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Abstract: Nanocomposites based on chlorobutyl rubber (CIIR) have been made using a variety of
nanofillers such as carbon black (CB), nanoclay (NC), graphene oxide (GO), and carbon black/nanoclay
hybrid filler systems. The hybrid combinations of CB/nanoclay are being employed in the research to
examine the additive impacts on the final characteristics of nanocomposites. Atomic force microscopy
(AFM), together with resistivity values and mechanical property measurements, have been used to
characterise the structural composition of CIIR-based nanocomposites. AFM results indicate that
the addition of nanoclay into CIIR increased the surface roughness of the material, which made
the material more adhesive. The study found a significant decrease in resistivity in CIIR–nanoclay-
based composites and hybrid compositions with nanoclay and CB. The higher resistivity in CB
composites, compared to CB/nanoclay, suggests that nanoclay enhances the conductive network of
carbon black. However, GO-incorporated composites failed to create conductive networks, which
this may have been due to the agglomeration. The study also found that the modulus values at
100%, 200%, and 300% elongation are the highest for clay and CB/clay systems. The findings
show that nanocomposites, particularly clay and clay/CB hybrid nanocomposites, may produce
polymer nanocomposites with high electrical conductivity. Mechanical properties correlated well
with the reinforcement provided by nanoclay. Hybrid nanocomposites with clay/CB had increased
mechanical properties because of their enhanced compatibility and higher filler–rubber interaction.
Nano-dispersed clay helps prevent fracture growth and enhances mechanical properties even more
so than CB.

Keywords: chlorobutyl rubber; CIIR; hybrid fillers; carbon black; nanoclay; graphene oxide;
synergistic effects

1. Introduction

Long-chain lightweight polymers offer opportunities for various applications by im-
proving impact strength and stiffness [1–5]. Polymer matrix composites, made from rigid
fillers, offer soft, flexible polymer matrices with high toughness due to their easy composi-
tion and structural components [6,7]. A composite material is classed as a nanocomposite
when one or more dimensions of the added fillers are <100 nm [8]. Nanocomposite ma-
terials have been used in the automotive industry [9], but high raw material costs and
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production cycle times make them unaffordable for mass production in cost-effective com-
ponents. Low-volume filler additions to polymer nanocomposites [10,11] improve their
marginal contribution and performance in cost and weight through instant processing
methods [12]. Interdisciplinary fields are embracing nanoscience and nanotechnology as
innovative technologies, with a rapid expansion in rubber nanocomposites. Reinforced
rubber improves strength and durability through micro- and nanofiller modifications, en-
suring specific end-product properties. Scientists have developed a hybrid nanocomposites
technique, combining both organic and inorganic fillers at the nano- or molecular scale in
single composites [13,14]. This approach addresses the issue of inorganic materials being
highly thermally stable but not very flexible mechanically, while organic materials have
weak thermal stability and good mechanical flexibility. The initial research on a polyamide-
6 filled with nanoclay by Usuki et al., (1993) and Okada A. (1995) from Toyota R&D is
considered the fundamental starting point for understanding this filler behaviour [15,16].

Carbon-based nanofillers like super abrasion furnace (SAF), intermediate super abra-
sion furnace (ISAF), expanded graphite, Carbon nanotubes (CNTs) and Carbon nanofibers
(CNFs) are used to overcome drawbacks in polymer nanocomposite production [17–20].
CNTs are the most cost-effective and economical option, while graphene, the thinnest mate-
rial in the universe, is a two-dimensional carbon network. In this regard, Hammer’s work
in 2000 to easily produce GO by oxidizing graphene was groundbreaking [21]. GO has
numerous potential applications due to its chemical composition and flake size tunability,
including electronics, composites, renewable energy devices, biology, and medicine [22–26].
It is also being considered for electrode materials in batteries, double-layered capacitors,
fuel cells, solar cells, and other energy conversion devices [27–30]. CB, another promising
reinforcing material, was first used in 1904 as a filler in nanometer and spherical-form
composites [31]. It significantly enhances mechanical properties and has since become
widely used as a reinforcing material for making rubber composites [32–34]. Dispersed at
the nanoscale, CB offers excellent properties for rubbers in industry. Moreover, spherical CB
particles may help to reduce the structure inhomogeneity in the nanocomposites. CB and
nanoclay interact to enhance tensile modulus and tear strength in nanocomposites [35,36].
This results in reduced air permeability, a reduced water vapour transmission rate, and
increased electrical and thermal conductivity in the rubber nanocomposite. However, the
high aspect ratio of clay filler causes structure inhomogeneity in rubber/clay composites.
The modulus, hardness, and gas barrier properties of the nanocomposite are not signifi-
cantly affected by inhomogeneity, but they are not ideal for tensile strength and fatigue
resistance, due to the high-stress concentration at filler particles and in the unreinforced
rubber matrix. It is therefore worthwhile to add CB, a crucial reinforcement filler in the
rubber industry, into rubber/clay nanocompounds to improve material properties [37,38].

Polyisobutylene, also known as “butyl rubber”, is a type of vinyl elastomer produced
through cationic vinyl polymerization of isobutylene with 1–2% isoprene [39]. Butyl
rubber is a biocompatible elastomer with excellent damping and ageing properties which
is resistant to ketones, phosphate ester, hydraulic fluids, acids, and bases, but not to
mineral- or petroleum-based fluids, hydrocarbons, or flame [40]. Butyl rubber offers good
insulating properties, making it suitable for use at temperatures ranging from −50 to 250 ◦F,
providing superior resistance against various environmental factors [41]. Because of its low
gas permeability, excellent impermeability/air retention, and good flex properties, butyl
rubber is reported in various applications [42–44].

Natural rubber (NR) is in widespread use among natural materials, and it is unique
for its elasticity among the other materials in general use, making it essential for tyre
applications. Even though no synthetic rubber matches the performance of NR, having
high elastic properties and tensile strength, it is poor in abrasion resistance, oil and flame
resistance, and has poor ageing properties. This is due to the highly unsaturated molecular
chain and its non-polar nature. To overcome this problem, we prefer CIIR for this study. In
the 1960s, chlorinated and brominated versions (abbreviated as CIIR and BIIR, respectively)
were developed, resulting in faster curing times [45–47]. CIIR and BIIR have better gas and
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steam impermeability, resistance, and chemical inertia than butyl rubber, which is affected
by halogen. CIIR has a chlorine concentration of 1.1% to 1.3% and an unsaturation degree
of 1.8 mol [48,49]. CIIR is ideal for pressure marking and rubber combinations because of
its high performance in several key areas: low permeability, vibration damping, ageing
resistance, and a low glass transition temperature [46,50], and its excellent processing
qualities can withstand high temperatures. Despite their limited use in research, CIIR
polymers have been reported to exhibit synergistic effects [51,52].

Famous for its airtightness, ozone resistance, and chemical stability, CIIR is also noted
for its powerful energy dissipation and combination capabilities. The glass-transition tem-
perature(Tg) of CIIR is reflected in the low shoulder peak of this rubber, while the transition
above Tg is the so-called “liquid–liquid transition” (Tll), which can be understood as a
delay in the CIIR macromolecular relaxation behaviours necessary for disentanglement
or other delayed movements by promissory structures [53]. However, as the largest tan δ

peak of CIIR emerges in very low temperatures, its usage as a damping material at room
temperature is limited, and it must be blended with other polymers for effective damping.
Currently, few studies have reported the filler effect of CIIR, often participating in com-
bined CIIR/NR research [11,54,55]. Breakthrough times were calculated after studying the
mechanical, transport, and gas barrier characteristics of CIIR rubber by several researchers,
demonstrating its potential use as a barrier material [56,57]. The dynamical behaviour
of CIIR was investigated by Fengshun and colleagues [58]. According to the study, the
attenuated total reflection and relaxations in the CIIR-rich matrix and AO-80 domains are
responsible for the observed relaxations in CIIR/AO-80 blends.

CIIR nanocomposites using CB have been applicable in tyre technology [59], and clays
act as gas barrier agents [60,61] in polymer nanocomposites. CIIR-GO, CIIR–clay, and
CIIR-CB nanocomposites have potential applications for the manufacturing of inner tubes,
inner linings, and tennis balls [54]. The current study presents a new approach to preparing
flexible and high-strength elastomeric materials for conductive applications. The focus
is on improving interfacial adhesion between components for effective load sharing and
mechanical stability. Dispersion behaviour varies due to filler interfaces and geometry.
Mechanical analysis was conducted using CIIR for nanocomposites. The study investigates
reinforcement and hybrid effects on rubber nanocomposites using CB, clay, GO, and a
clay–CB hybrid. It examines the optimal loading for improved properties and maximum
synergy. The study also addresses solvent casting techniques for CIIR-based composites,
characterizing them using mechanical properties.

2. Materials and Methods
2.1. Materials

The chlorobutyl rubber (CBK 150) with a Mooney viscosity of [ML (1 + 8)@125 ◦C] of 45,
with a chlorine content of 1.2 used in this study, was purchased from Nizhnekamsk, Russia.
The organoclay used is I.44P (Nanocor, Houston, Texas, USA; CEC is 70–150 meq/100 g
of clay). It is a Montmorillonite modified with an organic modifier octadecyl amine. This
was dried for 16 h at 90 ◦C before use. CB (N-330) was supplied by MRF Tyres. Natural
graphite powder was purchased from Sigma Aldrich, Bangalore, Karnataka, India with
99% purity, and the particle size was <20 µm. GO was also used as a nanofiller, and the
nanocomposites were prepared using solution casting.

2.2. Graphene Oxide Synthesis

The nanofiller GO was synthesized from natural graphite powder with 99% purity and
a particle size of 20 nm, which was purchased from Sigma Aldrich, Bangalore, Karnataka,
India. GO was synthesized using a modified Hummers method. The oxygen content of GO
produced with this method is typically 30–40% [62].
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2.3. Preparation of CIIR Nanocomposite

The study employed the same approach (solution casting) to make each of the five
CIIR samples (CIIR pure, CIIR + GO, CIIR + CB, CIIR + clay, and CIIR + CB + clay). A
hybrid ultrasonic sonication procedure was used to achieve effective sample dispersion.
First, 12 h of constant stirring was carried done to dissolve nanoparticles in toluene. The
samples were probe-sonicated in toluene for 5 min at 30% amplitude, for 40 s on and 20 s
off. Later, they were bath-sonicated for 12 h before being probe-sonicated again under
the aforementioned conditions for improved exfoliation. A magnetic stirrer was used to
combine the sample solution with the CIIR in toluene for 24 h. The samples were probe-
sonicated for 5 min at 15–20% amplitude, for 40 s on and 20 s off, before and after being
subjected to magnetic stirring. Although the sonication process causes high pressure, the
off-cycles enabled the temperature to be kept constant to improve the efficiency of sample
dispersion. This dispersion method was optimized based on trial and error. Then, the
substance was poured into a glass Petri dish and placed in a fume hood at 25 ◦C for two
days. The samples were vacuum-dried at 65 ◦C for 2 days to remove all traces of solvent.
We prepared 1 mm thick nanocomposites using compression moulding.

2.4. Protocol

Different ratios of CIIR nanoparticles were investigated to obtain a sufficient yield for
characterization. We dissolved 20 g of CIIR in 300 mL of toluene and kept it for 24 h, before
the mixture was mechanically stirred for 3 h. Nanoparticles were diluted to 1% (0.2 g) in
toluene (50 mL) and sonicated. The dispersed nanoparticle was added drop by drop to the
mechanical stirrer containing CIIR for 4 h, which was then cast in a Petri dish and kept
in an oven at 120 ◦C to evaporate the solvent. Figure 1 shows the schematic depiction of
polymer nanocomposites, and the composition used for the study is shown in Table 1.

Table 1. Composition of nanoparticles for CIIR-based composites.

Experiment Mass of CIIR
(Phr)

Mass of Nanoclay
(Phr)

Mass of CB
(Phr)

Mass of GO
(Phr)

CIIR 100 0 0 0
CIIR + CB 100 0 1 0
CIIR + clay 100 1 0 0
CIIR + GO 100 0 0 1
CIIR + clay + CB 100 0.5 0.5 0

2.5. Characterization

Morphological analysis, resistivity, and tensile testing have all been performed to
determine the properties of individual nanoparticles. The CIIR nanocomposites were
examined using an atomic force microscope using an A-100 SPM (APE Research Nano-
technology, Trieste, Italy) to evaluate the structural changes. The research used platinum-
coated cryo-fractured samples prepared by an ion sputter (K575X, Emitech, Fall River,
MA, USA). A diamond knife equipped with an ultra-microtome was used to produce
ultrathin sections (100 nm thick) of bulk specimens at −10~20 ◦C. Accurately weighed
and sealed samples of 10–15 mg were taken for the study. The AFM images of the cut
surface of the samples were taken in tapping mode by the Dimension 3100 Nanoscope,
silicon–SPM sensors with a spring constant of ca. 40 N/m and a resonance frequency of
280 kHz were used, with a tip radius of 10 nm, performed by AFM APE research. Resistivity
measurement setup (70–530 K) was used to measure the resistance. A universal testing
machine (Tinus Olsen-Model H25K-S UTM Benchtop) was used to examine the green
strength of CIIR composites. Tensile tests were used to study the mechanical behaviour
and were conducted by American Society for Testing and Materials (ASTM) D412-2006.
The sample was processed and evaluated by ASTM D6746. The samples were subjected to
ASTM D 4180-compliant tensile testing at 23 ◦C with a cross-head speed of 500 mm/min.
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3. Results and Discussion
3.1. Atomic Force Microscopy

Surface roughness can be measured using Ra and root mean square (RMS), which
are two distinct methods. Ra represents the roughness average of microscopic peaks
and valleys, while RMS represents the root mean square. Different formulas calculate Ra
values based on individual height measurements of surface peaks and valleys, allowing for
the comparison of topographic differences between composites by measuring Ra values.
We have selected only clay-filled systems and neat CIIR. The AFM images of CIIR and
CIIR + clay showed a significant change in morphology with the addition of nanoclay.
The addition of nanoclay significantly increased the observed Ra values, approximately
four times higher than the neat CIIR. The results indicate that the addition of clay to CIIR
increased the surface roughness of the material which made the material more adhesive.
Table 2 shows the Ra and RMS values for CIIR + GO and CIIR + clay, and AFM images are
shown in Figure 2. We also found that nanoclay was well-dispersed in the CIIR matrix.

Table 2. Ra and RMS for CIIR + clay.

CIIR CIIR + Clay

Ra (average surface roughness) 10.88 nm 48.90 nm
RMS (root mean square) 16.88 nm 75.25 nm
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3.2. Resistivity Measurement

Electrical resistivity is an intrinsic property that quantifies the ability of a given material
to oppose the flow of electric current. A substance with a low resistivity enables electric
current to flow easily. Resistivity measurements will help develop electrically conductive
multifunctional polymer nanocomposites by maintaining the processability and low cost of
the starting material. The introduction of electrically conductive fillers into non-conductive
polymeric matrixes is one way of improving the conductivity. It has been observed that the
addition of carbon-based fillers like graphene, CB, CNT, and carbon fibres to insulating
polymers causes a drop in the resistivity of the composite, making it more electrically
conductive [63–66].

The effect of nanoclay on the electrical resistivity of various polymer matrices has
already been studied [67,68]. From the results, a sharp drop in resistivity is observed
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for CIIR–clay-based composites and the hybrid composites with nanoclay and CB. Sim-
ilar observations were reported by Rashmi et al. in a study based on Montmorillonite
nanoclay filler effects on the electrical conductivity of epoxy-based nanocomposites [69].
Experimental results showed that the inclusion of 2 wt% MMT nanofiller increased the
Tg, electrical conductivity, thermal stability, modulus, and free volume of the epoxy
nanocomposite significantly.

In composites with CB and clay (hybrid systems), the resistivity was higher than
in clay-filled systems; however, much lower than CB- and graphene-filled systems. This
demonstrates that the addition of nanoclay results in a conductive network due to enhanced
CB dispersion. However, for the GO-incorporated composites, the high inherent electrical
conductivity and large surface area of GO sheets were not effective in making a conductive
network. This could be due to the poor dispersion of GO in the CIIR. Figure 3 displays the
resistivity values of CIIR polymer nanocomposites with varying compositions, and Table 3
shows the resistivity values of the composites.
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Table 3. Resistivity values of the composites.

Sample CIIR pure CIIR + GO CIIR + CB CIIR + Clay CIIR + Clay + CB

Resistivity (Ω-cm) 5.76 × 1015 4.05 × 1015 6.55 × 1015 1.20 × 1014 3.69 × 1012

The study reveals that the resistivity decreases in general with the filler loading
combinations of CIIR matrixes. The resistivity seems to decrease with an increase in all
filler loadings. This decrease in resistivity could be attributed to the hopping phenomenon
of conduction theory. The enhanced frequency of the AC electric field increases the flow of
the current across the system. In general, the conductivity of filled polymer composites
is governed by both the mechanism of conduction theory (the formation of continuous
conductive networks) and the hopping mechanism (electric field radiation) of conduction
theory [70–72]. Before percolation, the conductivity in the polymer composite is due to the
hopping (jumping) of electrons from one conducting site to another, which is facilitated as
the distance among the conducting sites is reduced. Thus, with the increase in frequency,
the electrons present in the system acquire more energy, which facilitates them hopping
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from one conductive site to another, thereby reducing the electrical resistivity. This is due
to the formation of continuous conductive filler networks in the polymer matrix. If the
continuous conductive network is formed in the polymer matrix, electrons jumping from
one conductive site to another is not necessary. Accordingly, the impact of the hopping
phenomenon is reduced, which makes it frequency-independent.

The electrical properties of nanocomposites rely on how the filler particles are dis-
persed through the polymer matrix. At low levels of filler loading, the resistivity of the
nanocomposite is slightly lower than that of the base polymer, since the filler particles
begin to be in contact with each other, and a continuous path is formed through the volume
of the sample for electrons to travel. It was noted by researchers that the material produced
directly from GO is not particularly useful as a conductor [73,74]. A partial reduction of
GO might be necessary to restore conductivity [75,76]. The report also shows that GO
films show poor conductivity at a low humidity, acting as an insulator, but an increase in
conductivity at a high humidity, due to enhanced ion conduction [77].

3.3. Mechanical Properties

The stress–strain curve is given in Figure 4. The CB-filled system showed the highest
tensile strength (TS) (Figure 4). CB–clay hybrid fillers in CIIR composites have enabled
dramatic synergistic reinforcing concerning the modulus (Figure 4 and Table 4), although
the TS is lower.
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Figure 4. Strain vs. stress for NR composites for different fillers.

Mechanical characteristics were shown to be enhanced in all nanocomposites when
compared to pure CIIR. Hybrid composites showed a higher modulus than conventional
nanocomposites. This is indicative of the synergistic action of nanoclay and CB. Strong
filler–filler and filler–rubber interactions were primarily responsible for the enhanced
mechanical characteristics of CIIR/CB composites [63]. The filler dispersion is crucial at
high filler loadings. We hypothesize that the highest tensile strength is due to the improved
dispersion of CB in CIIR. As can be seen in Figure 5, the carbon black and clay (hybrid
system) form a network in the CIIR matrix, nd this leads to the highest modulus values
and better conductivity.

We would like to add that all the samples prepared for the study were unvulcanised
and, therefore, green strength measurement was critical. To avoid the effect of vulcanization
on the reinforcement, we focussed on the unvulcanised green materials. An green strength
assessment is crucial for evaluating the mechanical performance of unvulcanised rubber
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compounds, especially in CIIR nanocomposites with low concentrations of fillers like CB,
GO, and clay. Unvulcanised rubber made using solution casting has a low mechanical
strength due to the absence of cross-linking. Dispersed fillers in rubber enhance its mechan-
ical properties due to superior rubber–filler and filler–filler interactions. CB, with its high
surface area and network formation capabilities, provides physical reinforcement. GO and
clay, with their high aspect ratios and interconnected structures, further strengthen the me-
chanical strength of the rubber matrix. These fillers contribute to the overall strength of the
rubber matrix. Interactions of CB and clay with CIIR are shown schematically in Figure 5.
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Table 4. Stress values at 100, 200, and 300 percentage strains of CIIR composites.

(MPa) CIIR Pure CIIR/GO CIIR/CB CIIR/Clay CIIR/CB/Clay

Stress at 100% strain 0.27 0.36 0.36 0.44 0.45
Stress at 200% strain 0.35 0.47 0.45 0.53 0.53
Stress at 300% strain 0.36 0.47 0.44 0.53 0.54

4. Conclusions

The study explores the development and characterization of nanocomposites made
from CIIR and CIIR/CB/clay hybrid systems. AFM results indicate that the addition of
nanoclay to CIIR increased the surface roughness of the material, which made the material
more adhesive. The study found a significant decrease in resistivity in CIIR–clay-based
composites and in hybrid composites with nanoclay and CB. The higher resistivity in
CB composites suggests that nanoclay enhances conductive networks. However, GO-
incorporated composites struggled to create conductive networks, and this may have
been due to the agglomeration. The study also found that only CB/clay hybrid system
showed the highest modulus at 100%, 200%, and 300% elongation, while other nanofillers
do not significantly impact these values. Finally, we conclude that hybrid filler systems
and advanced characterization methodologies will provide insights into structure-property
relationships, facilitating their adoption across various industrial and automotive sectors.
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