instant t.
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The Coats–Redfern approximation method is a powerful tool for analyzing thermo-
gravimetric analysis (TGA) data, particularly in the context of studying thermal decom-
position processes [6,74–79]. Therefore, we use this method to determine the kinetics
parameters of the TGA thermal decomposition stage shown in Figure 5.

Ln
[
− Ln(1− α)

T2

]
= − Ea

RT
+ Ln[

AR
ϕEa

] (2)

where Ea, R, A, and ϕ are the activation energy, the real gas constant, the reaction rate con-
stant, and the heating rate, respectively. Equation (2) states that straight-line results from
plotting Ln

[
− Ln(1−α)

T2

]
versus 1000

T with a slope and intercept directly proportional to the Ea

and A, respectively as depicted in Figure 6. Estimated activation energies of the nanocom-
posites are reduced as Ni0.9Zn0.1Fe2O4 NPs are added, indicating that Ni0.9Zn0.1Fe2O4
NPs have a significant impact on the PP. Additionally, the following well-known formu-
lae [78,80,81] were used to compute the changes in entropy (∆S*), enthalpy (∆H*), and
Gibbs free energy (∆G*) of the activation:

∆S∗ = R
[

Ln
(

Ah
KBTp

)
− 1
]

(3)

∆H∗ = Ea − RTp (4)

∆G∗ = ∆H∗ − ∆S∗Tp (5)

where Tp is the peak temperature of the DTG curve, kB is the Boltzmann constant, and h is
the Plank constant. Entropy (∆S∗) and enthalpy (∆H∗) provide information on the system’s
level of order, total thermal motion, and Gibbs or free energy (∆G∗) provides information
on the stability of the system.
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The values of the computed thermodynamic parameters (Ea, ∆S∗, ∆H∗, and ∆G∗) are
listed in Table 3 in accordance with the Coats–Redfern method. It is evident that as the
Ni0.9Zn0.1Fe2O4 NP concentrations rise, the values of all thermodynamic parameters fall.
This can be explained by noting that when NPs rise, random macromolecule chain scission
prevails in polymeric matrices, and activation energy decreases. Additionally, each sample
has negative entropy, indicating ordered systems and potentially more ordered activated
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states that could result from the chemisorption of other light sources. The values of Ea, ∆S∗,
∆H∗, and ∆G∗ in our work are less than in [74].

Table 3. Thermal kinetic parameters for PP/Ni0.9Zn0.1Fe2O4 nanocomposites.

Ni0.9Zn0.1Fe2O4 NPs
Percentage (wt%)

Ea
(KJ/mol)

A
(S−1)

∆S*
(J/mol.K)

∆H*
(KJ/mol)

∆G*
(KJ/mol)

0 393.83 2.64 × 1011 −38.70 389.75 408.71

5 315.83 2.55 × 109 −76.90 311.95 347.89

10 264.67 1.04 × 107 −123.18 260.53 321.90

15 381.55 1.41 × 1011 −44.08 377.40 399.39

3.6. Dielectric Measurements

Figure 7 illustrates the frequency dependence of the real dielectric constant (ε′) of PP
and its nanocomposites at room temperature in the frequency range 20 Hz ≤ f ≤ 2 MHz.
Over most of the frequency range studied, the dielectric constants of the polymer nanocom-
posites were almost frequency-independent. Polarizations relate to the PP matrix,
Ni0.9Zn0.1Fe2O4 NPs, and PP-NPs interfaces in this study, although the nonpolar character
of PP may have a major effect on the tiny dielectric response at the applied frequency range.
Some polymer nanocomposites have previously shown the same characteristic [39,82–84].
The dependence of ε′ on Ni0.9Zn0.1Fe2O4 NPs concentration exhibited an enhancement
with rising NP concentrations for weight ratios ranging from 0 to 15 wt%. This strong
dependence of ε′ on nanofiller concentration has already been found for nanocompos-
ites [63,64,85–91]. The good interaction between NPs and the PP matrix is confirmed via
such behavior. Basically, it can be attributed to the formation of microcapacitor networks in
the PP matrix as the content of the nanofiller rises. The accumulation of charge carriers in
the interior surface of the PP matrix may also be the cause of this increase, as shown by the
Maxwell–Wagner–Sillars effects [64,92,93]. The 15 wt% modified film has a lower dielectric
constant than other nanocomposite films, which could be because of cluster formation [6].
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Figure 8 shows the variation in dielectric loss (log(ε′′)) with angular frequency log(ω)
for PP/Ni0.9Zn0.1Fe2O4 nanocomposites films at room temperature. Generally, every
specimen behaves in the same way as depicted, decreasing as frequency rises and then
increasing at higher frequencies. The minimum dielectric loss shifts to higher frequencies as
Ni0.9Zn0.1Fe2O4 Nps content increases. Equation (6) [94] gives the frequency-dependence
relationship of ε′ ′:

ε′′ (ω) = (εs − ε∞)2π2N(
ne2

εs
)

3

KBTτm
o W−4

m ωm (6)

where
m = −KBT

Wm

where εs, ε∞, n, N, e, kβ, T, τo, and Wm, are static permittivity, infinity permittivity, number
of electrons, the concentration of localized sites, elementary charge, Boltzmann’s constant,
absolute temperature, relaxation time, the energy required to move an electron from one
site to the infinite, and angular frequency. By applying this model to our results and fitting
a portion of the data in the frequency range of 20 Hz to 84 kHz to a linear equation, we
may find the values of Wm presented in Table 3. Generally, the values of Wm tabulated in
Table 3 are greater than those of PVC/NiO (0.025–0.027 eV) [92] but lower than those of
Polyester/Ni0.5Zn0.5Fe2O4 (0.16–0.43 eV) [64], and their values grew as the Ni0.9Zn0.1Fe2O4
Nps concentration increased.
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The variation in the tangent loss (tan(δ)) of PP loaded with different weight ratios
of Ni0.9Zn0.1Fe2O4 NPs at room temperature in the frequency range 20 Hz to 2 MHz is
displayed in Figure 9. The measured values of tan(δ) of PP nanocomposites are frequency-
dependent at all frequency ranges, as can be seen. For PP, the tangent loss initially has high
values at low frequencies and rapidly decreases as the frequency rises to 4226 Hz; thereafter,
the tangent loss increases. Tan(δ) for the PP is consistent with the strong conductivity at
high frequencies associated with charge carrier hopping or tunneling [63,64]. The trendlines
of the nanocomposites feature two regions: the first region shows a decrease in tan (δ) with
frequency due to a reduction in dielectric dispersion or because the nanocomposite films’
crystallinity has improved [95], while the second region exhibits an increase in loss tangent
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with frequency. The nanocomposite films’ minimal loss tangents are, respectively, at 0.6325,
1.416, and 1.5 MHz and 5, 10 and 15 wt%.
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The Cole–Cole curves of PP/Ni0.9Z0.1Fe2O4 nanocomposite films at room temperature
are revealed in Figure 10. The semicircle on each Cole–Cole graph represented relaxation
processes. As a result, the values of static permittivity (εs), infinity permittivity (ε∞), and
dielectric intensity (∆ε) that are given in Table 3 are obtained by fitting these semicir-
cles. According to Table 3, the values of ε∞ and εs for films made of PP/Ni0.9Z0.1Fe2O4
nanocomposites are greater than those of PP, confirming that the addition of NPs increased
the dielectric constant of PP.
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According to the relation [96], the relaxation time (τo) can be estimated from the
Cole–Cole analysis:

ln(
v
u
) = (1− α)[ln(ω) + ln(τo)] (7)

where u is the distance between the experimental point and ε∞, and v is the distance be-
tween εs and the experimental point on the Cole–Cole plot. According to Figure 11, the re-
lationship between Ln(ω) and Ln(v/u) is fitted with a linear line. By knowing the slope and
intercept of the fitting line, τo can be calculated, and by applying this equation, τo = 1/2πfo,
we may determine fo which they listed in Table 3. The obtained values of τo are higher than
those obtained in PVC/CuO [97] and lower than Polyester/Ni0.5Zn0.5Fe2O4 [61]. As listed
in Table 4, the relaxation time (τo) decreases as the Ni0.9Zn0.1Fe2O4 NP content increases;
this behavior is shown in other works [97,98].
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Table 4. The deduced εs, ε∞, ∆ε, τo, fo, and Wm of PP/Ni0.9Zn0.1Fe2O4 nanocomposites.

Ni0.9Zn0.1Fe2O4 NPs
Percentage (wt.%) εs ε∞ ∆ε τo (µs) fo (kHz) Wm (eV)

0 1.52 1.26 0.26 24.2 6.58 0.106

5 2.13 2.09 0.04 5.42 29.36 0.068

10 2.58 2.49 0.09 0.99 160.76 0.119

15 1.84 1.76 0.08 1.05 151.58 0.126

Figure 12 depicts the variation in the AC impedance (Z’) of the PP/Ni0.9Zn0.1Fe2O4
nanocomposite within the frequency range of 20 Hz ≤ f ≤ 2 MHz at room temperature.
The values of Z’ fall with frequency and attain nearly minimal constant values at high
frequencies, which can be explained in part by charge carrier hopping or tunneling. The
polymer nanocomposite films’ improved crystallinity, which results in less hopping inter-
chain and intrachain ion movements, caused the inclusion of nanoparticles to also provide
an improvement in Z’ values [99].

Ni0.9Z0.1Fe2O4 is a spinel ferrite with good electrical conductivity due to the presence
of mixed valence states (Fe2+ and Fe3+) and the hopping mechanism of charge carriers.
When incorporated into the PP matrix, it creates conductive pathways, reducing the overall
impedance of the composite and thereby increasing Z’. Meanwhile, the interface between
the Ni0.9Z0.1Fe2O4 nanoparticles and the PP matrix creates an additional layer with unique
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electrical properties. This interfacial region can exhibit polarization under an applied
electric field, contributing to the overall impedance response and potentially increasing Z’.
Moreover, the presence of Ni0.9Z0.1Fe2O4 nanoparticles can trap mobile ions and electrons
within the PP matrix, preventing them from accumulating at the electrode interfaces.
This reduces space charge buildup, which can contribute to leakage current and lower
Z’ values [100].
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4. Conclusions

The successful synthesis of PP/Ni0.9Zn0.1Fe2O4 nanocomposites was achieved and
confirmed via structural techniques involving XRD, FTIR, and SEM. Further, TEM, XRD, and
TEM findings revealed an average crystal size of approximately 29 nm for the Ni0.9Zn0.1Fe2O4
nanoparticles. TEM images also confirmed the spherical morphology and lack of aggregation
of the nanoparticles. FESEM micrographs demonstrated the successful incorporation of the
Ni0.9Zn0.1Fe2O4 NPs into the polymer matrix. TGA/DTG analysis showed improved ther-
mal characteristics and reduced weight loss. However, the peak temperature range shifted
between 468 and 499 ◦C upon introducing Ni0.9Zn0.1Fe2O4 NPs. Kinetic and thermodynamic
parameters, including activation energy, enthalpy, entropy, and Gibbs free energy, were deter-
mined from TGA/DTG data using the Coats–Redfern equation. Notably, the values of Ea,
∆S, ∆H, and ∆G* decreased with increasing Ni0.9Zn0.1Fe2O4 content. Dielectric loss and AC
impedance exhibited dependence on both frequency and composition. The real part of the
complex permittivity (e’) increased with the addition of Ni0.9Zn0.1Fe2O4 NPs. Cole–Cole anal-
ysis revealed a single relaxation semicircle and provided values for εs, ε∞, ∆ε, τ0, and fo. The
combination of dielectric and magnetic properties of PP/Ni0.9Zn0.1Fe2O4 nanocomposites
suggests potential use in electromagnetic interference (EMI) shielding materials.
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