Comparative Investigation of Thermal Properties Improvement of Nano-Enhanced Organic Phase Change Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CSP | Concentrated solar power |
CNT | Carbon nanotube |
CNF | Carbon nanofiber |
DSC | Differential scanning calorimetry |
GNF | Graphene nanoplatelet |
LH | Latent heat |
LHTES | Latent heat thermal energy storage |
LA | Lauryl alcohol |
MWCNT | Multi-walled carbon nanotube |
NE-PCM | Nano-enhanced phase change material |
PCM | Phase change material |
SDS | Sodium dodecyl sulfate |
TES | Thermal energy storage |
TC | Thermal conductivity |
TGA | Thermogravimetric analysis |
TLS | Transient line source |
References
- Dincer, I.; Rosen, M. Thermal Energy Storage: Systems and Applications, 3rd ed.; Wiley: Hoboken, NJ, USA, 2021; ISBN 9781119713159. [Google Scholar]
- Shaghaghi, A.; Eskandarpanah, R.; Gitifar, S.; Zahedi, R.; Pourrahmani, H.; Keshavarzzade, M.; Ahmadi, A. Energy consumption reduction in a building by free cooling using phase change material (PCM). Future. Energy 2024, 3, 31–36. [Google Scholar] [CrossRef]
- Geels, J. Electrical power consumption reduction in the bitcoin mining process using phase change material. Future. Energy 2022, 1, 12–15. [Google Scholar] [CrossRef]
- Cabeza, L.F. (Ed.) Advances in Thermal Energy Storage Systems: Methods and Applications, 2nd ed.; Woodhead Publishing (Elsevier): Cambridge, UK, 2021; ISBN 978-0-12-819888-9. [Google Scholar]
- Tauseef-ur-Rehman; Ali, H.M.; Janjua, M.M.; Sajjad, U.; Yan, W.-M. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. Int. J. Heat Mass Transf. 2019, 135, 649–673. [Google Scholar] [CrossRef]
- Ibrahim, N.I.; Al-Sulaiman, F.A.; Rahman, S.; Yilbas, B.S.; Sahin, A.Z. Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review. Renew. Sustain. Energy Rev. 2017, 74, 26–50. [Google Scholar] [CrossRef]
- Joybari, M.M.; Haghighat, F.; Seddegh, S.; Al-Abidi, A.A. Heat transfer enhancement of phase change materials by fins under simultaneous charging and discharging. Energy Convers. Manag. 2017, 152, 136–156. [Google Scholar] [CrossRef]
- Chinnasamy, V.; Heo, J.; Jung, S.; Lee, H.; Cho, H. Shape stabilized phase change materials based on different support structures for thermal energy storage applications—A review. Energy 2023, 262, 125463. [Google Scholar] [CrossRef]
- Rashid, F.L.; Al-Obaidi, M.A.; Dulaimi, A.; Bernardo, L.F.; Redha, Z.A.; Hoshi, H.A.; Mahood, H.B.; Hashim, A. Recent Advances on The Applications of Phase Change Materials in Cold Thermal Energy Storage: A Critical Review. J. Compos. Sci. 2023, 7, 338. [Google Scholar] [CrossRef]
- Rashid, F.L.; Al-Obaidi, M.A.; Dulaimi, A.; Bernardo, L.F.; Eleiwi, M.A.; Mahood, H.B.; Hashim, A. A Review of Recent Improvements, Developments, Effects, and Challenges on Using Phase-Change Materials in Concrete for Thermal Energy Storage and Release. J. Compos. Sci. 2023, 7, 352. [Google Scholar] [CrossRef]
- Pereira, J.; Moita, A.; Moreira, A. An Overview of the Nano-Enhanced Phase Change Materials for Energy Harvesting and Conversion. Molecules 2023, 28, 5763. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.; Srivastava, V.; Singh, S.; Shukla, A.; Choubey, A.K.; Sharma, A. Development of nano-enhanced phase change materials using manganese dioxide nanoparticles obtained through green synthesis. Energy Storage 2022, 4, e344. [Google Scholar] [CrossRef]
- Ouikhalfan, M.; Sari, A.; Chehouani, H.; Benhamou, B.; Biçer, A. Preparation and characterization of nano-enhanced myristic acid using metal oxide nanoparticles for thermal energy storage. Int. J. Energy Res. 2019, 43, 8592–8607. [Google Scholar] [CrossRef]
- Han, Z.; Ram, M.K.; Kamal, R.; Alamro, T.; Goswami, D.Y.; Jotshi, C. Characterization of molten salt doped with different size nanoparticles of Al2O3. Int. J. Energy Res. 2019, 43, 3732–3745. [Google Scholar] [CrossRef]
- Santosh, R.; Kumaresan, G.; Paranthaman, V.; Swaminathan, M.R.; Velraj, R. Comparative investigation on heat transfer enhancement of surface-roughened and nano-dispersed phase change material for thermal energy storage. Int. J. Energy Res. 2021, 45, 15992–16005. [Google Scholar] [CrossRef]
- Arshad, A.; Jabbal, M.; Yan, Y. Preparation and characteristics evaluation of mono and hybrid nano-enhanced phase change materials (NePCMs) for thermal management of microelectronics. Energy Convers. Manag. 2020, 205, 112444. [Google Scholar] [CrossRef]
- Arshad, A.; Jabbal, M.; Yan, Y. Thermophysical characteristics and application of metallic-oxide based mono and hybrid nanocomposite phase change materials for thermal management systems. Appl. Therm. Eng. 2020, 181, 115999. [Google Scholar] [CrossRef]
- Muzhanje, A.T.; Hassan, M.A.; El-Moneim, A.A.; Hassan, H. Preparation and physical and thermal characterizations of enhanced phase change materials with nanoparticles for energy storage applications. J. Mol. Liq. 2023, 390, 122958. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Mariappan, V.; Kalidoss, P.; Mohana Jai Ganesh, J.; Nanda Kishore, P.V.R.; Prathiban, S.; Anish, R. Characterization and thermal properties of lauryl alcohol-capric acid binary mixture with hybrid-nanoparticles as phase change material for vaccine storage applications. J. Energy Storage 2023, 74, 109442. [Google Scholar] [CrossRef]
- Rashid, F.L.; Eisapour, M.; Ibrahem, R.K.; Talebizadehsardari, P.; Hosseinzadeh, K.; Abbas, M.H.; Mohammed, H.I.; Yvaz, A.; Chen, Z. Solidification enhancement of phase change materials using fins and nanoparticles in a triplex-tube thermal energy storage unit: Recent advances and development. Int. Commun. Heat Mass Transf. 2023, 147, 106922. [Google Scholar] [CrossRef]
- Mahdi, J.M.; Nsofor, E.C. Maximizing the heat-recovery potential of nano-modified phase-change materials through gradual degradation of nanoparticle concentration. J. Energy Storage 2024, 75, 109711. [Google Scholar] [CrossRef]
- Venkatraman, S.; Jidhesh, P.; Rathnaraj, J.D.; Selvam, C. Experimental studies on the enhancement in discharging characteristics of phase change material with steatite nanoparticles. J. Energy Storage 2023, 73, 109103. [Google Scholar] [CrossRef]
- Baskakov, S.A.; Baskakova, Y.V.; Kabachkov, E.N.; Dvoretskaya, E.V.; Vasilets, V.N.; Li, Z.; Shulga, Y.M. Fast Charging of a Thermal Accumulator Based on Paraffin with the Addition of 0.3 wt. % rGO. J. Compos. Sci. 2023, 7, 193. [Google Scholar] [CrossRef]
- Xie, C. Nano-enhanced phase change material using salt hydrate and cooper nanoparticles for battery thermal management system: Buoyancy-driven approach. J. Energy Storage 2023, 74, 108788. [Google Scholar] [CrossRef]
- Li, M.; Guo, Q.; Su, Y. The thermal conductivity improvements of phase change materials using modified carbon nanotubes. Diam. Relat. Mater. 2022, 125, 109023. [Google Scholar] [CrossRef]
- Qiu, F.; Song, S.; Li, D.; Liu, Y.; Wang, Y.; Dong, L. Experimental investigation on improvement of latent heat and thermal conductivity of shape-stable phase-change materials using modified fly ash. J. Clean. Prod. 2020, 246, 118952. [Google Scholar] [CrossRef]
- Mayilvelnathan, V.; Valan Arasu, A. Performance investigation of shell and helical tube heat energy storage system with graphene dispersed erythritol PCM. Energy Storage 2020, 2, e198. [Google Scholar] [CrossRef]
- Bahiraei, F.; Fartaj, A.; Nazri, G.-A. Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications. Energy Convers. Manag. 2017, 153, 115–128. [Google Scholar] [CrossRef]
- Panda, D.; Dilip Saraf, S.; Gangawane, K.M. Expanded graphite nanoparticles-based eutectic phase change materials for enhancement of thermal efficiency of pin–fin heat sink arrangement. Therm. Sci. Eng. Prog. 2024, 48, 102417. [Google Scholar] [CrossRef]
- Zarma, I.; Emam, M.; Ookawara, S.; Ahmed, M. Thermal management of concentrator photovoltaic systems using nano-enhanced phase change materials-based heat sink. Int. J. Energy Res. 2020, 44, 7713–7733. [Google Scholar] [CrossRef]
- Lin, Y.; Cong, R.; Chen, Y.; Fang, G. Thermal properties and characterization of palmitic acid/nano silicon dioxide/graphene nanoplatelet for thermal energy storage. Int. J. Energy Res. 2020, 44, 5621–5633. [Google Scholar] [CrossRef]
- Şahan, N.; Fois, M.; Paksoy, H. The effects of various carbon derivative additives on the thermal properties of paraffin as a phase change material. Int. J. Energy Res. 2016, 40, 198–206. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Liu, S. Experimental study on cold storage box with nanocomposite phase change material and vacuum insulation panel. Int. J. Energy Res. 2018, 42, 4429–4438. [Google Scholar] [CrossRef]
- Bharathiraja, R.; Ramkumar, T.; Selvakumar, M. Studies on the thermal characteristics of nano-enhanced paraffin wax phase change material (PCM) for thermal storage applications. J. Energy Storage 2023, 73, 109216. [Google Scholar] [CrossRef]
- Xu, C.; Fu, T.; Wang, W.; Fang, G. 1-Hexadeol/nano titanium dioxide composite phase change material with different nano-additives: Fabrication and enhanced thermal properties. J. Energy Storage 2023, 72, 108259. [Google Scholar] [CrossRef]
- Yin, D.; Ma, L.; Geng, W.; Zhang, B. Microencapsulation of n-hexadecanol by in situ polymerization of melamine–formaldehyde resin in emulsion stabilized by styrene–maleic anhydride copolymer Dezhong. Int. J. Energy Res. 2014, 39, 23–40. [Google Scholar] [CrossRef]
Material | Properties |
---|---|
CuO nanoparticles | Size: 80 nm |
Surface area: 18 m2g−1 | |
MWCNTs | Density: 0.28 gcm−3 |
Length: 10–30 µm | |
Outside diameter: 20–30 nm | |
Inside diameter: 5–10 nm | |
Purity: >95 wt% | |
SDS | Density: 1.01 gcm−3 |
Sample | Melting | Solidification | Degree of Supercooling (°C) | ||||
---|---|---|---|---|---|---|---|
Onset (°C) | Peak (°C) | LH (Jg−1) | Onset (°C) | Peak (°C) | LH (Jg−1) | ||
LA | 22 | 27 | 217 | 20 | 16 | 213 | 11 |
LA + 1 wt% MWCNTs | 21.5 | 26.1 | 212 | 20.5 | 17.5 | 210 | 8.6 |
LA + 3 wt% MWCNTs | 21.6 | 26.3 | 202.5 | 20.7 | 17.4 | 201 | 8.9 |
15.6 | |||||||
LA + 5 wt% MWCNTs | 21.6 | 26.5 | 195 | 20.7 | 17.5 | 193 | 9 |
15.8 | |||||||
LA + 1 wt% CuO | 21.9 | 25.6 | 200 | 20.3 | 17.1 | 198 | 8.5 |
14.9 | |||||||
LA + 3 wt% CuO | 21.8 | 25.6 | 197 | 20.3 | 17.3 | 195 | 8.3 |
14.4 | |||||||
LA + 5 wt% CuO | 21.9 | 25.8 | 193 | 20.4 | 17.3 | 191 | 8.5 |
13.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambika, A.M.; Kalimuthu, G.K.; Chinnasamy, V. Comparative Investigation of Thermal Properties Improvement of Nano-Enhanced Organic Phase Change Materials. J. Compos. Sci. 2024, 8, 182. https://doi.org/10.3390/jcs8050182
Ambika AM, Kalimuthu GK, Chinnasamy V. Comparative Investigation of Thermal Properties Improvement of Nano-Enhanced Organic Phase Change Materials. Journal of Composites Science. 2024; 8(5):182. https://doi.org/10.3390/jcs8050182
Chicago/Turabian StyleAmbika, Aravindh Madhavankutty, Gopi Kannan Kalimuthu, and Veerakumar Chinnasamy. 2024. "Comparative Investigation of Thermal Properties Improvement of Nano-Enhanced Organic Phase Change Materials" Journal of Composites Science 8, no. 5: 182. https://doi.org/10.3390/jcs8050182
APA StyleAmbika, A. M., Kalimuthu, G. K., & Chinnasamy, V. (2024). Comparative Investigation of Thermal Properties Improvement of Nano-Enhanced Organic Phase Change Materials. Journal of Composites Science, 8(5), 182. https://doi.org/10.3390/jcs8050182