A Study of the Moisture Absorption Characteristics of Vinyl Ester Polymer and Unidirectional Glass Fibre Vinyl Ester Laminates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ageing Conditions
2.3. Diffusivity Analysis
2.4. Dynamic Mechanical Analysis
3. Results and Discussion
3.1. Neat Polymer Moisture Uptake
3.1.1. DION 1260 Polymer
3.1.2. DION 1273 Polymer
3.2. Laminate Moisture Uptake
3.3. Dynamic Mechanical Analysis
3.3.1. DMA of the VE Polymer Matrices
3.3.2. DMA of the GF-VE Laminates
4. Conclusions
- DION 1260—a baseline VE, and DION 1273—a developmental VE, polymers under long-term wet environments. A comparison between different curing conditions for DION 1260 was also included.
- AF1260—a baseline laminate and WF1273—a developmental laminate.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomason, J.L. The interface region in glass fibre-reinforced epoxy resin composites: 2. Water absorption, voids and the interface. Composites 1995, 26, 477–485. [Google Scholar] [CrossRef]
- Cohn, D.; Marom, G. The effect of the morphology on the hygroelastic behaviour of polyester and epoxy resins. Polymer 1983, 24, 223–228. [Google Scholar] [CrossRef]
- Gupta, V.B.; Drzal, L.T.; Rich, M.J. The physical basis of moisture transport in a cured epoxy resin system. J. Appl. Polym. Sci. 1985, 30, 4467–4493. [Google Scholar] [CrossRef]
- Morel, E.; Bellenger, V.; Verdu, J. Structure-water absorption relationships for amine-cured epoxy resins. Polymer 1985, 26, 1719–1724. [Google Scholar] [CrossRef]
- Wong, T.C.; Broutman, L.J. Moisture diffusion in epoxy resins Part I. Non-Fickian sorption processes. Polym. Eng. Sci. 1985, 25, 521–528. [Google Scholar] [CrossRef]
- Danieley, N.D.; Long, E.R., Jr. Effects of curing on the glass transition temperature and moisture absorption of a neat epoxy resin. J. Polym. Sci. Polym. Chem. Ed. 1981, 19, 2443–2449. [Google Scholar] [CrossRef]
- Marom, G. The role of water transport in composite materials. In Polymer Permeability; Comyn, J., Ed.; Springer: Dordrecht, The Netherlands, 1985; pp. 341–374. [Google Scholar]
- Carter, H.G.; Kibler, K.G. Langmuir-type model for anomalous moisture diffusion in composite resins. J. Compos. Mater. 1978, 12, 118–131. [Google Scholar] [CrossRef]
- Lee, M.C.; Peppas, N.A. Water transport in graphite/epoxy composites. J. Appl. Polym. Sci. 1993, 47, 1349–1359. [Google Scholar] [CrossRef]
- Sethi, S.; Ray, B.C. Environmental effects on fibre reinforced polymeric composites: Evolving reasons and remarks on interfacial strength and stability. Adv. Colloid Interface Sci. 2015, 217, 43–67. [Google Scholar] [CrossRef]
- Maxwell, A.S.; Broughton, W.R. Survey of Long-Term Durability Testing of Composites, Adhesives and Polymers. 2017. Available online: https://eprintspublications.npl.co.uk/7484/ (accessed on 6 April 2024).
- Weitsman, Y.J. Fluid Effects in Polymers and Polymeric Composites; Springer: New York, NY, USA, 2012. [Google Scholar]
- Martin, R. Ageing of Composites, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Bian, X.S.; Ambrosio, L.; Kenny, J.M.; Nicolais, L.; Dibenedetto, A.T. Effect of water absorption on the behavior of E-glass fiber/nylon-6 composites. Polym. Compos. 1991, 12, 333–337. [Google Scholar] [CrossRef]
- Krauklis, A. Environmental Aging of Constituent Materials in Fibre-Reinforced Polymer Composites. Ph.D. Thesis, NTNU Norwegian University of Science and Technology, Trondheim, Norway, 2019. [Google Scholar]
- Boinard, E.; Pethrick, R.A.; Dalzel-Job, J.; Macfarlane, C.J. Influence of resin chemistry on water uptake and environmental ageing in glass fibre reinforced composites-polyester and vinyl ester laminates. J. Mater. Sci. 2000, 35, 1931–1937. [Google Scholar] [CrossRef]
- Murthy, H.N.; Sreejith, M.; Krishna, M.; Sharma, S.; Sheshadri, T. Seawater durability of epoxy/vinyl ester reinforced with glass/carbon composites. J. Reinf. Plast. Compos. 2010, 29, 1491–1499. [Google Scholar] [CrossRef]
- Thomason, J.; Xypolias, G. Hydrothermal ageing of glass fibre reinforced vinyl ester composites: A review. Polymers 2023, 15, 835. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.3b-fibreglass.com/HiPer-tex (accessed on 6 April 2024).
- Peters, L.; Adolphs, G.; Bech, J.I.; Brøndsted, P. HiPer-tecTM WindStrandTM: A New Generation of High Performance Reinforcement. In Proceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite Materials for Wind Power Turbines, Roskilde, Denmark, 4–7 September 2006. [Google Scholar]
- Xypolias, G. The Environmental Resistance of Glass Fibre Vinyl Ester Composites and Their Interface for Use in Structural Applications. Ph.D. Thesis, University of Strathclyde, Glasgow, UK, 2022. [Google Scholar]
- Thomason, J.L.; Xypolias, G. The effect of environmental ageing on the interphase in glass fibre–vinyl ester composites. Compos. Interfaces 2023, 30, 377–391. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Clarendon Press: Oxford, UK, 1975; pp. 44–103. [Google Scholar]
- Krauklis, A.E.; Karl, C.W.; Rocha, I.B.C.M.; Burlakovs, J.; Ozola-Davidane, R.; Gagani, A.I.; Starkova, O. Modelling of environmental ageing of polymers and polymer composites—Modular and multiscale methods. Polymers 2022, 14, 216. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-H.; Springer, G.S. Moisture absorption and desorption of composite materials. J. Compos. Mater. 1976, 10, 2–20. [Google Scholar] [CrossRef]
- ASTM D5023-15; Standard Test Method for Plastics: Dynamic Mechanical Properties: In Flexure (Three-Point Bending). ASTM: West Conshohocken, PA, USA, 2015.
- ASTM D7028-07; Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA). ASTM: West Conshohocken, PA, USA, 2015.
- Choi, H.; Ahn, K.; Nam, J.-D.; Chun, H. Hygroscopic aspects of epoxy/carbon fiber composite laminates in aircraft environments. Compos. Part A Appl. Sci. Manuf. 2001, 32, 709–720. [Google Scholar] [CrossRef]
- Chu, W.; Karbhari, V.M. Effect of Water Sorption on Performance of Pultruded E-Glass/Vinylester Composites. J. Mater. Civ. Eng. 2005, 17, 63–71. [Google Scholar] [CrossRef]
- Yin, X.; Liu, Y.; Miao, Y.; Xian, G. Water absorption, hydrothermal expansion, and thermomechanical properties of a vinylester resin for fiber-reinforced polymer composites subjected to water or alkaline solution immersion. Polymers 2019, 11, 505. [Google Scholar] [CrossRef]
- Han, S.O.; Drzal, L.T. Water absorption effects on hydrophilic polymer matrix of carboxyl functionalized glucose resin and epoxy resin. Eur. Polym. J. 2003, 39, 1791–1799. [Google Scholar] [CrossRef]
- Apicella, A.; Migliaresi, C.; Nicodemo, L.; Nicolais, L.; Iaccarino, L.; Roccotelli, S. Water sorption and mechanical properties of a glass-reinforced polyester resin. Composites 1982, 13, 406–410. [Google Scholar] [CrossRef]
- Visco, A.; Campo, N.; Cianciafara, P. Comparison of seawater absorption properties of thermoset resins based composites. Compos. Part A Appl. Sci. Manuf. 2010, 42, 123–130. [Google Scholar] [CrossRef]
- Dirand, X.; Hilaire, B.; Soulier, J.; Nardin, M. Interfacial shear strength in glass-fiber/vinylester-resin composites. Compos. Sci. Technol. 1996, 56, 533–539. [Google Scholar] [CrossRef]
- Laurikainen, P. Characterization of the Ageing of Glass Fibre-Reinforced Polymers. Master’s Thesis, Tampere University of Technology, Tampere, Finland, 2017. [Google Scholar]
- Bénéthuilière, T.; Duchet-Rumeau, J.; Dubost, E.; Peyre, C.; Gérard, J.F. Vinylester/glass fiber interface: Still a key component for designing new styrene-free SMC composite materials. Compos. Sci. Technol. 2020, 190, 108037. [Google Scholar] [CrossRef]
- Fraga, A.N.; Alvarez, V.A.; Vazquez, A.; de la Osa, O. Relationship between Dynamic Mechanical Properties and Water Absorption of Unsaturated Polyester and Vinyl Ester Glass Fiber Composites. J. Compos. Mater. 2003, 37, 1553–1574. [Google Scholar] [CrossRef]
- Hammami, A.; Al-Ghuilani, N. Durability and environmental degradation of glass-vinylester composites. Polym. Compos. 2004, 25, 609–616. [Google Scholar] [CrossRef]
- Thomason, J.; Xypolias, G. Investigation of the effects of scale and cure environment on the properties of vinyl ester polymer. Polymer, 2024; in press. [Google Scholar]
- N’diaye, M.; Pascaretti-Grizon, F.; Massin, P.; Baslé, M.F.; Chappard, D. Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy. Langmuir 2012, 28, 11609–11614. [Google Scholar] [CrossRef]
- Karbhari, V.M.; Zhang, S. E-Glass/Vinylester Composites in Aqueous Environments—I: Experimental Results. Appl. Compos. Mater. 2003, 10, 19–48. [Google Scholar] [CrossRef]
- Karbhari, V.M.; Wang, Q. Multi-frequency dynamic mechanical thermal analysis of moisture uptake in E-glass/vinylester com-posites. Compos. Part B Eng. 2004, 35, 299–304. [Google Scholar] [CrossRef]
- Ghorbel, I.; Valentin, D. Hydrothermal Effects on the Physico-Chemical Properties of Pure and Glass Fiber Reinforced Polyester and Vinylester Resins. Polym. Compos. 1993, 14, 324–334. [Google Scholar] [CrossRef]
- Kumar, D.S.; Shukla, M.J.; Mahato, K.K.; Rathore, D.K.; Prusty, R.K.; Ray, B.C. Effect of post-curing on thermal and mechanical behavior of GFRP composites. IOP Conf. Ser. Mater. Sci. Eng. 2015, 75, 012012. [Google Scholar] [CrossRef]
- Rebenfeld, L.; Desio, G.P.; Wu, J.C. Effects of fibers on the glass transition temperature of polyphenylene sulfide composites. J. Appl. Polym. Sci. 1991, 42, 801–805. [Google Scholar] [CrossRef]
- Thomason, J.L. Investigation of composite interphase using dynamic mechanical analysis: Artifacts and reality. Polym. Compos. 1990, 11, 105–113. [Google Scholar] [CrossRef]
- Thomason, J. The interface region in glass fibre-reinforced epoxy resin composites: 3. Characterization of fibre surface coatings and the interphase. Composites 1995, 26, 487–498. [Google Scholar] [CrossRef]
Designation | VE Resin | Glass Fibre | Cure 24 h at RT | Post-Cure (PC) | Max. PC Temp (°C) |
---|---|---|---|---|---|
AF1260 | DION 1260 | SE3030 | Sealed Mould | 60 | |
WF1273 | DION 1273 | W3030 | Sealed Mould | 60 | |
1260, SM60 | DION 1260 | - | Sealed Mould | 60 | |
1273, SM60 | DION 1273 | - | Sealed Mould | 60 | |
1260, SM100 | DION 1260 | - | Sealed Mould | 100 | |
1260, OM100 | DION 1260 | - | Air | Air | 100 |
DION 1260 | Ageing Condition | Equilibrium Weight Gain (%) | Diffusivity × 10−6 (mm2/s) | Max. Ageing Period (Days) | Max. Weight Gain (%) | Re-Dried Weight Loss (%) |
---|---|---|---|---|---|---|
SM60 | 100% RH | 0.49 | 0.80 | 530 | 0.67 | −0.23 |
23 °C DI | 0.53 | 0.90 | 530 | 0.70 | −0.24 | |
50 °C DI | 0.76 | 3.00 | 530 | 0.78 | −0.27 | |
SM100 | 100% RH | 0.57 | 0.90 | 175 | 0.60 | −0.27 |
23 °C DI | 0.59 | 1.00 | 175 | 0.60 | ||
50 °C DI | 0.68 | 4.00 | 175 | 0.74 | ||
OM100 | 23 °C DI | 0.95 | 0.52 | 658 | 1.37 | −0.18 |
50 °C DI | 1.39 | 2.00 | 389 | 2.60 | −0.61 |
Ageing Condition | Equilibrium Weight Gain (%) | Diffusivity × 10−6 (mm2/s) | Max. Ageing Period (Days) | Max. Weight Gain (%) | Re-Dried Weight Loss (%) |
---|---|---|---|---|---|
100% RH | 0.67 | 0.9 | 530 | 0.97 | −0.19 |
23 °C DI | 0.76 | 1.0 | 530 | 1.05 | −0.18 |
50 °C DI | 1.10 | 3.8 | 530 | 1.4 | −0.42 |
Composite Reference | Ageing Condition | Equilibrium Prediction (%) | Measured Equilibrium (%) | Diffusivity Prediction (10−6 mm2/s) | Measured Diffusivity (10−6 mm2/s) |
---|---|---|---|---|---|
AF1260 | 100% RH | 0.14 | 0.16 | 0.16 | 0.60 |
23 °C DI | 0.15 | 0.20 | 0.17 | 1.50 | |
50 °C DI | 0.22 | 0.32 | 0.57 | 2.20 | |
WF1273 | 100% RH | 0.19 | 0.20 | 0.17 | 0.75 |
23 °C DI | 0.22 | 0.22 | 0.19 | 0.90 | |
50 °C DI | 0.32 | 0.35 | 0.75 | 2.20 |
Sample | Glass Transition Temperature (°C) | |||||
---|---|---|---|---|---|---|
0 Days (=0 √h) | 30 Days (≈27 √h) | 90 Days (≈46 √h) | 180 Days (≈66 √h) | 270 Days (≈80 √h) | Re-Dried (≈112 √h) | |
1260 SC RH | 92 | 90 | 101 | |||
1260 SC 23 | 101 | 92 | 90 | 89.5 | 101 | |
1260 SC 50 | 90 | 90.5 | 90 | 102 | ||
1260 PC RH | 94 | 93 | ||||
1260 PC 23 | 99 | 94 | 93 | |||
1260 PC 50 | 93 | 92 | 93 | |||
1273 SC RH | 83 | |||||
1273 SC 23 | 77 | 82 | ||||
1273 SC 50 | 88 | |||||
AF1260 RH | 107 | 102 | 100.5 | |||
AF1260 23 | 102 | 100 | ||||
AF1260 50 | 98 | 98 | ||||
WF1273 RH | 89 | 82 | 80 | 79 | ||
WF1273 23 | 81 | 79 | 78 | |||
WF1273 50 | 77 | 77 | 77.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomason, J.; Xypolias, G. A Study of the Moisture Absorption Characteristics of Vinyl Ester Polymer and Unidirectional Glass Fibre Vinyl Ester Laminates. J. Compos. Sci. 2024, 8, 214. https://doi.org/10.3390/jcs8060214
Thomason J, Xypolias G. A Study of the Moisture Absorption Characteristics of Vinyl Ester Polymer and Unidirectional Glass Fibre Vinyl Ester Laminates. Journal of Composites Science. 2024; 8(6):214. https://doi.org/10.3390/jcs8060214
Chicago/Turabian StyleThomason, James, and Georgios Xypolias. 2024. "A Study of the Moisture Absorption Characteristics of Vinyl Ester Polymer and Unidirectional Glass Fibre Vinyl Ester Laminates" Journal of Composites Science 8, no. 6: 214. https://doi.org/10.3390/jcs8060214
APA StyleThomason, J., & Xypolias, G. (2024). A Study of the Moisture Absorption Characteristics of Vinyl Ester Polymer and Unidirectional Glass Fibre Vinyl Ester Laminates. Journal of Composites Science, 8(6), 214. https://doi.org/10.3390/jcs8060214