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Abstract: A simple higher-order model (HOM) is presented in this study for the bending analysis
of an intact or delaminated composite and sandwich beam. This model adopts the concept of sub-
laminates to simulate multilayered structures, and each sub-laminate takes cubic variation for axial
displacement and linear variation for transverse displacement through the thickness. A sub-laminate
possesses displacement components at its surfaces (bottom and top) that provide a straightforward
way to improve the accuracy of prediction by stacking several sub-laminates. Thus, analysts will
have the flexibility to balance the computational cost and the accuracy by selecting an appropriate
sub-lamination scheme. The proposed model was implemented by developing a C0 beam element
that has only displacement unknowns. The model was used to solve numerical examples of composite
and sandwich beams to demonstrate its performance.

Keywords: sub-lamination technique; bending analysis; higher order model; delamination modeling

1. Introduction

Composite laminates are assembled by several layers consisting of fiber-reinforced
polymer, which are stacked one over the other and bonded to behave as a single monolithic
structure. These structures are widely used in mechanical, aerospace, marine, and civil
engineering applications owing to their outstanding mechanical features (e.g., high stiffness
and strength, and being lightweight) [1]. One of the specific types of composite laminates
is sandwich structures, where a thick core layer (extremely lightweight with comparatively
low stiffness and strength) is stacked in the middle of two thin face sheets (high strength
and stiffness) for a more lightweight construction.

The precise modeling of these structures is challenging due to the complex material
configurations of the structural system. Generally, the transverse shear deformations of
composites are more due to lower shear stiffness compared to extensional rigidity. This has
drawn a significant research interest in the recent past and different laminate theories [2–5]
have been proposed. Initially, single-layer-based theories have evolved where a single
formulation is employed to describe the through-thickness deformation kinematics so that
the multilayered structures are simulated by a single-layer-based model [2]. These belong to
first-order shear-deformation theory (FSDT) [6–9] or higher-order shear-deformation theory
(HSDT) [10–15]. The FSDT needs a shear correction factor because it assumes a constant
through-thickness shear strain, but an accurate calculation of this factor is cumbersome for
a multilayered composite structure [16].

The performance of HSDT is better than FSDT, since it includes cross-sectional warping,
and the shear correction factor is no longer needed. However, these equivalent single layers
models give a continuous through-thickness variation for displacement fields. This fails to
model the interfacial discontinuity of transverse strain which is caused by an abrupt change
in material properties between layers having a different fiber orientation. Layer-wise
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(LW) models [17–21] are developed for accurately modeling the interfacial strain/stress
of multilayered structures but they require enormous computational efforts, especially
for laminates having a high number of layers, since variables are taken at all interfaces.
In order to improve computational efficiency, zigzag theories have been proposed. The
main difference between the zigzag theory and LW theory is that the stress continuities of
interfacial transverse shear stress are utilized to replace interfacial variables in terms of
variables at the reference plane [22–27].

The existing zigzag theories can have different forms, with higher-order or linear
through-thickness displacement variation for every single layer, but they need a C1 contin-
uous finite element formulation, which is the main issue unless developing a particular
element [28,29]. To avoid the requirement of C1 continuity, different strategies have been
adopted for modifying zigzag models with different forms to have a C0 continuous for-
mulation [30–32]. The other limitation of the conventional/improved zigzag model is the
absence of transverse deformability that must be included for sandwich structures. Due
to the relatively high deformability of the thick, soft-core layer, the deviation of trans-
verse displacements between the top and bottom surface cannot be ignored, especially
when a localized loading is applied. Layer-wise modes can address this issue, although
they are computationally expensive. In addition, a dedicated sandwich model [33,34] has
also been developed, where a quadratic variation of transverse displacement is applied
only to the core. Moreover, some studies tried to unify various theories with different
ranges of generality [35–39]. For this purpose, a thorough study was conducted by Car-
rera and his group using mixed formulations involving stress/strain fields in addition
to displacements [36,38,39].

Delamination occurs as a common form of damage in composite laminates that would
significantly reduce the strength stiffness of the laminates. It was observed that the number
of existing studies on the modeling of delaminated sandwich structures and composite
laminates is limited. Moreover, the suitability of existing models for multilayered struc-
tures with any arbitrary number/location of delaminations, except the computationally
expensive LW [40–44] model, is an issue. Thus, this study attempted to develop a pure
displacement-based higher-order model for simulating laminated composite and sandwich
beams with any possible combination of delaminations. The model is simple but at the
same time it is sufficiently powerful due to its sub-laminate-based modeling capability that
can accommodate several bonded layers with a sub-laminate [45–48] to achieve compu-
tational efficiency with adequate accuracy. The model provides cubic variation for axial
displacement and linear variation for transverse displacement through the thickness within
a sub-laminate. This was achieved by taking unknowns at two internal reference planes
in addition to the surfaces (top and bottom) of a sub-laminate. This helps to connect
sub-laminates easily due to nodes at the top and bottom surfaces.

The finite element (FE) implementation of the model was performed through the
development of a three-nodes beam element with C0 continuity. The present model was
validated by solving static responses of intact laminated composite and sandwich beams
and comparing the results to Pagano’s exact solution [49] and Reddy’s conventional higher-
order-equivalent single-layer model [11]. As results available in the literature are not
adequate for the validation of beams containing delamination, detailed 2D FE models
developed by a commercial FE code (ABAQUS) were used for analyzing the delaminated
beam. The validation of predictions showed an encouraging performance of the model.
Some new results are also reported for future benchmarking, especially for composite
beams with delamination.

2. Mathematical Formulations

This study presents a sub-lamination-based higher-order model (HOM), which is
capable of simulating a composite beam having multiple layers with different approaches:
(1) treat the whole multilayered beam as a single HOM based sub-laminate (Figure 1a);
(2) represent every individual physical layer of the beam by HOM, and the entire multilay-
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ered beam is simulated by stacking multiple HOMs over the beam’s thickness (Figure 1b);
or (3) represent several (less than the total number of layers) physical layers in the form
of sub-laminates by the HOM and stack them to simulate the beam (Figure 1c). For every
sub-laminate applying formulations of HOM (shown in Figure 2), the displacement fields
are taken in terms of pure displacements components through the thickness as follows:

u =
4

∑
i=1

Lu
i ui (1)

w =
2

∑
i=1

Lw
i wi =

(
1
2
− z

h

)
w1 +

(
1
2
+

z
h

)
w2 (2)

where Li is the Lagrange polynomial in terms of z, which can be expressed as
Li(z) = ∏ z−zm

zi−zm
, 1 ≤ m ≤ 4, m ̸= i

(
z1 = − h

2 , z2 = − h
6 , z3 = h

6 , z4 = h
2

)
. Taking dis-

placement variables at sub-laminate bottom and top (see u1, u4, w1, w4 in Figure 2) and
two internal axial displacements (u2, u3), the proposed model provides cubic variation for
axial displacement and linear vibration for transverse displacement through the thickness.
It should be noted that the proposed model has benefit in staking multiple sub-laminates to
model a composite beam having many layers by incorporating surface unknowns u4, u1, w2,
and w1, where u1 and w1 represent axial and transverse displacements at the sub-laminate
bottom, while w2 and u4 are transverse and axial displacement at the sub-laminate top.
These surface unknowns (u4, u1, w2, w1) help the model directly obtain the displacements
at surfaces of a sub-laminate without any additional transformation, which is required in
a conventional model only having unknowns at mid-plane. The benefits of this include
that several sub-laminates can be stacked by easily connecting the corresponding surface
unknowns to simulate a whole multilayered beam, and a delamination is explicitly mod-
eled by debonding them. Moreover, stacking several HOM-based sub-laminates in the
thickness direction also improves the accuracy of the modeling in addition to the higher
order approximation used for displacement fields of a sub-laminate.
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Due to the fact that the dimension of a beam is small in its width direction (y-axis)
compared to other directions, the plane stress assumption is implemented in the x–z plane
of the beam (Figure 2). The strain components at an arbitrary location are expressed by the
derivative of displacements at this point as

{ε} =


εx
εz

γxz

 =


∂u
∂x
∂w
∂z

∂u
∂z + ∂w

∂x

 (3)

Substituting Equations (1) and (2) into Equation (3), and decoupling the two-dimensional
strain vector into a cross-sectional matrix [H] and a one-dimensional strain vector {ε} as

{ε} = [H]{ε} (4)

where [H] is expressed in terms of functions of z:

[H] =

 0 0 0 0 Lu
1 Lu

2 Lu
3 Lu

4 0 0 0 0
0 0 0 0 0 0 0 0 ∂Lw

1
∂z

∂Lw
2

∂z 0 0
∂Lu

1
∂z

∂Lu
2

∂z
∂Lu

3
∂z

∂Lu
4

∂z 0 0 0 0 0 0 Lw
1 Lw

2

 (5)

where {ε} is expressed in terms of function of x:

{ε}T =
[
u1 u2 u3 u4

∂u1
∂x

∂u2
∂x

∂u3
∂x

∂u4
∂x w1 w2

∂w1
∂x

∂w2
∂x

]
(6)

In order to retail a good degree of generality for analysis, standard FE procedures
were used to implement this model. The quadratic Lagrangian interpolation function was
employed as the shape function to approximate the six displacement components (u1, u2,
u3, u4, w1, and w2) that appeared in Equation (6). As a result, a quadratic C0 beam element
was adopted to approximate all six displacement variables along the sub-laminate length.

u1 =
3
∑

j=1
Njχ

u1
j , u2 =

3
∑

j=1
Njχ

u2
j , u3 =

3
∑

j=1
Njχ

u3
j , u4 =

3
∑

j=1
Njχ

u4
j

w1 =
3
∑

j=1
Njχ

w1
j , w2 =

3
∑

j=1
Njχ

w2
j

(7)

where Ni represents the shape function corresponding to node j [50] and the nodal displace-
ment of variable c at node i is represented by χc

j . Substituting Equation (7) into Equation (6)
to express {ε} in terms of the strain–displacement matrix [B] and nodal displacement vector
{χ}, and as

{ε} = [B]{χ} (8)

where [B] comprises 1D shape functions and their derivatives. Layers/plies made of
composites are idealized as a homogeneous orthogonal material, and their 3D constitutive
relationship is expressed as follows [51]:

{σm} = [C]{εm} (9)

The material stiffness matrix [C] used in the above equation can be written in terms of
different direction-dependent elastic modulus (E1, E2, E3), shear modulus (G12, G23, G31)
and Poisson’s ratio (ν12, ν23, ν31) as
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[C] =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (10)

where
C11 = 1−ν23ν32

E2E3λ , C12 = ν12+ν32ν13
E1E3λ , C13 = ν31+ν21ν32

E2E3λ

C22 = 1−ν13ν31
E1E3λ , C23 = ν23+ν21ν13

E1E3λ , C33 = 1−ν12ν21
E1E2λ

C44 = G23, C55 = G31, C66 = G12

λ = 1−ν12ν21−ν23ν32−ν31ν13−2ν21ν32ν13
E1E2E3

A composite laminate is usually a combination of number of layers having different
fiber orientations. Thus, it is necessary to express the stress–strain relationship of the
individual layer in terms of the same axis system of the structure so as to combine their
individual contributions. This needs transformation of the constitutive relationship of a
physical layer expressed in terms of its principal material axis system (1-2-3) to the global
laminates axis (x–y–z):

{σL} =
[
C
]
{εL} (11)

The transformed material stiffness matrix
[
C
]

in the above equation can be obtained
utilising the fibre orientation (θ) [51]:[

C
]
= [T]T [C][T] (12)

where [T] is the transform matrix, which is dependent on fibre orientation (θ) as [51]
follows:

[T] =



cos2 θ sin2 θ 0 0 0 −sin2θ

sin2 θ cos2 θ 0 0 0 sin2θ
0 0 1 0 0 0
0 0 0 cosθ sinθ 0
0 0 0 −sinθ cosθ 0

sinθcosθ −sinθcosθ 0 0 0 cos2 θ − sin2 θ

 (13)

To achieve the plane stress material condition at plane x–z (σy = τxy = τyz = 0), the strain–

stress relationship of a sub-laminate is expressed with a compliance matrix
[
S
]
=

[
C
]−1.

{εL} =
[
S
]
{σL} (14)

The 2D plane stress condition can now be easily obtained by eliminating the corre-
sponding rows and columns. (Reduce system of equations from 6 to 3.) This will reduce the
3D problem to plane stress problem, and the reduced strain–stress relationship is reversed
again to form the final constitutive relationship of the beam as

{σ} = [Q]{ε} (15)

Now the virtual work principle (δU = δW) is applied to obtain the governing equation
within an element. And δU represents the variation of strain energy, which is expressed as

δU =
∫

δ{ε}T{σ}dA (16)

Equations (4), (8), and (15) are substituted in the above equation to express it in the
following form:

δU =
x

δ{χ}T [B]T [H]T [Q][H][B]{χ}dxdz (17)
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The above equation can now be expressed in the form of a 1D integral by operating
integration along z direction for the cross-section considering a unity width as

δU =
∫

δ{χ}T [B]T [D][B]{χ}dx (18)

where
[D] =

∫
[H]T [Q][H]dz (19)

The beam can be subjected to any transversely distributed load (q = q(x)) along the
x-axis, and the variation of work performed by it (δW) can be written as

{δW} =
∫

δwqqdx (20)

where wq can be w1 or w2 depending on the position of the load. Equation (12) can be
substituted in the above equation to express it in terms of nodal displacement vector as

{δW} =
∫

δ{χ}T [N]Tq qdx (21)

where wq = [N]q{∆}.
Substituting Equations (18) and (21) into the equation for virtual work principle

(δU = δW), the governing equation can finally be obtained and expressed as

[K]e{χ} = {P}e (22)

where the stiffness matrix [K]e and the nodal load vector {P}e of an element can be written
as follows:

[K]e =
∫

[B]T [D][B]dx (23)

{P}e =
∫

[N]Tq qdx (24)

The numerical integration technique Gauss quadrature rule was used to undertake
the integration in the above equations, where four integration points were used for inte-
grations within each physical layer along the z-axis, while three integration points were
used for integrations in terms of x for a single element. With these equations, [K]e and
{P}e of all elements along the sub-laminate length were calculated. The global stiffness
matrix [K] and global load vector {P} were then formed by assembling all [K]e and {P}e,
and the global beam governing equation in terms of global nodal displacements {χ}g as
[K]{χ}g = {P}. The boundary condition was incorporated by the penalty method to
restrain the corresponding degrees of freedom, and then {χ}g can be solved. Stresses at an
arbitrary location within an element can then be calculated using nodal displacements by
substituting Equations (5) and (9) into (16):

σ = [Q][H][B]{χ} (25)

The utilization of the surface displacements in HOM provides ease in modeling
delamination, which is shown in Figure 3. For the contact region, the adjunct sub-
laminate/element is directly connected in the thickness direction by taking the nodes
at the bottom surface of the upper sub-laminate and nodes at the top surface of the lower
sub-laminate as common nodes. As for the delaminated region, these common nodes are
separated into two sets of nodes without physical gaps so that the continuity of displace-
ments is relaxed in this region. The figure also presents a typical beam element, where
unknowns are taken at four reference planes; thus, four nodes are taken along the thickness
direction. This model was implemented by developing a beam element where 3 nodes
are taken along the axial direction. It should be noted that the 2D strain was decoupled
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into x (axial) and z (thickness direction) separately (see Equations (4)–(6)). Thus, the finite
element interpolation was only applied to the one-dimension strain {ε} in terms of x (see
Equations (6)–(8)). The integration along z direction was separately performed by using
Gauss quadrature integration (see Equations (18) and (19)).
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The above formulation was implemented by developing a code using MATLAB, which
was employed to analyze intact/delaminated composite and sandwich beams having
various configurations.

3. Numerical Examples for Validation
3.1. Intact Laminated Composite Beams

Simply supported intact laminated composite beams under a sinusoidal distributed
load (q = q0sin(πx/l) where l is the beam length, and q0 is the load intensity) were first
analyzed to show the performance of the proposed model in analyzing both symmetric
(0/90/90/0) and asymmetric (0/90/0/90) composite beams. There were three aspect ratios
(S = l/h where h represents beam depth). Different sub-laminated schemes were used to
model those beams, which were represented in terms of the total number of sub-laminates
(n) by present (NSn). A convergence study showed the model requires 20 elements in the
beam axis to produce stable converged predictions of displacements and stresses. Therefore,
the results in this section and other examples were calculated by using at least 20 elements
along beam length. These beams were made by four equal-thickness composite plies whose
material properties along the fiber orientation were as follows: E1/E2 = 25.0, E2 = E3,
G12 = G13 = 0.5E2, G23 = 0.2E2, and ν12 = ν23 = ν13 = 0.25. In addition, separate MAT-
LAB (R2020a, MathWorks, New York, USA) codes were developed based on Pagano’s
exact solution [49] and Reddy’s higher-order analytical model [11], which were used
for validation.

Table 1 presents the mid-span transverse displacements (w) predicted at the mid-
plane by the present mode with three sub-lamination schemes and the analytical mod-
els [11,49]. All the results in this table are expressed in their non-dimensional form
( w = 100E2h3w/

(
l4q0

))
. They show that the deflection was significantly underestimated

by the single-layer-based models for beams with S = 5 (i.e., thick beams). However, the
present model NS1 (using one sub-laminate for modeling) had a relatively better perfor-
mance compared to Reddy’s equivalent single-layer model [11]. In addition, the capability
of sub-lamination modeling of the proposed model provided good flexibility to users, with
a tradeoff between solution accuracy and computational efficiency. To study the perfor-
mance of the present model in predicting stresses of laminated composites, the mid-span
non-dimensional bending stresses (σxx = σxx/q0) at the beam’s top surface and the non-
dimensional mid-plane transverse shear stresses (τxz = τxz/q0) at the beam’s end (left)
are shown in Table 2. The stresses were predicted in these locations because they were
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expected to be high there. In addition, the elastic exact solution [48] and results produced
by Reddy’s model [11] are also included in the table. Moreover, the through-thickness
variations of σxx, and τxz predicted by different models at the mid-span of the symmetrical
composite beam are plotted in Figure 4. It should be noted that all transverse shear stresses
were calculated directly from the constitutive relationship. A similar performance found in
calculating displacements could also be observed for the prediction of stresses from Table 2
and Figure 4. Although modeling the four-layer composite beam with two sub-laminates
had a large deviation for calculating the mid-plane transverse shear stresses through a
constitutive relationship, it still provided good predictions for bending stresses. Figure 4
also shows that the zero transverse shear stresses conditions and interlaminar continuity
of transverse shear stresses were fulfilled when four sub-laminates were used. Thus, the
sub-lamination scheme S2 is a good option for balancing the accuracy and computational
cost unless an accurate prediction of transverse shear stress is needed.

Table 1. Non-dimensional middle-plane deflection (w) at mid-span for simply supported symmetrical
and antisymmetric intact composite beams under sinusoidal load.

Lamination
Scheme Source S = 5 % Error 1 S = 20 % Error S = 50 % Error

0/90/90/0

Present (NS1) 2.2949 3.94 0.6710 1.44 0.5764 0.52
Present (NS2) 2.3103 3.29 0.6744 0.94 0.5780 0.24
Present (NS4) 2.3884 0.03 0.6807 0.01 0.5793 0.02

Reddy [11] 2.2764 4.71 0.6699 1.60 0.5776 0.31
Pagano [49] 2.3890 0.6808 0.5794

0/90/0/90

Present (NS1) 2.7298 13.47 1.2237 3.17 1.1376 1.04
Present (NS2) 3.0762 2.49 1.2562 0.59 1.1470 0.23
Present (NS4) 3.1535 0.04 1.2633 0.03 1.1492 0.03

Reddy [11] 2.5588 18.89 1.2184 3.58 1.1423 0.64
Pagano [49] 3.1547 1.2637 1.1496

1 % error was calculated corresponding to the exact solution of Pagano [49].

Table 2. Non-dimensional bending stresses and transverse shear stresses of simply supported
symmetrical composite beams under distributed transverse load.

S Source σxx % Error τxz % Error

5

Present (NS1) 26.54 1.23 1.819 3.55
Present (NS2) 26.43 1.64 2.251 19.35
Present (NS4) 26.81 0.22 1.896 0.35

Reddy [11] 24.94 7.18 1.729 8.32
Pagano [49] 26.87 1.886 3.55

20

Present (NS1) 285.6 0.45 7.704 5.72
Present (NS2) 285.8 0.38 9.848 20.52
Present (NS4) 286.3 0.21 8.215 0.54

Reddy [11] 284.2 0.94 7.089 13.13
Pagano [49] 286.9 8.171

50

Present (NS1) 1732.2 0.32 19.52 4.92
Present (NS2) 1733.7 0.23 24.94 21.48
Present (NS4) 1734.2 0.20 20.83 1.46

Reddy [11] 1735.0 0.16 17.75 13.54
Pagano [49] 1737.7 20.53 4.92
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3.2. Intact Laminated Sandwich Beams

A simply supported five-layer sandwich beam (0/90/C/90/0) was analyzed by the
proposed model. Two different load cases applied on the beam’s top surface were con-
sidered: (1) localized load applied at beam mid-span (i.e., point load q = P), and (2) a
load that was uniformly distributed (q = q0) along the x-axis. The stiff composite lay-
ers used as face sheets, and the properties along their fiber direction were as follows:
E1 = 25.0E, E2 = E3 = E, G12 = G13 = 0.5E, G23 = 0.2E, and ν12 = ν13 = ν23 = 0.25. The
material properties of the soft-core layer were E1=4.0E, E2=E3=0.05E, G13=0.06E, and
ν12 = ν23 = ν13 = 0.25. The composite face sheets had a small distribution in material
properties since the thickness of each of them was 0.1h, while that of the core layer was
0.8 h. Similarly, Pagano’s exact solution [49] and Reddy’s equivalent single-layer higher-
order model [11] were also employed to analyze the same sandwich beam for the validation
of the proposed HOM.

Table 3 shows the mid-span deflection calculated by the above models at the beam’s
top surface (z = h/2), bottom surface (z = −h/2), and mid-plane (z = 0) for both loads.
Different aspect ratios (S) were taken (S = 5, 20, and 50) for this simulation. The deflection
(w) of the beam is expressed in non-dimensional form as w = 100E2h3w/

(
l3P

)
for the point

load, while this is the same expression as used in the previous example (Section 3.1) for the
uniformly distributed load. It can be observed from Table 3 that the mid-span transverse
displacement under the point load was significantly underestimated by Reddy’s model [11],
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especially for the thickest beam (S = 5). Due to the absence of through-thickness variation
of transverse displacement in Reddy’s model [11], this deviation was most significant
(more than 38%) at the surface where the load was applied (top surface). And it can be
expected that with the increasing aspect ratio and the loading of a less localized force, this
difference would have gradually diminished. A similar problem can also be observed
in the present model when the whole beam was modeled with one sub-laminate (NS1).
However, the introduction of variation for deflection over the thickness helped the present
model (NS1), providing an improved prediction compared to the higher-order model of
Reddy [11]. For the transverse displacement predicted at the beam’s top surface with
S = 5 (the worst case), the error of the present model (NS1) was approximately 19.7% (corre-
sponding to Pagano’s solution [49]), which was 38.7% for Reddy’s results [11]. In order to
improve the performance of the present model, two different sub-lamination schemes of the
present model were also employed to model the sandwich beam: (a) NS4, where two sub-
laminates were used for the thick core layer and every two composite plies were modeled by
one sub-laminate; and (b) NS6, where each physical composite ply was simulated by one
sub-laminate, and the thick-core was simulated by two sub-laminates. Table 3 presents
that NS4 and NS6 have evident benefits in improving the accuracy of the present model for
most cases. Moreover, the results calculated by using these sub-laminate schemes showed
good agreement with the exact solution [48], with errors of 0.33% (NS4) and 0.84% (NS6)
for the worst case mentioned before. Moreover, the predictions of NS6 showed a minor
improvement compared to the results of NS4, and this was expected since the soft-core
layer has a much more prominent contribution of material prosperity than the composite
sheets along the thickness direction. Thus, the sub-laminate S4 should be an optimum
option in this scenario considering its better computational efficiency.

Table 3. (a): Nondimensionalized deflection (w) at the mid-span of a simply supported sandwich
beam under localized loading. (b) Nondimensionalized deflection (w) at the mid-span of a simply
supported sandwich beam under uniformly distributed load.

S Source Beam Bottom % Error Beam Top % Error Mid-Plane % Error

(a)

5 Pagano [49] 15.653 23.395 17.138 16.3
Reddy [11] 14.345 8.36 14.345 38.68 14.345 0.51

Present (NS1) 15.663 0.06 18.788 19.69 17.225 2.40
Present (NS4) 15.475 1.14 23.318 0.33 16.726 2.44
Present (NS6) 15.502 0.96 23.592 0.84 17.720 16.3

20 Pagano [49] 3.7467 3.8525 3.7717
Reddy [11] 3.4464 8.02 3.4464 10.5 3.4464 8.62

Present (NS1) 3.7202 0.71 3.7690 2.17 3.7446 0.72
Present (NS4) 3.7432 0.09 3.8627 0.26 3.7639 0.21
Present (NS6) 3.7446 0.06 3.8655 0.34 3.7651 0.17

50 Pagano [49] 2.9281 2.9331 2.9297
Reddy [11] 2.8157 3.84 2.8157 4.00 2.8157 3.89

Present (NS1) 2.9149 0.45 2.9179 0.52 2.9164 0.45
Present (NS4) 2.9276 0.02 2.9350 0.06 2.9292 0.02
Present (NS6) 2.9279 0.01 2.9353 0.08 2.9295 0.01

(b)

5 Pagano [49] 15.653 23.395 17.138
Reddy [11] 14.345 8.36 14.345 38.68 14.345 16.3

Present (NS1) 15.663 0.06 18.788 19.69 17.225 0.51
Present (NS4) 15.475 1.14 23.318 0.33 16.726 2.40
Present (NS6) 15.502 0.96 23.592 0.84 16.720 2.44

20 Pagano [49] 3.7467 3.8525 3.7717
Reddy [11] 3.4464 8.02 3.4464 10.5 3.4464 8.62

Present (NS1) 3.7202 0.71 3.7690 2.17 3.7446 0.72
Present (NS4) 3.7432 0.09 3.8627 0.26 3.7639 0.21
Present (NS6) 3.7446 0.06 3.8655 0.34 3.7651 0.17
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Table 3. Cont.

S Source Beam Bottom % Error Beam Top % Error Mid-Plane % Error

50 Pagano [49] 2.9281 2.9331 2.9281
Reddy [11] 2.8157 3.84 2.8157 4.00 2.8157 3.84

Present (NS1) 2.9149 0.45 2.9179 0.52 2.9149 0.45
Present (NS4) 2.9276 0.02 2.9350 0.06 2.9276 0.02
Present (NS6) 2.9279 0.01 2.9353 0.08 2.9279 0.01

3.3. Laminated Composite Beam Contating Delamiantion

A composite beam with a delamination was analyzed to assess the performance of
the HOM-based model in simulating delamination. A delaminated symmetrical layered
composite beam [0/90/0/90]s was considered. One end of the beam was fixed, and a
mid-plane delamination was inserted at the other end where a point load was acting on the
beam top (see Figure 5). The same material properties utilized for the equal-thickness plies
in Section 3.1 were also used in this section.
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Figure 5. A cantilever laminated beam [0/90/0/90]s with single delamination under a point load.

The present model with three sub-lamination schemes (NS2,NS4,NS8) was used
to simulate the beam and the results are shown in Table 4. This table presents trans-
verse displacements (w) and axial displacements (u) (u = 100E2h3u/

(
l3P

)
) predicted at

four different points: 1, beam top; 2, surface above the delamination; 3, surface below the
delamination; and 4, beam bottom at the beam free end. Equations w = 100E2h3w/

(
l3P

)
and u = 100E2h3u/

(
l3P

)
were used to nondimensionalize these results. The value in

this table shows that the surface above the delamination had a larger deflection than that
below the delamination, which is an indicator of the opening of the delamination. For
better visualization, the through-beam length variation of deflection at two sides of the
delamination was predicted and plotted in Figure 6.
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Table 4. Non-dimensional displacements obtained from different depths (z) of the free end of the
cantilever laminated beam [0/90/0/90]s with single delamination.

z Sources w u

h/2

Present (NS2) 33.5010 −0.9868
Present (NS4) 33.9085 −0.9959
Present (NS8) 34.0594 −0.9988
FE model 34.2010 −1.0152

0 a

Present (NS2) 33.4833 0.5994
Present (NS4) 33.8920 0.6149
Present (NS8) 34.0404 0.6202
FE model 34.1334 0.6236

0 b

Present (NS2) 22.0173 0.0184
Present (NS4) 21.9642 0.0227
Present (NS8) 21.9984 0.0222
FE model 21.9950 0.0222

−h/2

Present (NS2) 22.0173 0.5998
Present (NS4) 21.9642 0.5970
Present (NS8) 21.9984 0.5969
FE model 21.9950 0.5966

a surface above the delamination; b surface below the delamination.

Since suitable results available in the literature are not adequate to validate the results
of delaminated beams, a reliable commercial finite element package ABAQUS(Version 6.14,
DASSAULT SYSTEMS, Paris, French) was employed to develop a detailed FE model for
the validation. To accommodate the delamination by using the proposed model, at least
two sub-laminates were needed. NS8, which provides the highest accuracy, was also used
for modeling in addition to an intermediate option, NS4.

It can be observed from Table 4 that NS2 was adequate to simulate the delaminated
composite beam in most cases.

4. Conclusions

This study presented a higher-order model that incorporates the concept of sub-
lamination for the static analysis of intact and delaminated composite and sandwich beams.
By taking displacement components at the beam top, bottom, and two internal planes, the
proposed model achieved a cubic variation for axial displacement and linear variation
for transverse displacement through the thickness. The presence of surface displacement
parameters showed a significant benefit in modeling multilayered structures owing to the
ease in connection of several sub-laminates in the thickness direction of the structure. The
model was implemented by developing a pure displacement-based C0 beam element with
three nodes. It was validated by analyzing different intact or delaminated composite and
sandwich beams and comparing the results with existing solutions and results produced
by a commercial finite element program. The following conclusions were made based on
the numerical results.

• The present model shows encouraging performance in analyzing multilayered struc-
tures subjected to different types of static loading. The incorporation of transverse
displacement variation was beneficial in modeling the sandwich beams, especially
subjected to localized load (e.g., point load). The proposed model also showed a
good estimation for transverse shear stresses, which were calculated directly from
the constitutive relationship. Moreover, modeling the whole structure with a single
sub-laminate showed a better performance than the typical higher-order model with
the equivalent single-layer hypothesis.

• The model provides ease in the simulation of delamination by inserting it between
two sub-laminates. The numerical results also showed that the model has adequate
accuracy in analyzing delaminated composite beams.
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• The HOM-based model has high flexibility to choose the level of detail in the variation of
displacement through the thickness for the modeling of multilayer composite and sand-
wich beams with or without delamination by choosing an appropriate sub-lamination
scheme. Therefore, users can balance computational efficiency and prediction accuracy.
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