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Abstract: New and innovative technologies have expanded the quality and applications of aluminum
welding in the maritime, aerospace, and automotive industries. One such technology is the addi-
tion of nanoparticles to aluminum matrices, resulting in improved strength, operating temperature,
and stiffness. Furthermore, researchers continue to assess pertinent factors that improve the mi-
crostructure and mechanical characteristics of aluminum welding by enabling the optimization of the
manufacturing process. Hence, this research explores alternatives, namely cost-effective aluminum
welding fillers reinforced with niobium diboride nanoparticles. The goal has been to improve weld
quality by employing multi-objective optimization, attained through a central composite design
with a response surface model. The model considered three factors: the amount (weight percent) of
nanoparticles, melt stirring speed, and melt stirring time. Filler hardness and porosity percentage
served as response variables. The optimal parameters for manufacturing this novel filler for the
processing conditions studied are 2% nanoparticles present in a melt stirred at 750 rpm for 35.2 s.
The resulting filler possessed a 687.4 MPA Brinell hardness and low porosity, i.e., 3.9%. Overall, the
results prove that the proposed experimental design successfully identified the optimal processing
factors for manufacturing novel nanoparticle-reinforced fillers with improved mechanical properties
for potential innovative applications across diverse industries.

Keywords: nanotechnology; manufacturing; optimization; TIG welding aluminum; central composite
design; CCD; response surface methodology

1. Introduction

The global aluminum welding wire market yielded USD 573.09 million in 2024 and is
predicted to reach USD 758.44 million by 2030 [1]. Furthermore, investment in research and
development will increase due to the adoption of innovative technologies that expand the
quality and uses of aluminum welding in the maritime, aerospace, and automotive indus-
tries [1]. Several techniques are available for aluminum welding. Tungsten inert gas (TIG)
welding is a popular choice for high-quality welds [2–5]. TIG welding advantages, such as
small deformations due to heat concentration, uniformity, and purity (due to the inert gas
cover), ensure the melting effectiveness of the joining materials [2,5]. Various test methods
are employed to evaluate weld quality and characteristics based on the compatibility of
the joined materials. Metallographic analyses are standard techniques for assessing weld
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quality and determining the resulting porosity and weld uniformity [2–7]. In addition,
destructive test methods are standard quality tests that confirm weld effectiveness [8].
Experimental design and statistical modeling are implemented to assess welding process
quality better [9].

Furthermore, incorporating nanoparticles has raised a given metal’s mechanical
strength [10–12]. For instance, the addition of niobium diboride (NbB2) nanoparticles
strengthens a pure aluminum matrix used in wire fabrication [6,13–16], showing improve-
ments in strength, oxidation resistance, operating temperature, stiffness, wear resistance,
and increasing the electrical conductivity [2,6,15,17]. A high strength-to-weight ratio makes
these nanocomposite materials apt for structural applications [9,17,18]. Other materi-
als that increase weld strength are titanium diborides, carbon nanotubes, and graphene
nanosheets [2,17,19]. Additional studies are required to understand the critical tenets of
fillers for Al TIG welding based on statistical underpinnings.

In the present study, we explore a cost-effective alternative of aluminum welding
fillers reinforced with nanoparticles to improve quality welding through multi-objective
optimization for increased safety and efficiency in repairing lightweight structures. A
central composite design (CCD) permitted the study of the factors in manufacturing the
proposed nanoparticle-reinforced fillers. The main factors studied are nanoparticle amount
(weight percent), stirring speed, and stirring time. Each factor was evaluated at two levels,
six axials, and four center points. The response variables for the experiment were the filler
hardness and the porosity percentage.

2. Materials and Methods

Applying a statistical design of experiments (DOE) represents a viable alternative to
optimize the processes under study [20]. Aside from being an expeditious and inexpensive
methodology, a DOE also allows for building a predictive system model. For those reasons,
DOE was selected as the centerpiece of this study.

2.1. Optimization Process

A central composite design (CCD) can help develop an empirical model of the stir-
casting process by estimating a second-degree polynomial model, enabling manufacturing
process optimization [20]. In our case, the CCD is a 32 factorial, with two replicates in the
factorial, six axials, and four center points. Figure 1 shows the central composite design
applied to this methodology. Implementing the axial executions would allow the addition
of quadratic terms into the model to help build second-order response surface models. The
factors associated with the distribution of the reinforcement were evaluated at two levels:
a weight percent of nanoparticles at 0.5 and 1.5 wt.%, a melt stirring speed at 300 and
600 rpm, and a melt stirring time at 20–40 s, as preliminary research permitted to establish
as operating procedures available in our laboratory setting.
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2.2. Filler Manufacturing

Before manufacturing the proposed experimental filler, NbB2 particles must be pre-
pared and embedded into an aluminum matrix through cold welding [6,10,13–16]. Stir
casting then further improves the bonding of the reinforcing particles due to melt ag-
itation [21]. Then, weld quality is assessed through hardness and porosity tests [2,3,5].
Figure 2 shows the filler manufacturing steps, i.e., NbB2 particle manufacturing, stir casting,
and quality testing.
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2.2.1. Step 1—Synthesis of NbB2 Pellets

A vario-planetary high-energy ball mill (Pulverisette 4, manufactured by Fritsch
GmbH, Idar-Oberstein, Germany) operated at 1600 rpm for 10 h allowed the fragmenting of
the as-received NbB2 (Alfa Aesar, Ward Hill, MA, USA) pieces to the nanoscale with a 1:10
ball-to-power ratio (BPR) (Figure 2a) [22]. This procedure rendered NbB2 nanoparticles with
an average crystallite size of 14 nm, as illustrated in Figure 3. This size was estimated with
Scherrer’s equation [23] using a Siemens® (Princeton, NJ, USA) D500 X-ray diffractometer
to scan the fragmented specimens within a 15–75◦ 2θ range with Cu Kα radiation (i.e.,
λ = 0.154178 nm, Figure 3).

The scanning electron microscope (SEM) images in Figure 4 correspond to clusters of
NbB2 particles before the ball milling process and after 10 milling hours, respectively; the
reduction in the particle size of the diboride is evident. The obtained NbB2 particles, which
were milled for 10 h, had an approximate size of 14 nm, which was deemed appropriate to
proceed with the planned experiments. Since the number of diboride nanoparticles in the
aluminum–magnesium matrix is too low for detection in the SEM, the authors opted to
assess only the reduction in particle size of the diborides in the SEM, based on techniques
developed in successful prior research [6].

To ensure proper particle dispersion during pellet fabrication, we used a hot plate
stirrer to mix an isopropanol solution with the NbB2 and pure Al powder, with an Al-to-
NbB2 mass ratio of 90:10 (Figure 2b). The solution was stirred at 250 rpm for approximately
72 h at 60 ◦C inside a fume hood until the liquid evaporated. To prepare the Al/NbB2
nanocomposite pellets via mechanical alloying, we first furbished the planetary ball mill
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(PBM) with two sets of grinding bowls and support disks, each working independently,
rotating in the same direction. Then, the resulting diboride powder was milled along
with 99.5% pure aluminum powder (Acros Organics, Morris Plains, NJ, USA). During
milling, the jar’s inner walls and the milling balls striking the Al-NbB2 mix induced cold
welding. The rotational speed was set at 1020 rpm for 1 h, with a BPR of 10:1 [24] (Figure 2c).
After cold welding, we sintered the pellets to enhance the aluminum/diboride interface
to reduce porosity [6,10,13–16]. A 200 ◦C annealing for 30 min in a reduced vacuum
atmosphere (4 kPa) permitted the enhancement of the aluminum/diboride interface by
removing residual stresses in the Al/NbB2 composite produced during the intense plastic
deformation caused by ball milling (Figure 2d).
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2.2.2. Step 2—Stir Casting

Pure aluminum pellets, along with an Al-Mg (5 wt.% Mg) master alloy, were melted at
700 ◦C in a graphite crucible (Figure 2e). We inoculated the melt with the Al/NbB2 pellets
and mechanically stirred the molten material to improve the nanoparticle distribution
(Figure 2e). Meanwhile, the mold and the stirrer were preheated at 650 ◦C to avoid abrupt
temperature changes during the stir-casting process (Figure 2f). The filler was prepared
with different nanoparticle weight percentages and an Al—5 wt.% Mg binary alloy through
a stir casting process (Figure 2g). The treated melt was poured into a mold to produce
6 mm diameter cylindrical ingots (Figure 2h).

2.2.3. Step 3—Quality Test

The ingots were cleaned and cold rolled in a manual rolling machine until the rods
reached about 2.4 mm, as recommended by AWS, to achieve better joints between the base
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plate metal (i.e., AA6061) and the filler (Figure 2i,j). A machined single V-groove (60◦ angle)
was used to test the weld made from the nanoparticle-reinforced filler material [7]. AA6061
commercial aluminum alloy plates served as the welding test’s base material, following the
AWS 5–10 standard (Figure 5) [25]. We removed oxide layers before welding with a steel
wire brush and acetone to ensure weld quality. Additionally, the following weld parameters
were considered to achieve better weld quality: peak current, base current, and pulse
rate [26]. These welding parameters were controlled by the TIG welding unit, a Lincoln
Electric Precision TIG 225 230V AC/DC TIG machine manufactured by Lincoln Electric
(Cleveland, OH, USA). Table 1 provides the range of the parameters employed and the
constant settings used. Since the manufacturing process took place at a laboratory scale, the
amount of materials necessary for a statistically significant number of tensile test specimens
was out of reach; therefore, the authors opted to assess only the materials’ hardness,
as a representative mechanical property. An LCR-500 hardness tester manufactured by
LECO (St. Joseph, MI, USA) helped measure Brinell hardness on the welds, following
the ASTM E10-18 [27] and ASTM B647—10 [28] standards by indenting the material with
a 3.175 mm diameter steel ball with 15 kg of Force (Figure 2l). The welded sample was
cut transversely to the weld direction and polished. Then, the porosity was observed in
an optical microscope Nikon® (Melville, NY, USA) model Epiphot 200. ImageJ 1.49r, an
open-source image processing package, was used to quantify weld porosity. At this point,
one must underscore that AWS establishes a 4% porosity upper limit for quality welds.
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Table 1. TIG welding parameters.

Welding Parameters Value Units

Welding Current 120–170 A
Welding Speed 100–120 mm/min

Argon Flow Rate 18 cc/min
Wire Feed Speed 6.1–7.6 m/min

Torch angle 60–80 ◦

Electrode diameter 2.4 mm
Filler rod diameter 2.4 mm

3. Results
3.1. Response Variable Analysis: Brinell Hardness

The data normal distribution was verified through a probability plot of the Brinell
hardness tests. Since the p-value was 0.073, i.e., >0.05, there is enough evidence to con-
clude that the results do not follow a normal distribution. Hence, data transformation
was necessary to improve the normalization and equalization of variance for skewed vari-
ables [29]. A Box–Cox transformation via Minitab was used to correct the error distribution
and unequal variance bias by obtaining a λ = 0.5. The deleted residuals permitted the
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identification of outliers; the assumption of independence error terms was not violated. The
analysis of variance (ANOVA) in Table 2 reveals that the ‘percentage of nanoparticles’ with
an F-value = 117.8 (p < 0.001) is the most significant factor in filler production and weld
hardness. Moreover, the ‘stirring speed’ showed an F-value = 20.56 (p < 0.001), while the
‘stirring time’ had an F-value = 19.67. These results suggest that the latter factors did not
influence the hardness but did affect the reinforcement distribution and weld quality. The
main effects’ variance inflation factor (VIF) is 1, i.e., the predictors are not correlated. Using
a regression model for Brinell hardness (Equation (1)), we can find the factor that maximizes
the performance of the stir casting process, with a prediction percentage of 58.52%.

Table 2. Analysis of variance for the transformed response of the Brinell hardness.

DF Adj SS Adj MS F-Value p-Value

Model 10 58.993 5.8993 18.71 0
Blocks 1 0.0051 0.0051 0.02 0.899
Linear 3 49.826 16.6086 52.67 0

Percentage (%) 1 37.142 37.1415 117.8 0
Speed (rpm) 1 6.4812 6.4812 20.56 0

Time (s) 1 6.2031 6.2031 19.67 0
Square of factors 3 7.98 2.66 8.44 0

Percentage (%) × Percentage (rpm) 1 0.1219 0.1219 0.39 0.535
Speed (rpm) × Speed (rpm) 1 3.6803 3.6803 11.67 0.001

Time (s) × Time (s) 1 0.7939 0.7939 2.52 0.115
2-Way Interaction 3 1.1158 0.3719 1.18 0.321

Percentage (%) × Speed (rpm) 1 0.0228 0.0228 0.07 0.788
Percentage (%) × Time (s) 1 0.3162 0.3162 1 0.319

Speed (rpm) × Time (s) 1 0.7769 0.7769 2.46 0.119
Error 119 37.521 0.3153

Lack-of-Fit 4 1.5529 0.3882 1.24 0.297
Pure Error 115 35.968 0.3128

Total 129 96.515

Equation (1): Regression Equation of Brinell Hardness

The regression equation for the Brinell hardness can help build a response surface
that is able to predict the response at the factor’s intermediate levels. Figure 6A shows the
Brinell hardness surface plot with the stirring speed and the percentage of nanoparticles as
factors. It illustrates that the material could increase hardness for higher speeds (~750 rpm)
and nanoparticle percentages (~2%). The curvature in the stirring speed is more apparent
at shorter times. Figure 6B presents the effects of stirring time and NbB2%. It reveals how
a stirring time between 10 and 20 s and 2% percent nanoparticles could render higher
hardness. Figure 6C shows the stirring time and speed effects. Evidently, increasing or
reducing both factors simultaneously leads to lower hardness values. However, such a
combination leads to a more significant response when one factor increases and the other
decreases. For example, high hardness results were observed with 10 and 20 s of stirring
time at 750 rpm; also, the stirring time did not influence the hardness at speeds higher than
700 rpm. Moreover, the plot shows an unexpected behavior: a slight increase in hardness
at 150 rpm. Yet, every time the stirring time increases at this speed, a steep decrease in
hardness is noticeable. The Minitab 17® response optimizer tool allowed for the computing
of an optimal response variable, as we assigned the same weight and importance to both
factors. Such weight indicates the distribution of the desirability between the lower or
upper limit and the goal [30]. With the optimal hardness, we completed an optimal multiple
response prediction. The optimal parameter levels for this regression model rendering a
maximum Brinell hardness are 2% NbB2, 750 RPM, and 21.7 s of stirring time; this leads to a
Brinell hardness of 698.5 MPa. The prediction’s confidence interval (CI) is 653.5, 745.0 MPa
for a 95% CI. As mentioned, the desirability estimates how the variables’ combination
satisfies a set of responses in general. The range of CCD desirability is between zero and
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one, where zero indicates that some of the responses are outside the acceptable limits, and
one represents the ideal case. Our optimal response had a desirability of 1.

Regression Equation of Brinell Hardness (MPa)ˆ0.5 = 24.37 + 1.683 Percentage (%) − 0.00874 Speed (RPM)
+ 0.0166 Time (S) − 0.147 Percentage (%) × Percentage (%) + 0.000009 Speed (RPM) × Speed (RPM)
− 0.000939 Time (S) × Time (S) + 0.000225 Percentage (%) × Speed (RPM) − 0.0126 Percentage (%)

× Time (S) + 0.000066 Speed (RPM) × Time (S)

(1)
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3.2. Response Variable Analysis: Porosity

The normal probability test for porosity revealed a typical problem: a sharp curve
up and down at both ends, indicating that the tails of this distribution may question the
normality assumption. Yet, since the p-value was 0.010, the results do not follow a normal
distribution. Hence, a Box–Cox transformation was used to help correct the curves in the
distribution and enhance the normality. In effect, the transformation helped to improve
the distribution of the data on the centerline and to decrease the p-value to 0.079 with an
estimated λ of 1.046. In the deleted residual order plot, the residuals fall randomly around
the centerline. No apparent pattern indicates that residuals are not correlated. The ANOVA
in Table 3, again, reveals that the nanoparticle percent, with an F-value of 54.74, is the
most statistically significant factor. In addition, the interaction between NbB2 percentage
and stirring speed strongly influenced porosity. The next step was to analyze the main
effects individually to determine the factor levels that would yield an optimum result.
Figure 7 corresponds to the main effects plot for porosity. This tool uncovers that a high
percentage of NbB2 and a stirring time that remains at the central point value minimize
the porosity. In Equation (2), the porosity-transformed response variable resulted in a
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prediction percentage of 69.11%. The main effects’ VIF is 1, revealing that the predictors
were not correlated.

Table 3. Analysis of variance for the transformed response of the porosity area.

DF Adj SS Adj MS F-Value p-Value

Model 10 53.025 5.3025 33.41 0
Blocks 1 8.3991 8.3991 52.93 0
Linear 3 12.5931 4.1977 26.45 0

Percentage (%) 1 8.6864 8.6864 54.74 0
Speed (rpm) 1 3.3546 3.3546 21.14 0

Time (s) 1 0.5521 0.5521 3.48 0.065
Square of factors 3 4.055 1.3517 8.52 0

Percentage (%) × Percentage (rpm) 1 0.491 0.491 3.09 0.081
Speed (rpm) × Speed (rpm) 1 1.6713 1.6713 10.53 0.002

Time (s) × Time (s) 1 3.6975 3.6975 23.3 0
2-Way Interaction 3 16.1331 5.3777 33.89 0

Percentage (%) × Speed (rpm) 1 13.0154 13.0154 82.02 0
Percentage (%) × Time (s) 1 0.2423 0.2423 1.53 0.219

Speed (rpm) × Time (s) 1 2.8754 2.8754 18.12 0
Error 119 18.8845 0.1587

Lack-of-Fit 4 3.0355 0.7589 5.51 0
Pure Error 115 15.849 0.1378

Total 129 71.9095
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Equation (2): Regression Equation of Porosity

Using the regression equation for porosity prediction, we can represent the relationship
between the independent variables and the response one via a regression model. Then, the
corresponding response surface helps to better understand the influence of the three factors
studied during welding, as presented in Figure 7. Figure 8A shows the surface plot gener-
ated via the predictive porosity equation with the stirring speed factor and the nanoparticle
percent as factors. The welds exhibited a minimum porosity of 0.39% at 150 RPM and
2% of nanoparticles. Less porosity is present as the percentage of nanoparticles increases
within the 150–450 rpm range. However, in the absence of NbB2 nanoparticles, porosity
levels increase for similar values of stirring speed. Figure 8B shows the response surface
plotted as a function of the stirring time and NbB2%. It is apparent that a stirring time
longer than 40 s leads to high porosity. In addition, the graph shows that the presence of
nanoparticles at medium stirring time levels reduced the porosity. Figure 8C shows the
surface plot of porosity as a function of the stirring time and stirring speed. The apparent
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ellipsis results from a significant interaction between the independent variables [31]. The
minimum point is assumed to be approximately at the intersection of the major and minor
axes of the ellipse. Moreover, Figure 8C confirms that high stirring speeds with prolonged
mixing times significantly increase the porosity. Thus far, we have sought parameters that
minimize weld porosity to increase weld quality. The optimal multiple response prediction
was computed with the Minitab 17® response optimizer tool. Our results revealed that 2%
NbB2, 150 rpm stirring speed, and 35 s of stirring time are optimal for achieving minimum
porosity. Our desirability value is 1 for the optimal response.

Porosity (%) = 8.934 − 3.879 Percentage (%) − 0.01351 Speed (rpm) − 0.1827 Time (s) + 0.295 Percentage (%)
× Percentage (%) + 0.000006 Speed (rpm) × Speed (rpm) + 0.002027 Time (s) × Time (s) + 0.005378

Percentage (%) × Speed (RPM) + 0.01101 Percentage (%) × Time (s) + 0.000126 Speed (rpm) × Time (s).
(2)
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3.3. Optimal Multi-Objective Optimization Solution for Brinell Hardness and Porosity

After developing an equation for each response variable and analyzing the optimal
solutions, we optimized both variables using the desirability function. We calculated
levels that maximize hardness while retaining a 4% maximum porosity; welding quality is
deemed inadequate for above this percent. The response optimizer tool allowed for the
computing of an optimal response variable, thereby rendering the best welding quality, as
shown in Table 4. For the analysis, we assigned the same weight and importance to both
factors to the parameters to calculate said optimal level. The as-computed optimal levels
rendering the best weld with our experimental filler were 2% NbB2, a 750 rpm stirring
speed, and a 35.3 s stirring time, which led to a Brinell hardness of 687 MPa. Figure 9 shows
the welded sample’s representative microstructure and resulting measured porosity. The
images allowed for the corroboration that a 3.9% porosity is present in the optimal sample



J. Compos. Sci. 2024, 8, 210 10 of 13

using Image J, an open-source image processing package, to quantify the porosity percent
along the weld. The standard error of the fits (SE fits) for such porosity was 0.3, and the
confidence interval (CI) for a 95% prediction was 2.92% and 4.88%. The SE fit for Brinell
hardness was 20 and the 95% prediction CI was 620.8 to 754.1 MPa.

Table 4. Parameters to calculate the optimal Brinell hardness (MPa) and porosity (%).

Response Goal Lower Target Upper Weight Importance

Porosity (%) Target 0.08 3.9 4.29 1 1
Brinell Hardness (MPa) Maximum 490.1 663 1 1
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4. Discussion

A central composite design analysis was conducted for Brinell hardness and porosity,
considering stirring speed, stirring time, and NbB2% to study the parameters that can affect
weld quality.

4.1. Central Composite Design Analysis: Brinell Hardness

Regarding the CCD for Brinell hardness in Figure 6, our results show that for higher
speeds (~750 rpm) and nanoparticle percentages (~2%), the material achieved higher hard-
ness (Figure 6A). The literature revealed a similar behavior with B4C particles at 700 rpm;
in such cases, the composite microstructure improved for higher amounts of reinforce-
ment [32]. Concerning stirring time and NbB2% (Figure 6B), Li Yu presented a study on
the titanium effect and stirring time of an Al-B4C composite. This work obtained greater
tensile strength with 3.5 wt.% titanium and a shorter stirring time. On the other hand,
with the same amount of titanium, lower tensile strength was obtained with prolonged
stirring time [21]. This is like our findings: a stirring time between 10 and 20 s and 2%
percent of nanoparticles rendered higher hardness. This explains the importance of stirring
time in manufacturing nanocomposites. For stirring speed and stirring time (Figure 6C),
we observed higher hardness between 10 and 20 s of stirring time at 750 rpm. These
results agree with those by S. Balasivanandha [33], who worked on the influence of stirring
speed and stirring time on the particle’s distribution in the stir-casting process. This study
concluded that both factors affect the production of metal matrix composites and that the
higher speeds and reinforcement percentages favor a more homogeneous reinforcement
distribution in the filler material.
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4.2. Central Composite Design Analysis: Porosity

The CCD results for porosity (Figure 8) revealed that the material exhibited its min-
imum porosity at 150 rpm (2% NbB2), but it increases as the stirring speed increases
(Figure 8A). Previous studies corroborate that high-speed stir casting renders turbulence-
trapping gases in the Al-Mg melt due to pressure differences [34]. As a result, porosity
is inherited by the casting. Moreover, the reinforcement distribution becomes poor and
heterogeneous for slower stirring speeds, but the porosity reduction is significant [34].
Regarding stirring time and NbB2% (Figure 8B), our results show that stirring times longer
than 40 s render higher porosity. In contrast, the presence of nanoparticles at medium
stirring time levels reduced the porosity. Different studies have concluded that to attain a
uniform distribution through the stir-casting process, the particles need to be dispersed
throughout the aluminum melt at the same time [33–35]. This is achieved by forcing the
particles into rotational currents for a specified time while the vortex pulls the reinforce-
ment particles well into the aluminum melt [33–35]. However, prolonged agitation causes
the vortex to entrap air into the molten aluminum, increasing porosity. As mentioned in the
porosity versus stirring time and rotational speed plot (Figure 8C), an apparent elliptical
zone exists. This region occurs because of a significant interaction between the independent
variables [31]. The minimum point is assumed to be approximately at the intersection of
the major and minor axes of the ellipse. Moreover, the porosity response surfaces as a
function of the stirring time, and the stirring speed confirms that high stirring speed with
prolonged mixing time significantly augments the porosity. Once again, we attribute this
result to the turbulence and the amount of air trapped into the melt by the vortex.

5. Conclusions

This study has successfully demonstrated the effectiveness of using niobium diboride
(NbB2) nanoparticles to enhance the properties of aluminum welding fillers. Through the
application of a central composite design and response surface methodology, the research
identifies optimal processing conditions that minimize porosity and maximize the hardness
of the welding filler, significantly improving weld quality. The main conclusions are
summarized as follows:

• The analysis of variance (ANOVA) conducted for the transformed response for hard-
ness reveals that the percentage of nanoparticles with an F-value = 117.8 (p < 0.001)
was the most significant factor in filler production and weld hardness.

• Increasing the levels of NbB2 nanoparticles up to 2% into the Al-4wt.%Mg alloy
successfully increased the weld hardness by 21%, compared to unreinforced welds.

• The optimal parameters for manufacturing this novel filler are 2% NbB2 nanoparticles
at 750 rpm and 35.3 s of stirring. These conditions yield a material bearing a 687. 4 MPa
Brinell hardness and only 3.9% porosity.

• The ANOVA conducted for the transformed response for porosity reveals that the
nanoparticle percent, with an F-value of 54.74, is the most statistically significant factor.
In addition, the interaction between NbB2 percentage and stirring speed strongly
influenced porosity.

• Our results revealed that 2% NbB2, a 150 rpm stirring speed, and 35 s of stirring time
are optimal for achieving a minimum porosity of 0.39%.

• A 50 s stirring time produced a porosity greater than 2.8%, the highest percentage
obtained during the study with 0.5% NbB2 nanoparticles at a stirring speed greater
than 700 rpm. This is attributed to the high amount of air taken by the vortex and
trapped in the melt.

• The standard error of the fits (SE fits) for such porosity was 0.3, and the confidence
interval (CI) for a 95% prediction was 2.92% and 4.88%. The SE fit for Brinell hardness
was 20, and the 95% prediction CI was 620.8 to 754.1 MPa.

• Our experimental design successfully identified the optimal processing parameters
for manufacturing nanoparticle-reinforced fillers. Additionally, we developed a multi-
objective model to predict the future behavior of the material for the three manufactur-
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ing factors. Moreover, one can conclude that stirring speed, stirring time, and NbB2
nanoparticle percent significantly influence the Brinell hardness of the weld.
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