Effect of Primer and Fibre Orientation on Softwood–Hardwood Bonding
Abstract
:1. Introduction
2. Experimental Program
2.1. Material and Sample Preparation
2.2. Test Setup and Evaluation
2.3. Density and Moisture Content of the Specimen
Sample Designation | Left Woodblock | Middle Woodblock | Right Woodblock | |||
---|---|---|---|---|---|---|
Density | MC | Density | MC | Density | MC | |
(kg/m3) | (%) | (kg/m3) | (%) | (kg/m3) | (%) | |
SW-HW_PAL-PAL (No Primer) | 674.8 ± 18.6 | 12.5 ± 0.1 | 476.4 ± 16.3 | 12.2 ± 0.3 | 674.9 ± 23.5 | 12.6 ± 0.3 |
SW-HW_PAL-PAL (Primer) | 676.7 ± 13.7 | 12.2 ± 0.3 | 493.4 ± 15.3 | 12.4 ± 0.3 | 687.5 ± 14.4 | 12.5 ± 0.4 |
SW-HW_PAL-PER (No Primer) | 685.7 ± 17.9 | 12.4 ± 0.3 | 487.3 ± 20.9 | 12.5 ± 0.3 | 675.4 ± 21.1 | 12.4 ± 0.4 |
SW-HW_PAL-PER (Primer) | 683.4 ± 20.2 | 12.4 ± 0.3 | 491.4 ± 22.8 | 12.5 ± 0.4 | 684.0 ± 17.6 | 12.6 ± 0.4 |
HW-HW_PAL-PAL (No Primer) | 780.4 ± 20.2 | 13.1 ± 0.4 | 773.3 ± 22.6 | 12.8 ± 0.7 | 789.3 ± 18.4 | 12.8 ± 0.5 |
HW-HW_PAL-PAL (Primer) | 693.0 ± 140.3 | 12.4 ± 1.0 | 698.4 ± 112.3 | 12.1 ± 1.2 | 606.8 ± 106.4 | 12.3 ± 1.4 |
HW-HW_PAL-PER (No Primer) | 693.9 ± 132.7 | 12.7 ± 0.9 | 720.3 ± 60.3 | 12.7 ± 0.7 | 716.8 ± 80.2 | 12.7 ± 0.6 |
HW-HW_PAL-PER (Primer) | 679.9 ± 58.7 | 13.2 ± 0.6 | 685.3 ± 79.4 | 13.1 ± 0.4 | 655.2 ± 89.0 | 13.4 ± 0.5 |
SW-SW_PAL-PAL | 447.6 ± 35.3 | 11.8 ± 0.5 | 436.5 ± 33.1 | 12.4 ± 0.7 | 429.6 ± 25.8 | 11.9 ± 1.0 |
SW-SW_PAL-PER | 471.7 ± 45.1 | 12.5 ± 0.8 | 506.4 ± 29.1 | 13.2 ± 0.9 | 473.6 ± 56.5 | 12.5 ± 1.2 |
2.4. Statistical Analysis
3. Results and Discussions
3.1. Failure Modes
3.2. Load vs. Slip Plot
3.3. Bond Properties
3.4. Effect of Various Factors
Parameters | Difference in Means | SE of Difference | T-Value | p-Value | Difference in Means | SE of Difference | T-Value | p-Value |
---|---|---|---|---|---|---|---|---|
Bond Strength | Bond Stiffness | |||||||
Effect of various interfaces | ||||||||
SG-RP–RP-RP | 0.421 | 0.504 | 0.84 | 0.406 | 1.81 | 2.46 | 0.73 | 0.464 |
SG-SG–RP-RP | 0.781 | 0.504 | 1.55 | 0.124 | 6.4 | 2.46 | 2.6 | 0.011 |
SG-SG–SG-RP | 0.360 | 0.381 | 0.95 | 0.346 | 4.59 | 1.86 | 2.46 | 0.016 |
Effect of relative fibre orientation | ||||||||
PAL-PER vs. PAL-PAL | −2.873 | 0.340 | −8.44 | 0.000 | −21.46 | 1.67 | 12.94 | 0.000 |
Effect of primer | ||||||||
P–NP | 1.127 | 0.381 | 2.96 | 0.004 | 2.51 | 1.86 | 1.35 | 0.181 |
4. Comparison
4.1. Comparison with Block Shear Test
4.2. Comparison with Other Species
Species | Mean Density (kg/m3) | Mean Bond Strength (MPa) | Testing Method | Reference |
---|---|---|---|---|
Shining gum (HW) | 675 ± 66 | 6.91 (P) 5.78 (NP) | Push-out | This study |
900 ± 28 | 11.14 | Block shear | [16] | |
Eucalyptus urophylla × E. grandis (HW) | 580 | 4.00 | Block shear | [38] |
Acacia mangium (HW) | 673 | 5.00 | Block shear | [37] |
Fagus sylvatica L. (HW) | 710 | 6.10 | Block shear | [39] |
Radiata pine (SW) | 461 ± 39 | 4.54 | Push-out | This study |
481 ± 10 | 5.69 | Block shear | [16] | |
Pinus pinaster Ait. (SW) | 500 | 7.05 | Block shear | [40] |
Hem-fir (SW) | 633 | 3.89 | Block shear | [41] |
Larix kaempferi (SW) | 680 | 2.21 | Block shear | [42] |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Betti, M.; Brunetti, M.; Lauriola, M.P.; Nocetti, M.; Ravalli, F.; Pizzo, B. Comparison of newly proposed test methods to evaluate the bonding quality of Cross-Laminated Timber (CLT) panels by means of experimental data and finite element (FE) analysis. Constr. Build. Mater. 2016, 125, 952–963. [Google Scholar] [CrossRef]
- Fink, G.; Kohler, J.; Brandner, R. Application of European design principles to cross laminated timber. Eng. Struct. 2018, 171, 934–943. [Google Scholar] [CrossRef]
- Sikora, K.S.; McPolin, D.O.; Harte, A.M. Effects of the thickness of cross-laminated timber (CLT) panels made from Irish Sitka spruce on mechanical performance in bending and shear. Constr. Build. Mater. 2016, 116, 141–150. [Google Scholar] [CrossRef]
- Bendtsen, B.A. Rolling shear characteristics of nine structural softwoods. For. Prod. J. 1976, 26, 51–56. [Google Scholar]
- Zhou, Q.; Gong, M.; Chui, Y.H.; Mohammad, M. Measurement of rolling shear modulus and strength of cross laminated timber fabricated with black spruce. Constr. Build. Mater. 2014, 64, 379–386. [Google Scholar] [CrossRef]
- Zhou, Q. Development of Evaluation Methodology for Rolling Shear Properties in Cross-Laminated Timber (CLT); University of New Brunswick: Fredericton, NB, Canada, 2013. [Google Scholar]
- He, M.; Sun, X.; Li, Z. Bending and compressive properties of cross-laminated timber (CLT) panels made from Canadian hemlock. Constr. Build. Mater. 2018, 185, 175–183. [Google Scholar] [CrossRef]
- Ukyo, S.; Shindo, K.; Miyatake, A. Evaluation of rolling shear modulus and strength of Japanese cedar cross-laminated timber (CLT) laminae. J. Wood Sci. 2019, 65, 31. [Google Scholar] [CrossRef]
- Li, X.; Ashraf, M.; Subhani, M.; Kremer, P.; Kafle, B.; Ghabraie, K. Experimental and numerical study on bending properties of heterogeneous lamella layups in cross laminated timber using Australian Radiata Pine. Constr. Build. Mater. 2020, 247, 118525. [Google Scholar] [CrossRef]
- Li, M. Evaluating rolling shear strength properties of cross-laminated timber by short-span bending tests and modified planar shear tests. J. Wood Sci. 2017, 63, 331–337. [Google Scholar] [CrossRef]
- Li, M.; Dong, W.; Lim, H. Influence of lamination aspect ratios and test methods on rolling shear strength evaluation of cross-laminated timber. J. Mater. Civ. Eng. 2019, 31, 04019310. [Google Scholar] [CrossRef]
- Legg, P.; Frakes, I.; Gavran, M. Australian Plantation Statistics and Log Availability Report 2021; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, Australia, 2021; p. 119.
- Downham, R.; Gavran, M. Australian Plantation Statistics 2017 Update; Australian Government Department of Agriculture and Water Resources: Canberra, Australia, 2017; p. 12.
- Musah, M.; Ma, Y.; Wang, X.; Ross, R.; Hosseinpourpia, R.; Jiang, X.; Xie, X. Face bonding strength of cross laminated northern hardwoods and softwoods lumber. Constr. Build. Mater. 2024, 421, 135405. [Google Scholar] [CrossRef]
- National Forest Inventory Steering Committee. Australia’s State of the Forests Report 2018; Australian Government Department of Agriculture and Water Resources: Canberra, Australia, 2019.
- Li, X.; Ashraf, M.; Kafle, B.; Subhani, M. Effect of Fibre Orientation on the Bond Properties of Softwood and Hardwood Interfaces. Buildings 2023, 13, 1011. [Google Scholar] [CrossRef]
- Hänsel, A.; Sandak, J.; Sandak, A.; Mai, J.; Niemz, P. Selected previous findings on the factors influencing the gluing quality of solid wood products in timber construction and possible developments: A review. Wood Mater. Sci. Eng. 2022, 17, 230–241. [Google Scholar] [CrossRef]
- Wiedenhoeft, A.C.; Miller, R.B. Structure and function of wood. In Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2005; pp. 9–33. [Google Scholar]
- Leggate, W.; McGavin, R.L.; Outhwaite, A.; Gilbert, B.P.; Gunalan, S. Barriers to the Effective Adhesion of High-Density Hardwood Timbers for Glue-Laminated Beams in Australia. Forests 2022, 13, 1038. [Google Scholar] [CrossRef]
- Frihart, C.R.; Hunt, C.G. Wood Handbook, Chapter 10: Adhesives with Wood Materials-Bond Formation and Performance; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010.
- Ross, R.J. Wood Handbook: Wood as an Engineering Material; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2021.
- EN 16351:2021; Timber Structures—Cross Laminated Timber—Requirements. European Committee for Standardization (CEN): Washington, DC, USA, 2021.
- American Wood Council. NDS, National Design Specification for Wood Construction; American Wood Council: Leesburg, VA, USA, 2018. [Google Scholar]
- Karacabeyli, E.; Gagnon, S. Canadian CLT Handbook 2019 Edition; Special Publication, SP-532E; FPInnovations: Pointe-Claire, QC, Canada, 2019. [Google Scholar]
- IARC. Formaldehyde, 2-Butoxyethanol and 1-Tert-Butoxypropan-2-ol. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2006; Volume 88, p. 1.
- Clerc, G.; Lehmann, M.; Gabriel, J.; Salzgeber, D.; Pichelin, F.; Strahm, T.; Niemz, P. Improvement of ash (Fraxinus excelsior L.) bonding quality with one-component polyurethane adhesive and hydrophilic primer for load-bearing application. Int. J. Adhes. Adhes. 2018, 85, 303–307. [Google Scholar] [CrossRef]
- López-Suevos, F.; Richter, K. Hydroxymethylated resorcinol (HMR) and novolak-based HMR (n-HMR) primers to enhance bond durability of Eucalyptus globulus glulams. J. Adhes. Sci. Technol. 2009, 23, 1925–1937. [Google Scholar] [CrossRef]
- Luedtke, J.; Amen, C.; van Ofen, A.; Lehringer, C. 1C-PUR-bonded hardwoods for engineered wood products: Influence of selected processing parameters. Eur. J. Wood Wood Prod. 2015, 73, 167–178. [Google Scholar] [CrossRef]
- Kläusler, O.; Hass, P.; Amen, C.; Schlegel, S.; Niemz, P. Improvement of tensile shear strength and wood failure percentage of 1C PUR bonded wooden joints at wet stage by means of DMF priming. Eur. J. Wood Wood Prod. 2014, 72, 343–354. [Google Scholar] [CrossRef]
- Amen-Chen, C.; Gabriel, J. Wet adhesion durability improvement of polyurethane wood adhesives with primer. Eur. J. Wood Wood Prod. 2015, 73, 697–700. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Wei, Y.; Wang, B.J.; Jin, H. Bending and shear performance of cross-laminated timber and glued-laminated timber beams: A comparative investigation. J. Build. Eng. 2022, 45, 103477. [Google Scholar] [CrossRef]
- Yusoh, A.S.; Tahir, P.M.; Uyup, M.K.A.; Lee, S.H.; Husain, H.; Khaidzir, M.O. Effect of wood species, clamping pressure and glue spread rate on the bonding properties of cross-laminated timber (CLT) manufactured from tropical hardwoods. Constr. Build. Mater. 2021, 273, 121721. [Google Scholar] [CrossRef]
- Subhani, M.; Globa, A.; Al-Ameri, R.; Moloney, J. Effect of grain orientation on the CFRP-to-LVL bond. Compos. Part B Eng. 2017, 129, 187–197. [Google Scholar] [CrossRef]
- de Sousa Goveia, T.; da Silva, S.N.; Silva Neto, A. Investigation of the synergistic effect of materials and geometry on stress distribution in brittle adhesive joints submitted to lap-shear test. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 273. [Google Scholar] [CrossRef]
- Appavuravther, E.; Vandoren, B.; Henriques, J. Push-out tests on adhesively bonded perfobond shear connectors for timber-concrete composite beams. J. Build. Eng. 2022, 57, 104833. [Google Scholar] [CrossRef]
- AS/NZS 4364:2010; Timber—Bond Performance of Structural Adhesives. Standards Australia: Sydney, Australia, 2010.
- Yusof, N.M.; Tahir, P.M.; Roseley, A.S.M.; Lee, S.H.; Halip, J.A.; James, R.M.S.; Ashaari, Z. Bond integrity of cross laminated timber from Acacia mangium wood as affected by adhesive types, pressing pressures and loading direction. Int. J. Adhes. Adhes. 2019, 94, 24–28. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, H.; Liao, Y.; Hu, C. Effects of surface treatment and adhesives on bond performance and mechanical properties of cross-laminated timber (CLT) made from small diameter Eucalyptus timber. Constr. Build. Mater. 2018, 161, 9–15. [Google Scholar] [CrossRef]
- Brunetti, M.; Nocetti, M.; Pizzo, B.; Negro, F.; Aminti, G.; Burato, P.; Cremonini, C.; Zanuttini, R. Comparison of different bonding parameters in the production of beech and combined beech-spruce CLT by standard and optimized tests methods. Constr. Build. Mater. 2020, 265, 120168. [Google Scholar] [CrossRef]
- Santos, P.; Correia, J.R.; Godinho, L.; Dias, A. Bonding quality assessment of cross-layered Maritime pine elements glued with one-component polyurethane adhesive. Constr. Build. Mater. 2019, 211, 571–582. [Google Scholar] [CrossRef]
- Wang, J.B.; Wei, P.; Gao, Z.; Dai, C. The evaluation of panel bond quality and durability of hem-fir cross-laminated timber (CLT). Eur. J. Wood Wood Prod. 2018, 76, 833–841. [Google Scholar] [CrossRef]
- Li, M.; Zhang, S.; Gong, Y.; Tian, Z.; Ren, H. Gluing techniques on bond performance and mechanical properties of cross-laminated timber (CLT) made from Larix kaempferi. Polymers 2021, 13, 733. [Google Scholar] [CrossRef]
Sample Designation | Combination/Variable | No. of Sample | |
---|---|---|---|
Middle Block | Side Blocks | ||
SW-HW_PAL-PAL (No Primer) | Radiata pine, parallel grain, no primer | Shining gum, parallel grain, no primer | 10 |
SW-HW_PAL-PAL (Primer) | Radiata pine, parallel grain, no primer | Shining gum, parallel grain, with primer | 10 |
SW-HW_PAL-PER (No Primer) | Radiata pine, parallel grain, no primer | Shining gum, perpendicular grain, no primer | 10 |
SW-HW_PAL-PER (Primer) | Radiata pine, parallel grain, no primer | Shining gum, perpendicular grain, with primer | 10 |
HW-HW_PAL-PAL (No Primer) | Shining gum, parallel grain, no primer | Shining gum, parallel grain, no primer | 10 |
HW-HW_PAL-PAL (Primer) | Shining gum, parallel grain, with primer | Shining gum, parallel grain, with primer | 10 |
HW-HW_PAL-PER (No Primer) | Shining gum, parallel grain, no primer | Shining gum, perpendicular grain, no primer | 10 |
HW-HW_PAL-PER (Primer) | Shining gum, parallel grain, with primer | Shining gum, perpendicular grain, with primer | 10 |
SW-SW_PAL-PAL | Radiata pine, parallel grain, no primer | Radiata pine, parallel grain, no primer | 10 |
SW-SW_PAL-PER | Radiata pine, parallel grain, no primer | Radiata pine, perpendicular grain, no primer | 10 |
Failure Mode | Schematic/Photo |
---|---|
Failure mode F1: Adhesive (delamination) failure | |
Failure mode F2: Substrate (wood failure) | |
Failure mode F3: Buckling of the perpendicular block | |
Failure mode F4: Cohesive failure | |
Failure mode M: Mixed mode (combination of two) |
Combination | F1 | F2 | F3 | F4 | M |
---|---|---|---|---|---|
HW-HW_PAL-PAL (NP) #10 | - | 4 | - | - | 6 |
HW-HW_PAL-PAL (P) #10 | - | 9 | - | - | 1 |
HW-HW_PAL-PER (NP) #10 | - | 5 | - | - | 5 |
HW-HW_PAL-PER (P) #10 | - | 9 | - | - | 1 |
SW-HW_PAL-PAL (NP) #10 | 4 | 6 | - | - | - |
SW-HW_PAL-PAL (P) #10 | - | 9 | - | - | 1 |
SW-HW_PAL-PER (NP) #10 | 8 | 2 | - | - | - |
SW-HW_PAL-PER (P) #10 | 3 | 7 | - | - | - |
SW-SW_PAL-PAL #10 | - | 8 | - | - | 2 |
SW-SW_PAL-PER #10 | - | 3 | 4 | - | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subhani, M.; Lui, H.Y. Effect of Primer and Fibre Orientation on Softwood–Hardwood Bonding. J. Compos. Sci. 2024, 8, 192. https://doi.org/10.3390/jcs8060192
Subhani M, Lui HY. Effect of Primer and Fibre Orientation on Softwood–Hardwood Bonding. Journal of Composites Science. 2024; 8(6):192. https://doi.org/10.3390/jcs8060192
Chicago/Turabian StyleSubhani, Mahbube, and Ho Yin Lui. 2024. "Effect of Primer and Fibre Orientation on Softwood–Hardwood Bonding" Journal of Composites Science 8, no. 6: 192. https://doi.org/10.3390/jcs8060192
APA StyleSubhani, M., & Lui, H. Y. (2024). Effect of Primer and Fibre Orientation on Softwood–Hardwood Bonding. Journal of Composites Science, 8(6), 192. https://doi.org/10.3390/jcs8060192