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Abstract: The growing applicability of functionally graded materials is justified by their ability to
contribute to the development of advanced solutions characterized by the material customization,
through the selection of the best parameters that will confer the best mechanical behaviour for a given
structure under specific operating conditions. The present work aims to attain the optimal design
solutions for a set of illustrative 2D and 3D discrete structures built from functionally graded materials
using the Red Fox Optimization Algorithm, where the design variables are material parameters.
From the results achieved one concludes that the optimal selection and distribution of the different
materials’ mixture and the different exponents associated with the volume fraction law significantly
influence the optimal responses found. To note additionally the good performance of the coupling
between this optimization technique and the finite element method used for the linear static and free
vibration analyses.

Keywords: structural optimization; Red Fox algorithm; two- and three-dimensional discrete
structures; functionally graded materials; linear static analyses; free vibration analyses

1. Introduction

Functionally graded materials (FGMs) are usually particle composite materials, in
which their constituent material volume fractions vary continuously according to given
spatial coordinates [1,2]. This material concept emerged in Japan in 1984 for application as
a thermal barrier material, capable of withstanding high-temperature gradients [2–4]. In a
more general perspective, these composites’ properties and characteristics allow them to
be used with increasing frequency in the transportation industry, namely in aircraft and
spacecraft structures, as well as in the automotive and marine industries. Other applications
include electronic and medical pieces of equipment and in a quite transversal manner their
use as thermal coatings for engines and turbines, among others. FGM are in general made
from different constituent materials, namely ceramic and metallic material phases which
have shown to be appropriate to operate as a thermal barrier [5–7]. The composition of
these materials often varies from one surface rich in material A to another surface rich in
material B, with a certain distribution between the two surfaces, resulting in a continuous
variation in the material microstructure. This continuous variation allows the effective
properties of FGMs to have a gradual and smooth evolution, which makes it possible to
minimize undesirable situations that occur in fibre-reinforced laminated structures due
to their anisotropy, namely stress concentrations in the vicinity of material and geometric
discontinuities and residual stresses, which can lead to delamination, cracks in the matrix
and separation of adhesive bonds [8–12].

However, depending on the applications’ characteristics, other material mixtures have
been utilized as illustrated in the studies developed by [13–17], where mixtures of different
metallic, polymeric, and ceramic materials were used. The FGM concept extended to
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materials with specific biocompatible characterisics can also be found with an increasing
frequency, namely in [18–20], among others.

Considering the wide range of potentially variable parameters involved in a generic
structure design, obtaining better solutions according to certain objectives for a given
structure subjected to specific loads and boundary conditions may be a complex task.
The increasing complexity and non-linearity of real problems require the development
of efficient optimization methods with high accuracy and response speed combined with
low computational cost [21,22]. Metaheuristics are optimization techniques that are often
based on natural phenomena [22] and have shown to be adequate to address such complex
problems. They are generally based on rules translated from the observation of what
occurs in nature considering randomness, to mimic some of the characteristics of biological
behaviour, and natural or physical phenomena [23].

When one talks about FGM optimization [24], the parameters normally considered as
design variables characterize, on one hand, the evolution of the volume fractions of the
material (the power law exponent or other laws) and, on the other hand, the geometric
characteristics of the cross-section. The objective functions usually aim at maximizing or
minimizing mass, maximum stresses, resistance to fracture, behaviour in situations with
temperature gradients, and dynamic response in free and forced vibration, or buckling
loads [2,25]. To illustrate this, one can refer to the work conducted in [5] where a model
was developed for the longitudinal variation of the composition of a metal/ceramic FGM,
to optimize the heat flow through this material as a function of the material composition
profile. Another work carried out in [2], the influence of the dimension for which the
volume fraction is defined, in a thin cantilever beam with a hollow profile was studied,
being found that the maximization of the natural frequencies, was benefited by a material
mixture distribution in the longitudinal direction rather than considering it in the thickness
direction, which has been more commonly studied. A very recent work on topology
optimization of micro and macroscale topology optimization of FGM lattice structures
was presented by [26]. Other studies focusing on optimizing the mechanical behaviour of
composite structures have been studied by several researchers [27,28] considering a wide
variety of optimization techniques.

The optimization algorithm considered in the present work consists of a very recent
technique which has been used so far, mainly in the context of medical science applications,
for example for lung x-ray image segmentation [29], electroencephalogram signals classifi-
cation [30], in computer science for example, to optimize hyperparameters of deep-learning
models [31], and very scarcely in engineering for example for the optimization of phase
equilibrium and stability of chemical systems [32] or to estimate optimal model parameters
of solid oxide fuel cells [33].

However, no published work was found considering the use of this technique in the
optimization of the mechanical behaviour of structures in general, nor to optimize the inno-
vative height functionally graded structures considered in the present work, in particular.

This work is a natural sequence of the study conducted in [34], which studied the in-
fluence of the power law exponent and the effective properties estimation, on the static and
dynamic behaviour of two-dimensional planar structures in the free vibration regime. By
generalizing and combining the previously developed structural analysis application with
the present metaheuristic optimization technique, it becomes possible to optimizing the
desired structure behaviour without extensive parametric studies and with less probability
of achieving the effective best configuration.

The selection of the present optimization metaheuristic is mainly related to the con-
clusion drawn in [35] which stated that this technique shows better exploration and ex-
ploitation characteristics when compared with other techniques also analysed, namely the
Genetic Algorithm, the Particle Swarm Optimization, the Grey Wolf Optimization, the
Chimp Optimization Algorithm, the Butterfly Optimization Algorithm, the Whale Opti-
mization Algorithm, the Fitness Dependent Optimizer and the Dragonfly Optimization
Algorithm.
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Hence, with this work, one aims to obtain the best performance in terms of maxi-
mum linear static displacements and fundamental frequencies for a set of two and three-
dimensional structures in which the material gradient is a function of the vertical coordinate
of the structure. From the authors’ knowledge, no published work focused on optimizing
these types of FGM structures, or even on using the Red Fox algorithm for structural
optimization, was found.

The remainder part of this work is organized as follows: Section 2 describes the concept
of the FGMs that will be used in the present study, Section 3 presents the displacement
field, constitutive relations and equilibrium equations associated with the linear static and
free vibrations analyses to be developed for each individual considered in the context of
the populations-based optimization technique that will be presented in Section 4. The
methodology is presented in Sections 5 and 6 contains the case studies considered. Finally,
in Section 7 some conclusions are drawn based on the results achieved.

2. Functionally Graded Materials

This study considers the optimization of FGM structures in which the material gradient
is a function of the vertical coordinate of the structure (Y) [34]. The objective functions
considered are minimizing the linear static displacements of selected points within the
structures or maximizing their fundamental frequencies. Although it is possible to consider
other design variables, for example, those of a geometrical nature, this work is focused
on obtaining the material parameters’ configurations that will make it possible to achieve
better structural responses without changing the structure’s geometry.

Figure 1 illustrates a two-dimensional frame-type structure where the material gradi-
ent through the Y direction, associated with the structure height, is represented.
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Figure 1. Schematic Representation of a Structure Built in FGM with a Variation in Properties as a
Function of the Structure’s Height.

If Y0 is the ordinate of the lower end of the structure, H corresponds to the maximum
height of the structure, Y is the vertical coordinate that varies between 0 and H, and ey is
the exponent of the power law that adjusts how the property variation along the vertical
coordinate occur, the generic expression of the volume fraction can be written as:

Vf =

(
Y − Y0

H

)ey
(1)

When the operating conditions of a given structure are known, it is possible to combine
not only the most appropriate geometric characteristics, but also, as this work aims to
demonstrate, the best constituent materials from within a given set, and the best parameters
that control the distribution of the mixture of constituent materials mixture throughout the
structure, to optimizing specific structural requirements [8,9].
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The effective properties of FGMs are estimated according to the Voigt Rule of Mix-
tures [8], which makes it possible to determine the average value of a generic material
property PFGM as a weighted average of the corresponding constituent materials’ properties
(PA, PB), where the weights are their volume fractions, as in the expression [36]:

PFGM = PAVf + PB

(
1 − Vf

)
(2)

The sum of the volume fractions must be unitary in the case of dual-phase FGMs,
considering the assumption that the material has no porosities. The expression that de-
scribes a material volume fraction (Vf ) evolution will reflect how that material will be
distributed in a specific direction or multiple directions, which for the present work is given
by Equation (1).

3. Displacement Field, Constitutive Relations, and Equilibrium Equations

Considering the structures that will be studied, one has to consider the first-order
shear deformation to model their kinematical modelling [17–21]. The displacement field
corresponding to this theory can be written as follows:

u(x, y, z, t) = u0(x, y, t) + zθ0
y(x, y, t)− yθ0

z (x, y, t)

v(x, y, z, t) = v0(x, y, t)− zθ0
x(x, y, t)

w(x, y, z, t) = w0(x, y, t) + yθ0
x(x, y, t)

(3)

The terms, u0, v0 and w0 correspond, respectively, to the longitudinal (direction x) and
transverse (directions y and z) displacements of the beam’s centreline in the xz and xy
planes, θ0

x corresponds to the torsion angle, and θ0
y and θ0

z correspond to the rotation of the
beam’s centre plane in a direction perpendicular to the xz plane and xy planes, respectively.
Considering the Elasticity Theory for small deformations, the corresponding deformation
field is written as:

εxx = ∂u0

∂x + z
∂θ0

y
∂x − y ∂θ0

z
∂x

γxz =
∂w0

∂x + y ∂θ0
x

∂x + θ0
z

γxy = ∂v0

∂x − z ∂θ0
x

∂x − θ0
y

(4)

The remaining strains εyy, εzz and γyz are null, and the corresponding constitutive
relations for a generic FGM are described as [36,37]:

σxx
σxz
σxy

 =

Q11(x, y, z) 0 0
0 Q55(x, y, z)ks 0
0 0 Q66(x, y, z)ks


εxx
γxz
γxy

 (5)

where Q11 = EFGM, and Q55 = Q66 = EFGM
2(1+νFGM)

. EFGM represents the FGM Young’s
modulus and νFGM the FGM Poisson’s ratio. The shear correction factor is set to ks = 5/6.

Considering the aim of the present work, one has to use the principle of Hamilton to
derive the equilibrium equations, which can be written as:

δ
∫ t2

t1

[T − (Ω + U)]dt = 0 (6)
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with T standing for the kinetic energy, U for the elastic strain energy and Ω for the work
done by the forces applied to the system. These quantities can be written as:

T = 1
2

∫
V ρFGM

( .
u2

+
.
v2

+
.

w2
)

dV

U = 1
2

∫
V
(
σxxεxx + σxzγxz + σxyγxy

)
dV

Ω = −
N
∑

k=1
fkqk

(7)

where ρFGM represents the FGM density, fk stands for the punctual generalized forces
and qk the generalized degrees of freedom. From the minimization of the Lagrangean
functional, one achieves the equilibrium equations at the element level:

[Me]
{ ..

qe
}
+ [Ke]{qe} = {Fe} (8)

which, for linear static analysis or for free vibration analysis will be written as:

[Ke]{qe} = {Fe}(
[Ke]− ω2[Me]

)
{qe} = {0}

(9)

These equilibrium equations were implemented using quadratic beam elements with
six degrees of freedom per node—the axial (uk) and the transverse (vk, wk) displacements
and the rotations (θx, θy, θz), all to the midplane surface of the beam element. Figure 2
schematically shows the beam element in the three-dimensional space and the degrees of
freedom associated with each node [38–42].
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Further details on the implementation of the beam-bar element used to model these
structures can be found in [34].

4. Structural Optimization

A generic optimization problem can be stated as:

min f (x̂)
subject to

gi(x̂) ≤ 0, i = 1, . . . , N
hj(x̂) = 0, j = 1, . . . , M

(10)

where f (x̂) is the objective function and x̂ is the vector of the design variables. Besides the
side constraints associated with the design variables, the inequality and equality behavioral
constraints are, respectively, designated as gi(x̂) and hj(x̂).

In the present paper, the optimizations that are intended to be carried out are related
to the minimization of the static displacements of specific points for a set of structures
or the maximization of their fundamental frequencies. To this purpose one considers a
metaheuristic optimization technique, the red fox optimization (RFO) algorithm.
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Red Fox Metaheuristic Algorithm

The red fox is a predator that hunts not only wild animals, but also farm animals, and
in turn can be hunted by humans who intercept them in these attacks. The relationships
between prey and predators and even between individuals in the same pack can be mim-
icked mathematically with a view to optimization, since only the fittest individuals survive
to hunt in the different territories and to form a new pack elsewhere. The proposed model
by [22] assumes that the optimization domain is comparable to hunting regions. Foxes
have a hunting mechanism that can be considered in a first global search and then a local
search. In addition to these two phases, a population control model has also been proposed,
simulating the group leaving for another location or being killed by hunters. For this, the
two best individuals are selected to reproduce and replace the weakest elements in each
iteration. This mechanism allows the model to cover the entire domain to reach the global
extreme, thus minimizing the risk of being confined to local extremes [22]. The algorithm is
structured in a logical set of five steps as follows:

Step 1—Initial Population: The population is created with a selected number of foxes,

which will be constant in each iteration. Each element is represented by
(

xj
i

)t
, where

i corresponds to the identification of the individual in the population, j represents the
coordinate according to the dimension of the results space, and t is the current iteration.
Based on the evaluation of the population generated through the objective function, the
best individuals that provide the best solution are recorded, originating the population of
the first iteration.

Step 2—Global Search: The members of the pack move to remote locations searching
for food, and the information they collect is later shared with the other members to ensure
their survival and development. The exploration of the surrounding territory is modelled
on the basis of the objective function, and it is assumed that the best element explores
the most interesting territories and shares this information with the group. Thus, the best
individual in the population is recorded and the Euclidean distance of each of the other
foxes is calculated using:

d
(
(xi)

t, (xbest)
t
)
=

√
||
(
(xi)

t − (xbest)
t|| (11)

Individuals will move towards the fittest red fox through:

(xi)
t = (xi)

t + αsign
(
(xbest)

t − (xi)
t
)

(12)

where α is a randomly generated parameter for all the individuals in each iteration, belong-
ing to the interval [0, d

(
(xi )

t, (xbest )
t
)

]. At this point, the new population is evaluated
using the objective function, and if the optimal values are better, the individuals take new
positions, otherwise they return to the starting position. This simulates the path that the
remaining members of the group will have to follow, after the information has been shared
by the elements that have explored the surrounding territories, in which they must continue
searching in promising areas, corresponding to step 3. The model also predicts the death
of the worst individuals in the population, or the reproduction of the best individuals
according to the equations in step 4.

Step 3—Local Search: When foxes spot prey, they try to approach it slowly in a circular
motion so as not to be seen, until they are close enough to catch it. This behaviour is
modelled using the parameter µ. This parameter is randomly generated in the interval
[0, 1] and simulates the possibility of the fox being seen by the prey during the approach
movement. For µ > 0.75, the fox approaches the prey, otherwise it moves away. The
movement of observation and approach of each individual to the prey was approximated
using a modified Cochleoid equation, through the parameters a and ϕ0, where a is randomly
generated for each iteration in the interval [0, 0.2], and characterizes the change in distance
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to the prey, and ϕ0 models the angle of vision of each individual and is randomly generated
in the interval [0, 2π] for all individuals. The radius of vision (rv) of the foxes is obtained by:

rv =

{
a sin(ϕ0)

ϕ0
, ϕ0 ̸= 0

θ, ϕ0 = 0
(13)

where θ is a random value between [0, 1] generated at the start of the algorithm and
characterises the influence of atmospheric conditions. For the individuals in the population,
their movement is modelled using the system of Equation (14) for spatial coordinates,
where each angular value ϕn−1 is randomly generated in the interval [0, 2π].

x0
new = a rcos(ϕ1) + x0

actual
x1

new = a rsin(ϕ1) + a rcos(ϕ2) + x1
actual

x2
new = a rsin (ϕ1) + arsin(ϕ2) + a rcos(ϕ3) + x2

actual
. . .

xn−2
new = a r

n−2
∑

k=1
sin(ϕk) + a rcos(ϕn−1) + xn−2

actual

xn−1
new = a rsin (ϕ1) + arsin(ϕ2) + . . . + a rsin(ϕn−1) + xn−1

actual

(14)

Step 4—Reproduction and Pack Abandonment: For the dynamic control of the pop-
ulation, five per cent of the worst individuals in the population are selected according
to the objective function, to introduce small changes to the pack. As these are the worst
individuals, it is assumed that they have either moved territory or been killed by hunters;
however, to ensure that the population is constant, the worst individuals are replaced by
new individuals. In each iteration, the two best individuals (the alpha couple) are selected,(

x(1)
)t

and
(

x(2)
)t

, and the centre of their habitat and diameter are calculated:

(
habitatcentre)t

=
(x(1))

t
+(x(2))

t

2(
habitatdiameter

)t
=

√
∥(x(1))

t − (x(2))
t∥

(15)

For each iteration, a random parameter κ is generated within the interval [0, 1], which
defines the replacements of individuals. For κ ≥ 0.45, new individuals are introduced
into the population, otherwise the alpha couple reproduces. In the first case, it is assumed
that new family members will move to other regions, being able to reproduce. In the
second case, new individuals are the result of the reproduction of the alpha couple, which
results in: (

x(reproduced)
)t

= κ

(
x(1)

)t
+

(
x(2)

)t

2
(16)

Step 5—Evaluating each individual according to the objective function—From the
objective function, the optimal values xbest are recorded. For further details on the algorithm,
please consult the corresponding literature [22].

5. Methodology

The generic goal of the optimization process is to determine the design parameter
configuration that provide the best structure response, concerning a specific objective
function to study.

In the present work, the studies developed have been structured into two types: the
first considering only one design variable and the other considering four design variables.
Both are, related to the material constitution of the FGM structures. In the first stage,
the optimization process is related to determining the exponent of the power law that
corresponds to the best behaviour of the structure for a given pair of materials. This design
variable was assumed to vary in a continuous manner in the interval [0.1, 10].



J. Compos. Sci. 2024, 8, 205 8 of 26

The procedure is schematically represented in Figure 3 and highlights the construction
of the finite element model for the specific data associated with each of the individuals of
the population, within each optimization iteration.
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and the optimization algorithm in the one-design variable model.

As observed in this case, the FGM structure is made of aluminum and zirconia, and
the design variable, the power law exponent, varies within the mentioned interval. The
rule of mixtures considers that the power law’s volume fraction is directly associated with
the distribution of metallic material along the height of the structure.

In the second stage, one considers a wider range of possibilities concerning the nature
and number of design variables. Hence, in this case, it is possible to have different pairs of
constituent materials to the resulting FGM, and to write the rule of mixtures associating
the volume fraction directly to one or another of those constituent materials. A schematic
diagram representation for the four design variable model is presented in Figure 4.

So, in addition to the power law exponent, another three variables were added, which
can only take integer values of 1 or 2. The first one corresponds to the writing of the rule of
mixtures, i.e., if the random number assumes 1, the volume fraction characterizes the distri-
bution of metallic material; if it assumes 2, then the volume fraction describes the ceramic
material distribution. The second additional design variable defines the metallic material to
be used, in this case, aluminium and titanium, also randomly selected. The last additional
design variable defines the possible ceramic material to use; zirconia and tungsten carbide
were considered as options in the present study. For these three additional design variables
introduced, that can only take the values {1, 2}, the expression that characterizes the update
of the individual position i in each iteration of each algorithm is adjusted by rounding it to
the nearest integer value.

The optimization procedure is illustrated in a summarized manner, via the flowchart
depicted in Figure 5.

The present work thus considers the coupling between the red fox’s optimization
technique and the finite element method that enables carrying out the necessary linear
static and free vibration analyses for each individual, within each population.
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In this work, which constitutes a first study in this context, a single-objective approach
is considered. Also, besides the side constraints associated with each of the design variables
space, possible behavioural constraints are not considered.
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6. Results and Discussion

This section presents two verification cases, considering benchmark functions to
illustrate the performance of the optimization technique. These cases are then followed
by two additional performance assessment studies on FGM structures, where the results
achieved via optimization processes, are compared with the trends obtained via parametric
studies.

After, one conducts a set of case studies, to minimize specific points’ displacements
in a certain structure or maximise their fundamental frequencies. The material properties
used in the optimization cases next presented are the ones in Figures 3 and 4.

6.1. Verification Cases

To verify the red fox optimization technique implemented, two studies are first pre-
sented using multimodal benchmark functions usually considered for this kind of verifica-
tion purposes: the “Sum of Squares” function and the “Rastringin” function.

Case 1—“Sum of Squares” Benchmark function

The optimal values obtained through the implementation of this algorithm in the
present work were checked against those obtained by [22], where each function was
evaluated in 100 independent runs, 100 iterations and for 100 individuals.

The first 20 independent runs out of 100 (presented in Appendix A) were carried out
for the “Sum of Squares” function, using 20 design variables, considering 100 iterations
and 100 individuals. The results obtained and their characteristics are shown in Table 1.

Table 1. Characteristics of the Benchmark Function “Sum of Squares”.

Function’s Name f Dim xmin xmax fmin x*

Sum of Squares N
∑

i=1
i·x2

i
20 −10 10 0 (0, . . . , 0)

The results obtained are shown in Table 2.

Table 2. Results of the Verification Study of the Sum of Squares Function with Dimension 20, using
20 Runs, 100 Iterations and Populations of 100 Individuals.

Run fmin Run fmin

1 1.4522 × 10−8 11 8.3510 × 10−9

2 1.5391 × 10−10 12 4.2426 × 10−11

3 3.8610 × 10−7 13 1.1228 × 10−7

4 2.5061 × 10−10 14 5.5395 × 10−7

5 9.6072 × 10−9 15 9.7326 × 10−9

6 1.0757 × 10−8 16 8.1542 × 10−9

7 1.1787 × 10−8 17 2.2786 × 10−7

8 2.3982 × 10−9 18 1.4118 × 10−11

9 6.9128 × 10−9 19 9.3447 × 10−8

10 3.0236 × 10−7 20 4.3996 × 10−7

Present average value 1.6230 × 10−7

Average value [22] 7.5400 × 10−8

Present standard deviation 3.7069 × 10−7

Standard deviation [22] 2.7800 × 10−8

According to the results here presented and, in the Appendix A, one concludes that
the behaviour of the optimization algorithm is very satisfactory, with average values for
the global minima of the function in the different runs, close to the found in the literature
and very close to the exact solution. The standard deviation shows a similar magnitude.
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Case 2—“Rastringin ”Benchmark function

For the second verification case study, related to the “Rastringin” function, 10 inde-
pendent runs were carried out, using two design variables, considering 100 iterations and
100 individuals. The characteristics of this function and the analysed domain are shown in
Table 3.

Table 3. Characteristics of the Benchmark Function “Rastrigin”.

Function’s Name f Dim xmin xmax fmin x*

Rastrigin 10 +
N
∑

i=1
[x 2

i − 10 cos
(
2πxi

)
] 2 −10 10 0 (0, . . . , 0)

As can be concluded from the results shown in Table 4, the implemented optimization
technique presents a very good performance, with an average value very close to the exact
solution. Again, the standard deviation shows a similar magnitude.

Table 4. Results of the Verification Study of the Rastrigin Function with Dimension 2, using 10 Runs,
100 Iterations and Populations of 100 Individuals.

Run x1 x2 fmin

1 2.1372 × 10−9 1.9420 × 10−10 9.1367 × 10−16

2 −6.7385 × 10−8 −8.2852 × 10−8 2.2627 × 10−12

3 7.1884 × 10−11 1.3883 × 10−10 4.8489 × 10−18

4 −7.0627 × 10−10 6.3963 × 10−10 1.8013 × 10−16

5 5.6276 × 10−10 −3.9101 × 10−10 9.3162 × 10−17

6 −7.7343 × 10−11 4.0890 × 10−11 1.5185 × 10−18

7 −2.4210 × 10−11 −7.3662 × 10−11 1.1928 × 10−18

8 −5.8023 × 10−9 −8.7128 × 10−9 2.1740 × 10−14

9 −6.1365 × 10−11 1.5509 × 10−10 5.5191 × 10−18

10 −1.4728 × 10−14 −2.3298 × 10−13 1.0812 × 10−23

Present average value 2.2856 × 10−13

Average value [22] 1.3740 × 10−7

Present standard deviation 6.7808 × 10−13

Standard deviation [22] 3.7200 × 10−8

6.2. Performance Assessment Studies

In the previous sub-section, one considered two different benchmark functions, and
compared the results obtained with the ones by other authors. In the present sub-section
one intends to complement the previous one, applying now the optimization technique to
two FGM structures. To be able to conclude on the performance of the technique for this
type of problem, one has first conducted parametric studies for each structure to show the
influence of the exponent ey, followed by optimization processes where that exponent is
the design variable. The objective of this procedure is to demonstrate that the optimization
results respect the known trends shown in the parametric studies.

In both cases, the transverse cross-section of the elements is square, with a 20 mm edge
dimension, and an aspect ratio of 30. Considering the good performance of the optimization
technique, in previous verification studies, a series of 10 runs was conducted for each
optimization process, using as optimization parameters, a population of 5 individuals and
10 iterations.

Case 3—2D Truss—Analysis and Optimization

The first structure studied is a truss with 21 elements, subjected to a load P = 1 kN, as
shown in Figure 6.
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Figure 7 presents the minimum discretization of the analysed 2D truss, with quadratic
beam elements.
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Figure 7. Minimum Discretization of Two-dimensional Truss.

For this truss, the parametric studies conducted allow to conclude that the node where
the largest resultant displacement occurs is at node 19, which corresponds to the node
where the load is applied. Table 5 shows the resultant displacements of the mentioned
node, and the fundamental frequency of the structure, for a set of exponents of the volume
fraction power law.

Table 5. Resultant Displacement of Node 19 in 2D Truss and Fundamental Frequency of the Truss.

ey Displacement [µm] Frequency [rad/s]

0 321.7973 591.9599
0.1 204.5508 661.0307
0.2 195.8514 661.8260
0.5 181.5643 658.2207
1 170.3850 651.6240
2 160.8003 643.8601
5 152.6575 634.9667
10 149.6053 630.3244

Now, considering the optimization metaheuristic to maximize the fundamental fre-
quency and to minimize the maximum resultant displacement, taking into account the
exponent of the volume fraction expression as a design variable, the results presented in
Table 6 are obtained.

To note that in the second and the fourth column one has the exponents of the volume
fraction law obtained for the two optimization processes. The first process corresponding
to the minimization of the maximum displacement (fmin), and the second process related
to the fundamental frequency maximization (fmax).
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Table 6. Results of the Optimization Study for 2D Truss using RFO with one design variable.

Run ey fmin [µm] ey fmax [rad/s]

1 10 149.6053 0.1609 661.8009
2 10 149.6053 0.2126 661.7827
3 10 149.6053 0.2430 661.5994
4 10 149.6053 0.2385 661.6323
5 10 149.6053 0.1764 661.8437
6 10 149.6053 0.1960 661.8353
7 10 149.6053 0.2310 661.6837
8 10 149.6053 0.2600 661.4571
9 10 149.6053 0.1641 661.8135
10 10 149.6053 0.1895 661.8450

Mean 149.6053 661.7294
SD 3.0294 × 10−6 0.1246

Figures 8 and 9 show the evolution of Young’s modulus for the best solution found for
minimizing the maximum resultant displacement and maximizing the fundamental fre-
quency of the 2D truss, respectively, including a schematic representation of the structure’s
configuration in relation to the constituent materials of the FGM.
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Figure 8. Evolution of the Young’s Modulus of the 2D Truss for the Optimal Solution Found for
Minimizing the Maximum Resulting Displacement using One Design Variable.

Regarding the results obtained, it should be noted that in a situation where the
maximum resulting displacement is to be minimized, the optimum solution in terms of
the power law exponent is the value 10, corresponding to the truss composed mostly of
zirconia in the lower zone up to a height of approximately 0.4 m. On the other hand, if the
fundamental frequency of the structure is to be maximized, the best dynamic behavior in
the free vibration regime is achieved with an exponent of approximately 0.19.

The optimal design configurations for this structure are consistent with the results
obtained in the parametric studies.
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Figure 9. Evolution of the Young’s Modulus of the 2D Truss for the Optimal Solution Found for
Maximizing the Fundamental Frequency using the One Design Variable.

Case 4—2D Frame—Analysis and Optimization

The second structure studied is a 2D frame constituted by 12 beams, the discretization
of which, as well as other aspects such as geometrical configuration, boundary conditions
and applied loading (Px = 50 N and q = 1000 N/m), are shown in Figure 10a,b.
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Table 7 shows the resultant displacement of node 10, as this is the node where the
greatest resultant displacement occurs, and the first natural frequency of the structure.
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Table 7. Resultant displacement of Node 10 of Frame 2 and The fundamental frequency of the
structure.

ey Displacement [µm] Frequency [rad/s]

0 43.5415 1240.7333
0.1 41.4279 1305.7998
0.2 40.0927 1346.3775
0.5 37.7015 1410.0339
1 35.5525 1444.5965
2 33.2506 1444.3502
5 30.2133 1393.7095
10 28.1360 1356.8710

These results are again obtained by carrying out a parametric study for a set of pre-
established exponent values. Now performing the optimization for each single-objective
function, one obtains the results presented in Table 8.

Table 8. Results of the optimization study for Frame 2 using RFO with one design variable.

Run ey fmin [µm] ey fmax [rad/s]

1 10 28.1360 0.9131 1441.6775
2 10 28.1360 1.4388 1449.6560
3 7.3115 29.0357 2.2493 1440.2599
4 10 28.1360 1.4055 1449.6710
5 10 28.1360 1.4554 1449.6308
6 10 28.1360 1.2742 1449.2112
7 10 28.1360 0.9639 1443.4907
8 10 28.1360 1.4903 1449.5424
9 10 28.1360 1.5658 1449.1981
10 10 28.1360 2.3401 1438.6473

Mean 28.2260 1446.0985
SD 0.2699 4.3013

Note that also in this table the second column contains the exponents of the volume
fraction law obtained in the minimization of the maximum displacement, and the fourth
column presents the exponents obtained in the fundamental frequency maximization.

Figures 11 and 12 show the evolution of the modulus of elasticity for the best solutions
found to minimize the maximum resultant displacement and to maximize the fundamental
frequency of the frame structure, respectively, including a schematic representation of the
structure’s configuration concerning the constituent materials of the FGM.
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Minimizing the Maximum Resulting Displacement using One Design Variable.
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Figure 12. Evolution of the Modulus of Elasticity of the 2D Frame by the Best Solution Found for
Maximizing the Fundamental Frequency with One Design Variable.

Similarly to the cases previously studied, the optimum solution that characterizes
a maximum resulting displacement in frame 2 is a power law exponent of 10. From the
perspective of maximizing the fundamental frequency of the structure, it should be noted
that the best configuration is the one that corresponds to an approximately linear distribution
between the two materials that make up the FGM. Also, for this frame structure, the optimal
design configurations are consistent with the results obtained in the parametric studies.

6.3. Optimization Case Studies—One Design Variable

The current sub-section presents the results of the optimization studies conducted
for two other structures in the three-dimensional space, also considering similar objective
functions and the same design variable as in the two previous cases. Similar characteristics
and optimization parameters continue to be used in the following cases.

Case 5—3D Structure I—Optimization

This case study considers a structure whose configuration can be observed in Figure 13.
The structure is made of three bars joined at one point under a downward force of 1000 N.
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Figure 13. Schematic representation of three-dimensional structure under downward load.

Table 9 shows the spatial coordinates of the 3D truss supports.

Table 9. Spatial Coordinates of Three-dimensional Truss’s Simple Supports.

Support X [m] Y [m] Z [m]

1 0 1.5 −1
2 −1 1.5 1
3 1 1.5 1
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The results obtained for each of the objective functions, are presented in Table 10. The
two columns with the exponents ey are respectively related to the minimization of the
maximum displacement fmin and the maximization of the fundamental frequency fmax.

Table 10. Results of the Optimization Study: Minimum Displacement and Maximum Fundamental
Frequency for One Design Variable.

Run ey fmin [µm] ey fmax [rad/s]

1 10 1.7266 8.8471 255.1698
2 10 1.7266 7.4426 254.0038
3 10 1.7266 9.8663 255.8696
4 10 1.7266 9.1000 255.3535
5 10 1.7266 8.7564 255.1022
6 10 1.7266 9.3028 255.4959
7 10 1.7266 9.1827 255.4121
8 10 1.7266 9.3112 255.5017
9 10 1.7266 7.9742 254.4769
10 10 1.7266 9.3355 255.5184

Mean 1.7266 255.1904
SD 0 0.5254

Figures 14 and 15 show the evolution of the modulus of elasticity characterized by
the best solution found for minimizing the maximum resultant displacement and for
maximizing the fundamental frequency of the 3D truss, respectively. These figures include
a schematic representation of the structure’s configuration showing the constituent material
mixture of the FGM throughout the structure height.
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Figure 14. Evolution of the Young’s Modulus of the 3D Truss for the Best Solution Found for
Minimizing the Maximum Resulting Displacement using One Design Variable.

For this structure, it should be noted that for a situation in which the aim is to both
minimize the resulting displacements and to maximize the fundamental frequency, the
most advantageous distribution of properties is characterized by an exponent 10, in which
zirconia makes up the entire structure up to a height of around 0.9 m.

Case 6—3D Structure II—Optimization

In this study, one considers a 3D frame-type structure as shown in Figure 16. This
structure is subjected to optimization processes considering the same objective functions as
previous cases. The design variable is also the exponent of the power law volume fraction
function. The structure is discretized into 15 beam elements 1 m long (aspect ratio 20) and
it is subjected to a concentrated load P = 1000 N in the static case.
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Figure 15. Evolution of the Young’s Modulus of the 3D Truss for the Best Solution Found for
Maximizing the Fundamental Frequency using One Design Variable.

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 16. Three-dimensional Frame. 

The results obtained for each objective function are presented in Table 11, where the 
two columns with the exponents ey are respectively related to the minimization of the 
maximum displacement fmin and to the maximization of the fundamental frequency fmax. 

Table 11. Results of the Optimization Study of the 3D Frame using RFO with One Design Variable. 

Run ey fmin [mm] ey fmax [rad/s] 
1 10 1.5930 3.1690 121.0679 
2 10 1.5930 3.2185 121.0680 
3 10 1.5930 3.2263 121.0678 
4 10 1.5930 3.3891 121.0598 
5 10 1.5930 3.0905 121.0653 
6 10 1.5930 2.7019 120.9957 
7 10 1.5930 4.4759 120.8182 
8 10 1.5930 3.2125 121.0681 
9 10 1.5930 3.0179 121.0599 

10 10 1.5930 3.3001 121.0657 
Mean 1.5930 121.0336 

SD 0 0.0748 

Figures 17 and 18 show the evolution of the modulus of elasticity associated with the 
best solution found for minimizing the maximum resultant displacement and for maxim-
izing the fundamental frequency of the 3D frame, respectively. These figures include a 
schematic representation of the structure’s configuration with the evolution of the constit-
uent material mixture throughout the structure height. 

 

0

0.5

1

1.5

2

70 110 150 190

Y
 [m

]

EFGM [GPa]

Young's Modulus - 3D Frame

Figure 16. Three-dimensional Frame.

The results obtained for each objective function are presented in Table 11, where the
two columns with the exponents ey are respectively related to the minimization of the
maximum displacement fmin and to the maximization of the fundamental frequency fmax.

Table 11. Results of the Optimization Study of the 3D Frame using RFO with One Design Variable.

Run ey fmin [mm] ey fmax [rad/s]

1 10 1.5930 3.1690 121.0679
2 10 1.5930 3.2185 121.0680
3 10 1.5930 3.2263 121.0678
4 10 1.5930 3.3891 121.0598
5 10 1.5930 3.0905 121.0653
6 10 1.5930 2.7019 120.9957
7 10 1.5930 4.4759 120.8182
8 10 1.5930 3.2125 121.0681
9 10 1.5930 3.0179 121.0599
10 10 1.5930 3.3001 121.0657

Mean 1.5930 121.0336
SD 0 0.0748

Figures 17 and 18 show the evolution of the modulus of elasticity associated with
the best solution found for minimizing the maximum resultant displacement and for
maximizing the fundamental frequency of the 3D frame, respectively. These figures in-
clude a schematic representation of the structure’s configuration with the evolution of the
constituent material mixture throughout the structure height.



J. Compos. Sci. 2024, 8, 205 19 of 26

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 16. Three-dimensional Frame. 

The results obtained for each objective function are presented in Table 11, where the 
two columns with the exponents ey are respectively related to the minimization of the 
maximum displacement fmin and to the maximization of the fundamental frequency fmax. 

Table 11. Results of the Optimization Study of the 3D Frame using RFO with One Design Variable. 

Run ey fmin [mm] ey fmax [rad/s] 
1 10 1.5930 3.1690 121.0679 
2 10 1.5930 3.2185 121.0680 
3 10 1.5930 3.2263 121.0678 
4 10 1.5930 3.3891 121.0598 
5 10 1.5930 3.0905 121.0653 
6 10 1.5930 2.7019 120.9957 
7 10 1.5930 4.4759 120.8182 
8 10 1.5930 3.2125 121.0681 
9 10 1.5930 3.0179 121.0599 

10 10 1.5930 3.3001 121.0657 
Mean 1.5930 121.0336 

SD 0 0.0748 

Figures 17 and 18 show the evolution of the modulus of elasticity associated with the 
best solution found for minimizing the maximum resultant displacement and for maxim-
izing the fundamental frequency of the 3D frame, respectively. These figures include a 
schematic representation of the structure’s configuration with the evolution of the constit-
uent material mixture throughout the structure height. 

 

0

0.5

1

1.5

2

70 110 150 190

Y
 [m

]

EFGM [GPa]

Young's Modulus - 3D Frame

Figure 17. Evolution of the Modulus of Elasticity of the 3D Frame for the Best Solution Found for
Minimizing the Maximum Resulting Displacement using One Design Variable.
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Figure 18. Evolution of the Young’s Modulus of the 3D Frame for the Best Solution Found for
Maximizing Natural Frequency using One Design Variable.

Once again, when the objective is to minimize the resulting displacement, the exponent
that enables the best static behaviour of the structure is 10. If the objective function is the
maximization of the fundamental frequency, the power law exponent that characterizes the
best free vibration behaviour is, for the present structure, approximately 3.2.

6.4. Optimization Case Studies—Four Design Variables

In this subsection the optimization processes the structures will undergo have similar
objective functions, but now consider four design variables as described in the Methodology
section. Besides the exponent of the power law volume fraction, the next tables consider
three additional columns whose acronyms are RM, M1 and M2. RM corresponds to how
the rule of mixtures is considered, i.e., if a specific random variable assumes the value 1,
the volume fraction characterizes the distribution of metallic material; if it assumes the
value 2, then the volume fraction describes the ceramic material distribution. Regarding
the acronym M1, this is related to the third design variable which defines the metallic
constituent material to be used. The fourth design variable, M2, defines the ceramic
material to be used.

Case 7—2D Frame-type Structure—Optimization

The optimization results for the 2D frame structure previously analyzed with only one
design variable, but now considering four design variables, are presented in
Tables 12 and 13. These tables denote respectively the results achieved in the minimiza-
tion of the maximum resultant displacement and the maximization of the fundamental
frequency.
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Table 12. Results of the Optimization Study for 2D Frame using the RFO Algorithm for Four design
variables to Minimize the Maximum Resulting Displacement.

Run ey RM M1 M2 Optimum [µm]

1 1.0969 2 2 2 6.3853
2 2.2732 2 2 2 8.1455
3 0.1 2 2 2 4.5157
4 0.1 2 2 2 4.5157
5 0.1 2 2 2 4.5157
6 1.8228 2 2 2 7.5849
7 0.1 2 2 2 4.5157
8 3.1461 2 2 2 8.9572
9 0.1 2 2 2 4.5157
10 0.1 2 2 2 4.5157

Mean 5.8167
SD 1.6998

Table 13. Results of the Optimization Study for 2D Frame using RFO for four design variables to
Maximize the Fundamental Frequency.

Run ey RM M1 M2 Optimum [rad/s]

1 2.4000 1 2 2 1504.5482
2 0.4378 1 1 2 1565.4877
3 1.2156 1 2 2 1553.1407
4 1.0410 1 2 2 1558.1536
5 0.1 2 1 2 1574.5160
6 2.3204 1 2 2 1507.6686
7 0.9987 1 2 2 1559.0219
8 0.5496 1 1 2 1564.4595
9 1.1062 1 1 1 1447.1009
10 0.8112 1 2 2 1560.2844

Mean 1539.4382
SD 38.2675

Figures 19 and 20 show the evolution of Young’s modulus through the structure for
the best solutions found in both optimization processes.

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 21 of 26 
 

 

SD 1.6998 

Table 13. Results of the Optimization Study for 2D Frame using RFO for four design variables to 
Maximize the Fundamental Frequency. 

Run ey RM M1 M2 Optimum [rad/s] 
1 2.4000 1 2 2 1504.5482 
2 0.4378 1 1 2 1565.4877 
3 1.2156 1 2 2 1553.1407 
4 1.0410 1 2 2 1558.1536 
5 0.1 2 1 2 1574.5160 
6 2.3204 1 2 2 1507.6686 
7 0.9987 1 2 2 1559.0219 
8 0.5496 1 1 2 1564.4595 
9 1.1062 1 1 1 1447.1009 

10 0.8112 1 2 2 1560.2844 
Mean 1539.4382 

SD 38.2675 

Figures 19 and 20 show the evolution of Young’s modulus through the structure for 
the best solutions found in both optimization processes. 

 
Figure 19. Evolution of Young’s Modulus of the 2D Frame for the Best Solution found for Minimiz-
ing the Maximum Resulting Displacement using four Design Variables. 

 
Figure 20. Evolution of Young’s Modulus of 2D Frame for the Best Solution found for Maximizing 
Natural Frequency using four Design Variables. 

The optimum configuration found with four design variables that yield the lowest 
maximum resultant displacement corresponds to a frame made of titanium in the lower 
zone and tungsten carbide in the upper zone, reducing the maximum resultant 

0

0.4

0.8

1.2

114 210 306 402 498 594 690

Y
 [m

]

EFGM [GPa]

Young's Modulus - 2D Frame

Legend:

0

0.4

0.8

1.2

70 260 450 640

Y
 [m

]

EFGM [GPa]

Young's Modulus - 2D Frame

Legend:

Figure 19. Evolution of Young’s Modulus of the 2D Frame for the Best Solution found for Minimizing
the Maximum Resulting Displacement using four Design Variables.
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Figure 20. Evolution of Young’s Modulus of 2D Frame for the Best Solution found for Maximizing
Natural Frequency using four Design Variables.

The optimum configuration found with four design variables that yield the lowest
maximum resultant displacement corresponds to a frame made of titanium in the lower
zone and tungsten carbide in the upper zone, reducing the maximum resultant displace-
ment by around six times. The optimum solution found by the RFO for the fundamental
frequency maximization corresponds to the frame made of tungsten carbide in the lower
zone and aluminium in the upper zone of the structure, with an exponent of 0.1, and leads
to a better solution when compared with the optimal solution using one design variable.

Case 8—3D Frame-type Structure—Optimization

This case study is the last of this work and considers the 3D frame already analysed in
Case 4, but now with a broader perspective considering four design variables. Tables 14
and 15 show the results obtained in the minimization process of the maximum resul-
tant displacement and the maximization of the fundamental frequency of the 3D frame,
respectively.

Table 14. Results of the Optimization Study of the 3D Frame using RFO for Four Design Variables to
Minimize the Maximum Resulting Displacement.

Run ey RM M1 M2 Optimum [µm]

1 10 1 2 2 546.1122
2 7.5461 1 2 2 551.0629
3 0.1 2 2 2 390.3244
4 10 1 2 2 546.1124
5 0.1 2 2 2 390.3247
6 0.1 2 2 2 390.3244
7 0.1 2 2 2 390.3244
8 0.1 2 2 2 390.3244
9 0.1 2 2 2 390.3244
10 5.5267 1 2 2 560.6505

Mean 454.5884
SD 78.79651

Figures 21 and 22 depict the evolution of Young’s modulus for the best solution found
for minimizing the maximum resultant displacement and maximizing the fundamental
frequency of the 3D frame, respectively, including also schematic representations of the
FGM evolution throughout the structure’s height.
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Table 15. Results of the Optimization Study of the 3D Frame using RFO for Four Design Variables to
Maximize the Fundamental Frequency.

Run ey RM M1 M2 Optimum [rad/s]

1 1.2145 1 1 2 163.3825
2 2.4340 1 2 2 149.0320
3 1.9551 1 2 2 148.9432
4 2.9279 1 1 2 160.7510
5 2.9981 1 1 2 160.5673
6 1.5486 1 1 2 163.7520
7 5.5640 1 2 2 145.9512
8 2.2144 1 1 2 162.6061
9 2.1287 1 1 1 120.6251
10 2.8792 1 1 2 160.8786

Mean 153.6489
SD 12.7315
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Figure 21. Evolution of Young’s Modulus of the 3D Frame for the Best Solution for Minimizing the
Maximum Resulting Displacement using Four Design Variables.
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Figure 22. Evolution of Young’s Modulus of the 3D Frame for the Best Solution Found for Maximizing
the Fundamental Frequency using Four Design Variables.

The best solution found for the maximum displacement minimization corresponds to
the combination of titanium next to the encasements and tungsten carbide in the upper area
of the structure, obtaining a maximum displacement approximately four times lower than
the result achieved with one design variable. To maximize the fundamental frequency, the
optimum solution obtained with the four design variables corresponds to a combination of
tungsten carbide next to the encasements and aluminum in the upper area of the structure,
with an exponent of approximately 1.5. This leads to a fundamental frequency around
1.35 times higher than that found with the one-design variable optimization procedure.
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7. Conclusions

In the present work, the optimization of a set of 2D and 3D discrete structures was
conducted concerning the minimization of the maximum resulting displacement and the
maximization of the fundamental frequency, in separate single-objective optimization
processes. Only side constraints were considered.

Considering the first stage of the optimization studies where only one design variable
was considered, the results achieved make it possible to conclude that, when the objective
is the minimization of the maximum resulting displacement, in a situation where the
structure is entirely metallic at the highest coordinate and entirely ceramic at the lowest
coordinate, the progression between the two materials should correspond to a power law
exponent of 10, which provides a stiffer structure. When the objective is to maximize the
fundamental frequency, it is not possible to generalize, and it was found that for the 2D
truss, the exponent should be approximately 0.18; while for the 2D frame, the best solution
corresponds to an exponent of approximately 1.4. For the 3D truss it should be 10 and, for
the 3D frame, the best solution found corresponds to an exponent of approximately 1.5.

When four design variables are considered, the benefits achieved in terms of reducing
the resultant displacements are clear, in some cases very significantly, and in the frequencies’
increase for most cases as seen during the cases’ presentation. These improvements are
possible through the optimal combination and distribution of the different materials, along
with the exponent values assumed; however, it should not be generalized optimal solutions
for all structures, as each structure should be considered on a case-by-case basis.

It is worth noting, the good performance of the implemented metaheuristic opti-
mization technique and its coupling with the finite element method for FGM structures’
optimization.

Also pertinent to say that, even if a set of other non-functionally graded materials, such
as isotropic and homogeneous materials are to be used in building the analysed structures,
the present results can provide insightful indications about the disposition of such materials’
constant propertiesalong the structure’s height, for nearly optimized responses.

Following the promising optimal solutions found, will be relevant to pursue further
optimization studies, considering a multiobjective approach for behavioural-constrained
problems.
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Appendix A

Table A1. The complete set of 100 runs conducted for the second verification case.

Run fmin Run fmin Run fmin Run fmin

1 1.4522 × 10−8 26 2.4419 × 10−8 51 2.2693 × 10−7 76 3.0780 × 10−8

2 1.5391 × 10−10 27 2.1011 × 10−6 52 4.3243 × 10−10 77 2.0209 × 10−10

3 3.8610 × 10−7 28 5.2479 × 10−9 53 3.4839 × 10−10 78 2.0575 × 10−8

4 2.5061 × 10−10 29 3.4899 × 10−8 54 1.7969 × 10−6 79 5.4393 × 10−8

5 9.6072 × 10−9 30 2.1826 × 10−7 55 1.5886 × 10−9 80 1.2861 × 10−9

6 1.0757 × 10−8 31 1.0316 × 10−6 56 4.3608 × 10−7 81 1.2005 × 10−7

7 1.1787 × 10−8 32 1.0324 × 10−8 57 5.3363 × 10−7 82 5.4759 × 10−7

8 2.3982 × 10−9 33 1.5102 × 10−9 58 3.9452 × 10−9 83 1.9531 × 10−7

9 6.9128 × 10−9 34 4.4206 × 10−7 59 1.4520 × 10−7 84 1.1211 × 10−8

10 3.0236 × 10−7 35 1.8854 × 10−8 60 1.7240 × 10−8 85 2.7878 × 10−10

11 8.3510 × 10−9 36 1.6673 × 10−8 61 6.4870 × 10−7 86 6.8652 × 10−7

12 4.2426 × 10−11 37 7.7937 × 10−10 62 1.5427 × 10−8 87 4.2135 × 10−9

13 1.1228 × 10−7 38 1.2790 × 10−10 63 8.1588 × 10−9 88 1.1548 × 10−7

14 5.5395 × 10−7 39 9.6050 × 10−9 64 2.8892 × 10−11 89 4.2666 × 10−8

15 9.7326 × 10−9 40 1.9212 × 10−6 65 2.6553 × 10−8 90 3.5685 × 10−8

16 8.1542 × 10−9 41 1.1275 × 10−8 66 3.0041 × 10−8 91 9.1252 × 10−8

17 2.2786 × 10−7 42 7.4339 × 10−7 67 6.5576 × 10−7 92 3.1998 × 10−10

18 1.4118 × 10−11 43 2.2533 × 10−7 68 3.5742 × 10−9 93 1.2050 × 10−9

19 9.3447 × 10−8 44 1.2538 × 10−7 69 6.6478 × 10−8 94 1.6008 × 10−10

20 4.3996 × 10−7 45 3.6096 × 10−9 70 7.8763 × 10−11 95 3.9891 × 10−8

21 1.2128 × 10−8 46 7.1873 × 10−10 71 3.1665 × 10−8 96 4.4292 × 10−8

22 5.5121 × 10−9 47 4.2522 × 10−10 72 7.5925 × 10−9 97 5.8937 × 10−8

23 4.6802 × 10−10 48 1.2298 × 10−7 73 7.1936 × 10−8 98 9.8581 × 10−8

24 8.2569 × 10−10 49 2.2679 × 10−10 74 4.9475 × 10−10 99 2.0966 × 10−10

25 1.2069 × 10−8 50 4.2401 × 10−10 75 1.0763 × 10−11 100 1.0812 × 10−10

Present average value 1.6230 × 10−7

Average value [22] 7.5400 × 10−8

Present standard deviation 3.7069 × 10−7

Standard deviation [22] 2.7800 × 10−8
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