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Abstract: Renewable dielectric materials have attracted the attention of industries and stakeholders,
but such materials possess limited properties. This research focused on studying polylactic acid
(PLA)/cellulose acetate (CA) blends produced by 3D printing to facilitate their integration into the
electrical insulation field. The dielectric findings showed that a blend containing 40% of CA by weight
had a dielectric constant of 2.9 and an electrical conductivity of 1.26 × 10−11 S·cm−1 at 100 Hz and
20 ◦C while exhibiting better mechanical rigidity in the rubbery state than neat PLA. In addition, it
was possible to increase the electrical insulating effect by reducing the infill ratio at the cost of reduced
mechanical properties. The differential scanning calorimetry, broadband dielectric spectroscopy, and
dynamic mechanical analysis results showed that the PLA plasticizer reduced the energy required
for PLA relaxations. These preliminary results demonstrated the benefits of using a combination of
PLA, CA, and 3D printing for electrical insulation applications.

Keywords: biobased materials; 3D printing; dielectric properties; thermomechanical analysis

1. Introduction

Dielectric materials are increasingly needed and produced for electronic applications in
an increasingly connected world. The global electronic materials market has been estimated
at USD 65.7 billion in 2022, with a 6% increase over the next 5 years [1]. This fast-paced
production also raises issues such as the end of life of such materials. According to Ankit
et al., 54 million tons of electronic waste have been produced in 2019, with a forecasted
production of 75 million tons by 2030 [2]. Current e-waste management solutions are still
inadequate, mainly based on landfill and incineration processes, with the associated pollu-
tion problems. Biobased materials would be highly desirable to mitigate such problems.
These materials are more environmentally friendly than their synthetic counterparts in their
manufacture, renewability, and biodegradability properties. According to the European
Bioplastics association, 87 thousand tons of biobased materials were used in 2023 by the
electronics industry, with an exponential increase predicted [3].

Two of the most well-known biobased polymers are polylactic acid and cellulose
acetate. Nakatsuka produced plasticized PLA-coated electrical cables [4]. The plasticized
PLA showed an electrical conductivity of 10−12 S·cm−1, and the cable presented a dielectric
strength (EBR) of around 45 kV with good flexural properties while also showing insufficient
plasticizer stability over time. By controlling the alignment of electrospun cellulose acetate
(CA) fibers, Meng et al. controlled the CA/aluminum bimetal deformation [5]. These
devices were used as actuators in a non-contact sensor for detecting the moisture content
of a human hand, without showing any degradation in the electrical resistance of the
aluminum part. This showed high potential in wearable health monitors and advanced
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non-contact human–machine interactions. However, despite properties that make them
attractive for use in electrical insulation applications as previously shown, these polymers
face problems that limit their large-scale use, such as the drastic drop in the mechanical
properties of PLA at temperatures above 60 ◦C [4], and the polar nature of CA [5]. One
approach to mitigate such problems involves the use of polymer blending. In recent
research, Coltelli et al. found that PLA/plasticized CA blends with a high PLA content gave
heterogeneous blends with a pronounced tendency to form a fibrous-like morphology [6].
In addition, previous research carried out on PLA/plasticized CA showed that there was
an interaction between the carbonyl groups of PLA and the hydroxyl groups of CA, greatly
increasing the complex viscosity of the blends. In view of the applications of such blends in
the dielectric field, Henning et al. proposed a PLA/CA blend filled with zinc pyrophosphate
(ZnPP) as a biobased alternative to conventional printed circuit board (PCB) [7]. PLA/CA
and PLA/CA blended with a ZnPP weight content (WZnPP) of 5% presented comparable
dielectric properties to FR4 and FR2 glass/epoxy laminates, except for a significative lower
dielectric constant and higher surface resistivity. They have been successfully used for PCB
demonstrators, but issues remain unsolved, such as a warping effect during the soldering
of components on its surface.

Three-dimensional printing is a promising technology in this sector as it allows ex-
tremely rapid and economical prototyping compared with conventional processes such as
injection molding. The application of 3D printing for PLA/CA blends has been briefly stud-
ied for dielectric applications. Previously published results have demonstrated that such
blends exhibited the results of dielectric and mechanical properties ranging between PLA
and CA, offering design flexibility depending on the desired properties [4]. Furthermore,
the 3D printing process can be used to directly tailor dielectric and mechanical properties by
tuning the infill ratio [8]. Even if PLA/CA is a promising biobased polymeric for electronic
applications, its application with the fused filament fabrication (FFF) technology is still
largely undeveloped, and there is a lack of knowledge for electrical insulation applications.
Their dielectric and thermomechanical performances should be optimized. To promote the
use of biobased materials, this study proposes investigating the use of PLA/plasticized CA
blends by 3D printing for electrical insulation applications to understand the advantages of
such materials and their noted limitations.

2. Materials and Methods
2.1. Raw Materials

PLA-20003D (PLA) and ACI-002 plasticized cellulose acetate (CA) were supplied by
respectively Natureplast (Caen, France) and EURL BBFil (Heiligenberg-Vallée, France). The
possessed PLA presented a D-lactic acid content of 4.5%. The MFI given by suppliers for
PLA and CA were, respectively, 6 g·10 min−1 (2.16 kg and 210 ◦C) and 15–30 g·10 min−1

(2.16 kg and 190 ◦C). The supplier gave the weight content of plasticizer into CA (Wplasticizer)
at 29%.

2.2. Experimental Procedures

All materials were oven-dried for at least 4 h at 60 ◦C for all the processing steps
to avoid internal moisture. A first extrusion processing was performed with a SCAMEX
25-20D (SCAMEX, Isques, France). A total of 5 conditions were produced, ranging from
neat PLA to a PLA/CA blend containing 40% of CA by weight (named CA-40) and detailed
in Table 1. A screw speed of 30 rpm and an extrusion profile temperature of 160-170-180 ◦C
were used according to the preliminary tests.

The 3D filaments were produced with a 3DEVO filament maker (3DEVO, Utrecht,
NLD) at the ITHEMM laboratory (Charleville-Mézières, France), with a screw speed of
5 rpm and an extrusion profile of 170-180-180-170 ◦C. The filament diameter was fixed at
2.85 mm as a compromise between diameter stability and filament quality. The 1.75 mm
filaments manufactured were unsuitable for ensuring good printing quality.
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Table 1. Produced conditions PLA/CA blends (WPLA correspond to PLA content by weight and
WCA correspond to CA content by weight).

PLA CA-10 CA-20 CA-30 CA-40

WPLA (%) 100 90 80 70 60
WCA (%) 0 10 20 30 40

The fused filament fabrication (FFF) was performed with a SIGMAX R19 3D printing
device (BCN3D, Gavà, SPA). The parameters used were resumed in Table 2, and the
produced samples were presented in Figure 1. Printing problems have been noted when
the filaments were not stored in desiccators, so during the entire printing stage, the filaments
were stored in desiccators. All samples achieved good quality without warping or cracking.
A glue stick had to be applied to the glass bed to increase adhesion only for CA-30 and
CA-40 conditions. Before their characterization, all samples were stored in a desiccator
for 3 h.

Table 2. Three-dimensional parameters conditions.

Nozzle temperature 215 ◦C
Nozzle size 0.8 mm
Printing speed 30 mm·s−1

Sample thickness 2 and 4 mm
Layer thickness 0.2 mm
Infill pattern (BDS) Concentric
Infill pattern (DMA) ±45
Bed temperature 60 ◦C
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2.3. Characterization Methods

All the figures presented below were produced using the Python 3.10.11 programming
language and the Pandas’ module to read the dataset and Matplotlib to produce the
different graphs.

2.3.1. Differential Scanning Calorimetry (DSC) Analysis

Differential scanning calorimeter (DSC) analyses were proposed to observe the thermal
properties and the crystallinity of the materials. The measurements were performed on a
DSC 214 Polyma (Netzsch, Selb, Germany) with 15 mg of material, inserted in Al pans. The
used protocol consisted of one heating and one cooling ramp between 20 and 180 ◦C with a
heating rate of 10 K·min−1 and an argon flow of 20 mL·min−1. The crystallinity content
(Xcr) were determined according to Equation (1) developed for PLA/CA blends [9]:
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Xcr =
dH

dH0 ∗ (Wcr)
∗ 100 (1)

where dH is the measured crystallization enthalpy, dH0 is the melting enthalpy of the
theoretical 100% crystalline polymer 100%, both expressed in J·g−1. WPLA is the weight
percentage of PLA.

2.3.2. Dynamic Mechanical Analysis (DMA)

DMA was carried out on 60 × 10 × 2 mm and 60 × 10 × 4 mm samples with an
Artemis DMA 242 E (Netschz, Selb, Germany). The double cantilever method was chosen
over the 3-point bending method due to the very low stiffness of PLA once its glass
transition temperature is reached (T > 60 ◦C). The protocol consisted of a ramp between 30
and 140 ◦C at 5 ◦C·min−1. The controlled force has been set at 1 Hz, which is the frequency
usually used in the literature.

2.3.3. Broadband Dielectric Spectroscopy (BDS) Analysis

BDS tests were carried out using a Keysight E4980A Precision LCR Meter (Agilent
Technologies, Santa Rosa, CA, USA) on 25 mm disk samples. The heating program consisted
of an isothermal rise between 0 and 160 ◦C with 4 ◦C per step and measured at 100 Hz. The
dielectric constant ε′ is expressed according to Equation (2) [10]:

ε′ =
Cp ∗ ep
ε0 ∗ S

(2)

where Cp is the electrical capacitance given in Farad, S is the cross-sectional area of the sam-
ple (in m2), ep is the distance between electrodes (in m), and ε0 is the vacuum permittivity
(given as 8.541878 × 10−12 F·m−1). The electrical conductivity σAC can be determined with
Equation (3) [10]:

σac = ω ∗ ε′′ ∗ ε0 = 2πf ∗ ε′′ ∗ ε0 (3)

where σAC is expressed in S·m−1, ω is the angular frequency, and f is the applied electrical
frequency (in Hz).

3. Results

Figure 2 presents the thermal properties of neat PLA and PLA/CA blends. Neat
PLA exhibited all the expected relaxations for a PLA: a glass temperature (Tg) of 61.6 ◦C,
a cold crystallization temperature (Tcc) of 126.8 ◦C, and a melting temperature (Tm) of
156.3 ◦C [11]. Adding CA decreased all the observed relaxations. At WCA = 40%, the Tg,
Tcc, and Tm of PLA decreased by 21.3, 23.9, and 8.5 ◦C, respectively. Kang et al. have also
observed a decrease in Tg by adding plasticizers into PLA [11]. According to the latter,
adding plasticizers, generally small molecules, increased the free volume of macromolecular
chains, thereby improving the polymer’s mobility. It is also worth noting that the supplied
PLA was amorphous, with a measured Xcr below 1%. Furthermore, while adding the
plasticizer improved the mobility of the macromolecular chains, it did not significantly
change the crystallinity of the blends, with Xcr still below 1%. The only visible change is
the presence of a second slight melting peak at around 142 ◦C, proof that a second crystal
lattice appeared.

As the DSC findings demonstrated, the addition of CA altered the thermal properties
of PLA by lowering the relaxation energies. Dielectric materials were subjected to var-
ious temperature fluctuations due to electric current, which could affect their dielectric
properties. An understanding of the thermal dielectric stability would be important to
qualify the presented materials. Figure 3 presents the dielectric constant (ε′) and electrical
conductivity (σAC) of the 3D-printed neat PLA and CA-40 with an infill ratio of 100% versus
temperature. At 20 ◦C, PLA and CA-40 presented a ε′ of 2.53 and 2.81, respectively, and a
σAC of 4.8 × 10−13 and 1.4 × 10−12 S·cm−1, respectively. We thought that the increase in
dielectric properties was attributed to the polar nature of CA, which could contain more
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hydroxyl functions than PLA [5]. Although the addition of CA increased the electrical con-
ductivity of the blends, the measured properties at 100 Hz for all materials were still in the
electrically insulating range [12], validating their use for dielectric applications. However,
the produced materials showed notable temperature sensitivity. At 160 ◦C, PLA exhibited
a ε′ and σAC of 1.92 and 503 times greater, respectively, and CA-40 exhibited a ε′ and σAC
of 1.85 and 145 times greater, respectively, than measured at 20 ◦C. The observations for
neat PLA are in perfect agreement with the literature [5,13]. Badia et al. have also noticed
that measured at 100 Hz, the dielectric constant of neat PLA increased from 3.05 to 3.95
when the temperature shifted from 20 to 130 ◦C [13]. The temperature-dependent behavior
observed in both electrical conductivity and dielectric constant can be associated with the
increased ionic mobility of macromolecular chains, as mentioned in the literature [5]. As
the melting temperature approached, the σAC increased faster for CA-40 than neat PLA.
This could also be due to the increased free volume, greatly improving the mobility of the
carrier charges [14]. CA reduced the energy required for α-relaxation measured by BDS, as
observed in the literature when a plasticizer is added to a plastic matrix. CA-40 showed an
α-relaxation shift of −20 ◦C. While ε′ and σAC were slightly higher for CA-40 than for PLA
in the measurement range tested, these results remained comparable and low enough to be
suitable for electrical insulation applications.
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As the field of dielectric materials covers applications requiring high flexibility or
high rigidity, it is also important to know the thermomechanical behavior of the proposed
materials. PLA suffers from an important loss of mechanical properties beyond its Tg
due to its rubbery state. As the incorporation of plasticized CA into PLA will result in
a complex behavior, it is important to understand its behavior [5]. Figure 4 presents the
storage modulus (E′) and loss factor (tan δ) of the 3D-printed neat PLA and CA-40 with an
infill ratio of 100% versus temperature. PLA also presented a typical amorphous behavior.
A rigid glassy behavior is noted at T < 60 ◦C, with an E′ value of 1.81 GPa at 30 ◦C. Once
reaching the Tg, the storage modulus sharply decreased, reaching its lowest value at around
96 ◦C. At this temperature, the E′ reached 4.0 MPa, i.e., a reduction of 450 times in stiffness
between 30 and 96 ◦C. Once the minimum has been reached, the mechanical rigidity
increased due to the formation of the crystal lattice resulting from the cold crystallization of
PLA. The addition of CA slightly reduced the E′ of PLA, with an E′ of 1.69 GPa obtained for
CA-40, i.e., a mechanical rigidity reduction of 7%. At 30 ◦C, PLA and CA-40 showed an E′

of 1.81 and 1.69 GPa, respectively. Although the addition of CA in the glassy state decreased
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the E′ and increased the tan δ, the CA addition appeared attractive from a mechanical point
of view, as it seems to greatly limit the loss of mechanical properties when PLA reached
the rubbery state. This improvement effect can be directly linked to the CA and not to an
improvement in the blend’s crystallinity, as demonstrated by DSC. Moreover, the tan δ

was much lower in the rubbery state, so less electromagnetic energy was converted into
heat. It is also worth noting that for both DMA and BDS measurements, the addition of CA
decreased the α-relaxation and cold crystallization temperature of PLA, in agreement with
DSC analysis.

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 6 of 10 
 

 

 
Figure 3. Dielectric constant ε′ and electrical conductivity σAC of PLA and CA-40 versus tempera-
ture, measured at 100 Hz. The main arrows indicate the axes of the corresponding curves. 

As the field of dielectric materials covers applications requiring high flexibility or 
high rigidity, it is also important to know the thermomechanical behavior of the proposed 
materials. PLA suffers from an important loss of mechanical properties beyond its Tg due 
to its rubbery state. As the incorporation of plasticized CA into PLA will result in a com-
plex behavior, it is important to understand its behavior [5]. Figure 4 presents the storage 
modulus (E′) and loss factor (tan δ) of the 3D-printed neat PLA and CA-40 with an infill 
ratio of 100% versus temperature. PLA also presented a typical amorphous behavior. A 
rigid glassy behavior is noted at T < 60 °C, with an E′ value of 1.81 GPa at 30 °C. Once 
reaching the Tg, the storage modulus sharply decreased, reaching its lowest value at 
around 96 °C. At this temperature, the E′ reached 4.0 MPa, i.e., a reduction of 450 times in 
stiffness between 30 and 96 °C. Once the minimum has been reached, the mechanical ri-
gidity increased due to the formation of the crystal lattice resulting from the cold crystal-
lization of PLA. The addition of CA slightly reduced the E′ of PLA, with an E′ of 1.69 GPa 
obtained for CA-40, i.e., a mechanical rigidity reduction of 7%. At 30 °C, PLA and CA-40 
showed an E′ of 1.81 and 1.69 GPa, respectively. Although the addition of CA in the glassy 
state decreased the E′ and increased the tan δ, the CA addition appeared attractive from a 
mechanical point of view, as it seems to greatly limit the loss of mechanical properties 
when PLA reached the rubbery state. This improvement effect can be directly linked to 
the CA and not to an improvement in the blend’s crystallinity, as demonstrated by DSC. 
Moreover, the tan δ was much lower in the rubbery state, so less electromagnetic energy 
was converted into heat. It is also worth noting that for both DMA and BDS measure-
ments, the addition of CA decreased the α-relaxation and cold crystallization temperature 
of PLA, in agreement with DSC analysis. 

Figure 3. Dielectric constant ε′ and electrical conductivity σAC of PLA and CA-40 versus temperature,
measured at 100 Hz. The main arrows indicate the axes of the corresponding curves.

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 7 of 10 
 

 

 
Figure 4. Log (storage modulus E′) and loss tangent tan δ of PLA and CA-40 specimens versus tem-
perature. The main arrows indicate the axes of the corresponding curves. 

One of the main benefits of 3D printing is the ability to control the infill ratio of 3D 
specimens. Zhang et al. demonstrated that the dielectric constant was proportionally re-
lated to the infill ratio, which can be valuable for producing materials with controlled di-
electric properties [15]. To investigate this effect on the mechanical and dielectric proper-
ties of PLA/CA blends, Figure 5 shows the ε′, σAC, and E′ of CA-20, CA-30, and CA-40 
blends. The ε′ and E′ decreased with a decreasing infill ratio, while the σAC increased with 
decreasing infill ratio. In the case of CA-40, shifting from 100% to 40%, the infill ratio de-
creased the dielectric constant and storage modulus by 29% and 61%, respectively. The 
σAC was, however, increased by 216%. The decrease in ε′ and E′ with a decreasing infill 
ratio can be directly related to the porosity rate of the samples [15–17]. Regarding the var-
iation in the dielectric constant with the infill ratio, two studies in the literature can pro-
vide information on the involved mechanism. Figure 6 shows the ε′ versus infill ratio of 
the work by Zhang et al. and Colella et al., using 3D-printed PLA [15,18]. It can be noted 
that the theoretical model was linear for both studies. Lowering the infill ratio logically 
produced less dense samples that were, therefore, less likely to be polarized, as the dielec-
tric constant of air approaches 1 [8]. It is worth noting that linear regression applied to 
literature data gives a value very close to 1, validating this statement. The increase in the 
electrical insulating properties associated with the reduction in the infill ratio can be 
linked to more conductive paths, enabling the electrical current to bypass areas of high 
local resistance due to greater local heterogeneity. These results demonstrate that improv-
ing the insulating properties of PLA/CA blends would be possible by reducing the infill 
ratio at the cost of lower mechanical stiffness. 

Figure 4. Log (storage modulus E′) and loss tangent tan δ of PLA and CA-40 specimens versus
temperature. The main arrows indicate the axes of the corresponding curves.



J. Compos. Sci. 2024, 8, 197 7 of 9

One of the main benefits of 3D printing is the ability to control the infill ratio of 3D
specimens. Zhang et al. demonstrated that the dielectric constant was proportionally
related to the infill ratio, which can be valuable for producing materials with controlled
dielectric properties [15]. To investigate this effect on the mechanical and dielectric proper-
ties of PLA/CA blends, Figure 5 shows the ε′, σAC, and E′ of CA-20, CA-30, and CA-40
blends. The ε′ and E′ decreased with a decreasing infill ratio, while the σAC increased
with decreasing infill ratio. In the case of CA-40, shifting from 100% to 40%, the infill
ratio decreased the dielectric constant and storage modulus by 29% and 61%, respectively.
The σAC was, however, increased by 216%. The decrease in ε′ and E′ with a decreasing
infill ratio can be directly related to the porosity rate of the samples [15–17]. Regarding
the variation in the dielectric constant with the infill ratio, two studies in the literature
can provide information on the involved mechanism. Figure 6 shows the ε′ versus infill
ratio of the work by Zhang et al. and Colella et al., using 3D-printed PLA [15,18]. It can
be noted that the theoretical model was linear for both studies. Lowering the infill ratio
logically produced less dense samples that were, therefore, less likely to be polarized, as the
dielectric constant of air approaches 1 [8]. It is worth noting that linear regression applied
to literature data gives a value very close to 1, validating this statement. The increase in
the electrical insulating properties associated with the reduction in the infill ratio can be
linked to more conductive paths, enabling the electrical current to bypass areas of high local
resistance due to greater local heterogeneity. These results demonstrate that improving the
insulating properties of PLA/CA blends would be possible by reducing the infill ratio at
the cost of lower mechanical stiffness.
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To compare these new materials with their synthetic counterparts, Table 3 presents
a comparative analysis of the tested properties of CA-40 and LDPE as reported in the
literature. These results show that CA-40 with 40% infill had a storage modulus and
electrical conductivity equivalent to LDPE, with a lower dielectric constant than LDPE.
This would prove that the 3D printing of PLA/CA blends is relevant to replace dielectric
applications usually dominated by LDPE, such as electrical insulation, cable insulation,
and antistatic and electromagnetic shielding.

Table 3. Comparative analysis of the tested properties of CA-40 and LDPE as reported in the literature.

Dielectric Constant ε′ Electrical Conductivity
σAC (S·cm−1) Storage Modulus E′ (MPa)

Material T (◦C) Value Ref T (◦C) Value Ref T (◦C) Value Ref

CA-40 20 2.11 Our study 20 4 × 10−12 Our study 30 656 Our study
LDPE Room T 2.43 [19] 20 3 × 10−13 [20] 30 380 [21]
LDPE Room T 2.21 [22] 27 3 × 10−12 [23] 30 230 [24]
LDPE Room T 2.46 [25] 30 1 × 10−12 [26] 30 205 [24]

4. Conclusions

In this study, we investigated the dielectric and thermomechanical properties of 3D-
printed PLA/CA blends to determine the benefits and limitations of such materials for
electrical insulation applications. The CA content and infill ratio were the main criteria in
the dielectric and mechanical response of PLA/CA blends. We highlighted that adding CA
improved the thermomechanical stability of PLA in the rubbery state. Moreover, electric
insulation performances were improved by reducing the infill ratio of the 3D-printed sam-
ples. Under the chosen conditions, the infill ratio had a greater effect on the mechanical and
dielectric properties than the effect of CA, showing that adjusting the dielectric properties
of PLA/CA blends by adjusting these crucial parameters is possible. Our results show that
these PLA/CA blends are promising for insulation electrical applications, at the cost of
a decrease in mechanical properties in the glassy state and a slight decrease in electrical
insulating properties. To go further, it would be possible to analyze in depth the influence of
post-crystallization on the mechanical stability. Furthermore, to limit the plasticizing effect
of CA, we can reduce the plasticizer content to fully benefit from the insulating effect of PLA
and the improved mechanical stability at high temperatures provided by CA. This research
also opens the way to numerous research opportunities. Investigations could be pursued
by introducing micro or nanosized biobased fillers to increase thermomechanical stability
at high temperature. In addition, 3D printing can be exploited for the creation of functional
gradient structures, as well as customized design for specific dielectric applications, such
as high-voltage insulation and antistatic and electromagnetic shielding.
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8. El Assimi, T.; Blažic, R.; Vidović, E.; Raihane, M.; El Meziane, A.; Baouab, M.H.V.; Khouloud, M.; Beniazza, R.; Kricheldorf, H.;
Lahcini, M. Polylactide/Cellulose Acetate Biocomposites as Potential Coating Membranes for Controlled and Slow Nutrients
Release from Water-Soluble Fertilizers. Prog. Org. Coat. 2021, 156, 106255. [CrossRef]

9. Benabed, F.; Seghier, T. Dielectric Properties and Relaxation Behavior of High Density Polyethylene (HDPE). Appl. Mech. Mater.
2015, 799–800, 1319–1324. [CrossRef]

10. Jacob, M.; Varughese, K.T.; Thomas, S. Dielectric Characteristics of Sisal–Oil Palm Hybrid Biofibre Reinforced Natural Rubber
Biocomposites. J. Mater. Sci. 2006, 41, 5538–5547. [CrossRef]

11. Chaochanchaikul, K.; Pongmuksuwan, P. Influence of Ozonized Soybean Oil as a Biobased Plasticizer on the Toughness of
Polylactic Acid. J. Polym. Environ. 2022, 30, 1095–1105. [CrossRef]

12. Solazzo, M.; O’Brien, F.J.; Nicolosi, V.; Monaghan, M.G. The Rationale and Emergence of Electroconductive Biomaterial Scaffolds
in Cardiac Tissue Engineering. APL Bioeng. 2019, 3, 041501. [CrossRef] [PubMed]

13. Badia, J.D.; Reig-Rodrigo, P.; Teruel-Juanes, R.; Kittikorn, T.; Strömberg, E.; Ek, M.; Karlsson, S.; Ribes-Greus, A. Effect of Sisal and
Hydrothermal Ageing on the Dielectric Behaviour of Polylactide/Sisal Biocomposites. Compos. Sci. Technol. 2017, 149, 1–10. [CrossRef]

14. Bandara, T.M.W.J.; Dissanayake, M.A.K.L.; Albinsson, I.; Mellander, B.-E. Mobile Charge Carrier Concentration and Mobility of a Polymer
Electrolyte Containing PEO and Pr4N+I− Using Electrical and Dielectric Measurements. Solid State Ion. 2011, 189, 63–68. [CrossRef]

15. Zhang, S.; Arya, R.K.; Pandey, S.; Vardaxoglou, Y.; Whittow, W.; Mittra, R. 3D-Printed Planar Graded Index Lenses. IET Microw.
Antennas Propag. 2016, 10, 1411–1419. [CrossRef]
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