Biochar Production and Its Potential Application for Biocomposite Materials: A Comprehensive Review
Abstract
:1. Introduction
2. Biochar Production
2.1. Biochar Production Techniques
- -
- Biomass torrefaction, also known as light pyrolysis, is a low-temperature (200–300 °C) heat treatment used as a pre-treatment of biomass to increase its calorific value and hydrophobicity [76,77]. During this process, hemicellulose and a portion of the cellulose undergo thermal decomposition, reducing the availability of hydroxyl groups. This prevents the formation of hydrogen bonds that would otherwise capture water molecules, making torrefied biomass more hydrophobic [78]. The process is conducted within a controlled environment under atmospheric pressure, with oxygen content below 21%, and residence times of biomass ranging from 5 to 120 min [79]. Torrefaction is further sub-classified based on the temperature range and medium used, and each sub-classification results in a product with distinct characteristics [80].
- -
- -
- Gasification is a thermochemical process in which the carbon content of biomass is converted onto a gaseous fuel in the presence of a gaseous medium such as oxygen, carbon dioxide, steam, or a mixture of these gases. This process takes place at a high temperature of between 700 °C and 900 °C [85,86,87]. When air or oxygen is used, gasification is considered to be a partial combustion process [88]. Gasification is also considered to be an efficient method of converting waste into energy, comprising various stages such as drying, combustion, pyrolysis, and the reduction zone, also known as the gasification zone [89]. The yield of biochar obtained by gasification is lower than that of pyrolysis [38], but the structural morphology of the biochar produced by the two processes is similar [90].
- -
- Pyrolysis is a high-temperature (300–1300 °C) heat treatment that breaks down biopolymer macromolecules into lower molecular weight compounds under an inert atmosphere [37,42]. It is considered the most extensively studied thermochemical technique [91]. During pyrolysis, moisture and volatile compounds are released from biomass due to reactions such as dehydration, decarboxylation, volatilization, and polymerization. This process produces syngas, bio-oil, and biochar [92].
2.2. Types of Pyrolysis
- -
- Slow pyrolysis (also known as conventional pyrolysis): This is the oldest method of charcoal production. It is characterized by a slow heating rate and a long residence time [88,93,94]. These conditions, regarding the temperature and slowness of the process, favor cracking and secondary reactions, which in turn lead to higher yields of biochar [38,95]. During this pyrolysis, a high production of quinone groups produced by the aromatic radicals of lignin is observed, which can be correlated with the complete carbonization of the material [96].
- -
- Fast pyrolysis: This method is characterized by a high heating rate (10–200 °C/s) and a short residence time for vapor (0.5–10 s). The high heating rate involved in fast pyrolysis transforms the input biomass into a liquid product with a low exposure time to avoid cracking reactions that favor biochar formation [94]. The main product of fast pyrolysis is a liquid called bio-oil, which can find application as a liquid biofuel, or from which valuable chemicals can be extracted [97]. The biochar produced by this type of pyrolysis has a higher porosity than that obtained by slow pyrolysis, which may be linked to a higher production of bio-oil [96].
- -
- Flash pyrolysis: This is a variant of fast pyrolysis with higher heating rates and temperature (>900 °C) and shorter exposure time (<1 s) [93]. The combination of these two features results in a high yield of bio-oil and a low yield of biochar [10]. Some of the disadvantages of this process are illustrated by the thermal instability of the bio-oil composition and its low pH, which makes it corrosive. Also, fine particles can be entrained and find their way into the bio-oil [98].
- -
- -
- Vacuum pyrolysis: This is the thermal degradation of biomass under low pressure (0.001–0.02 MPa) in the absence of oxygen and without the need for a carrier gas to maintain the inert atmosphere [99]. This methodology is considered to be a promising technology for recovering energy from biomass, and has proved to be an alternative means of obtaining oils enriched with valuable fatty acids [9,100].
- -
- Microwave-assisted pyrolysis: This uses microwave radiation as a heat source during pyrolysis, providing non-contact, rapid, selective, and energy-efficient heating. It also has a shorter processing time than the conventional technologies, using electrical energy as the heating source [92,101,102,103]. This type of pyrolysis has many advantages, but its industrialization is a challenge due to the complexity of reactor design, process control, and above all, safety. Furthermore, most studies have been carried out on a laboratory scale, which contracts with the growing need for large-scale systems [104]. The design of the microwave oven will depend on the final product [37,92]. For heating, microwaves penetrate the material forming a temperature gradient from the inside to the outside [11]. This type of pyrolysis promotes the development of porosity [37,102]. The operating conditions for the above mentioned pyrolysis process are illustrated in Table 2.
2.3. Biochar Activation
3. Biochar Composites
3.1. Cementitious Matrix-Based Biochar Composites
3.2. Polymeric Biochar-Based Composites
3.3. Factors Affecting the Properties of Biochar-Based Biocomposites
3.4. Biocomposites Based on Activated Biochar
3.5. Fire-Resistant Biocomposites
3.6. Electrical Characteristics of Biochar-Based Biocomposites and Their Practical Applications
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABC | Activated Biochar |
BC | Biochar |
C | Carbone |
CH4 | Methane |
CHP | Combined heat and power |
CO2 | Carbone dioxide |
EC | Electrical conductivity |
GHG | Greenhouse gas |
H | Hydrogen |
MAPP | Maleated polypropylene |
MCC | Microcrystalline cellulose |
Mw | Microwave |
N | Nitrogen |
(N2O) | Nitrous oxide |
O | Oxygen |
PA | Polyamide |
PBAT | Polybutylene adipate-co-terephthalate |
PBS | Poly(butylene succinate) |
PC | Polycarbonate |
PE | Polyethylene |
PHBV | Poly(3-hydroxybutyrate-co-3-hydroxy valerate) |
PLA | Polylactic acid |
PP | Polypropylene |
Ppb | Parts per billion |
PPE | Personal protective equipment. |
ppm | Parts per million |
PVA | Poly (vinyl alcohol) |
SBET | Brunauer, Emmett, and Teller surface |
TC | Crystallization temperature |
Tm | Melting temperature |
TM | Tensile Modulus |
Tpyro | Pyrolysis or carbonization |
TS | Tensile strength |
UHMWPE | Ultra high molecular weight polyethylene |
VP | Pore volume |
XPS | X-ray photoelectron spectroscopy |
References
- Das, S.; Lee, S.-H.; Kumar, P.; Kim, K.-H.; Lee, S.S.; Bhattacharya, S.S. Solid Waste Management: Scope and the Challenge of Sustainability. J. Clean. Prod. 2019, 228, 658–678. [Google Scholar] [CrossRef]
- Coma, M.; Martinez-Hernandez, E.; Abeln, F.; Raikova, S.; Donnelly, J.; Arnot, T.C.; Allen, M.J.; Hong, D.D.; Chuck, C.J. Organic Waste as a Sustainable Feedstock for Platform Chemicals. Faraday Discuss. 2017, 202, 175–195. [Google Scholar] [CrossRef] [PubMed]
- Pawar, P.R.; Rao, P.; Prakash, G.; Lali, A.M. Organic Waste Streams as Feedstock for the Production of High Volume-Low Value Products. Environ. Sci. Pollut. Res. 2021, 28, 11904–11914. [Google Scholar] [CrossRef] [PubMed]
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018; ISBN 978-1-4648-1329-0. [Google Scholar]
- Rushton, L. Health Hazards and Waste Management. Br. Med. Bull. 2003, 68, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Türkten, H.; Ceyhan, V. Environmental Efficiency in Greenhouse Tomato Production Using Soilless Farming Technology. J. Clean. Prod. 2023, 398, 136482. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (Ipcc). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-915789-6. [Google Scholar]
- Intergovernmental Panel on Climate Change (Ipcc). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-932584-4. [Google Scholar]
- Foong, S.Y.; Chan, Y.H.; Cheah, W.Y.; Kamaludin, N.H.; Tengku Ibrahim, T.N.B.; Sonne, C.; Peng, W.; Show, P.-L.; Lam, S.S. Progress in Waste Valorization Using Advanced Pyrolysis Techniques for Hydrogen and Gaseous Fuel Production. Bioresour. Technol. 2021, 320, 124299. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gupta, R.; Zhang, Q.; You, S. Review of Biochar Production via Crop Residue Pyrolysis: Development and Perspectives. Bioresour. Technol. 2023, 369, 128423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fan, S.; Liu, T.; Omar, M.M.; Li, B. Perspectives into Intensification for Aviation Oil Production from Microwave Pyrolysis of Organic Wastes. Chem. Eng. Process. Process Intensif. 2022, 176, 108939. [Google Scholar] [CrossRef]
- Ronsse, F.; van Hecke, S.; Dickinson, D.; Prins, W. Production and Characterization of Slow Pyrolysis Biochar: Influence of Feedstock Type and Pyrolysis Conditions. GCB Bioenergy 2013, 5, 104–115. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of Biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Angın, D. Effect of Pyrolysis Temperature and Heating Rate on Biochar Obtained from Pyrolysis of Safflower Seed Press Cake. Bioresour. Technol. 2013, 128, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Xiong, X.; Che, D.; Liu, H.; Sun, B. Effects of Sludge Pyrolysis Temperature and Atmosphere on Characteristics of Biochar and Gaseous Products. Korean J. Chem. Eng. 2021, 38, 55–63. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Yuan, X.; Li, Y.; Han, L. Effect of Pyrolysis Temperature and Correlation Analysis on the Yield and Physicochemical Properties of Crop Residue Biochar. Bioresour. Technol. 2020, 296, 122318. [Google Scholar] [CrossRef] [PubMed]
- Marrot, L.; Candelier, K.; Valette, J.; Lanvin, C.; Horvat, B.; Legan, L.; DeVallance, D.B. Valorization of Hemp Stalk Waste Through Thermochemical Conversion for Energy and Electrical Applications. Waste Biomass Valor. 2022, 13, 2267–2285. [Google Scholar] [CrossRef]
- Tyagi, U.; Anand, N. Prospective of Waste Lignocellulosic Biomass as Precursors for the Production of Biochar: Application, Performance, and Mechanism—A Review. Bioenerg. Res. 2023, 16, 1335–1360. [Google Scholar] [CrossRef]
- Poulose, A.M.; Elnour, A.Y.; Anis, A.; Shaikh, H.; Al-Zahrani, S.M.; George, J.; Al-Wabel, M.I.; Usman, A.R.; Ok, Y.S.; Tsang, D.C.W.; et al. Date Palm Biochar-Polymer Composites: An Investigation of Electrical, Mechanical, Thermal and Rheological Characteristics. Sci. Total Environ. 2018, 619–620, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.Z.; Rahman, M.; Mahbub, T.; Ashiquzzaman, M.; Sagadevan, S.; Hoque, M.E. Advanced Biopolymers for Automobile and Aviation Engineering Applications. J. Polym. Res. 2023, 30, 106. [Google Scholar] [CrossRef]
- Tadele, D.; Roy, P.; Defersha, F.; Misra, M.; Mohanty, A.K. A Comparative Life-Cycle Assessment of Talc- and Biochar-Reinforced Composites for Lightweight Automotive Parts. Clean. Technol. Environ. Policy 2020, 22, 639–649. [Google Scholar] [CrossRef]
- Galgani, F.; Bruzaud, S.; Duflos, G.; Fabre, P.; Gastaldi, E.; Ghiglione, J.; Grimaud, R.; George, M.; Huvet, A.; Lagarde, F.; et al. Pollution des océans par les plastiques et les microplastiques. Tech. L’ingenieur 2020. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic Waste Inputs from Land into the Ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Abhilash, M.; Thomas, D. Biopolymers for Biocomposites and Chemical Sensor Applications. In Biopolymer Composites in Electronics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 405–435. ISBN 978-0-12-809261-3. [Google Scholar] [CrossRef]
- Morales-Jiménez, M.; Gouveia, L.; Yáñez-Fernández, J.; Castro-Muñoz, R.; Barragán-Huerta, B.E. Production, Preparation and Characterization of Microalgae-Based Biopolymer as a Potential Bioactive Film. Coatings 2020, 10, 120. [Google Scholar] [CrossRef]
- Murariu, M.; Dubois, P. PLA Composites: From Production to Properties. Adv. Drug Deliv. Rev. 2016, 107, 17–46. [Google Scholar] [CrossRef] [PubMed]
- Sanusi, O.M.; Benelfellah, A.; Aït Hocine, N. Clays and Carbon Nanotubes as Hybrid Nanofillers in Thermoplastic-Based Nanocomposites—A Review. Appl. Clay Sci. 2020, 185, 105408. [Google Scholar] [CrossRef]
- Burchell, T.D. Carbon Materials for Advanced Technologies; Elsevier: Amsterdam, The Netherlands, 1999; ISBN 978-0-08-052854-0. [Google Scholar]
- Das, O.; Bhattacharyya, D.; Hui, D.; Lau, K.-T. Mechanical and Flammability Characterisations of Biochar/Polypropylene Biocomposites. Compos. Part B Eng. 2016, 106, 120–128. [Google Scholar] [CrossRef]
- Das, O.; Sarmah, A.K.; Bhattacharyya, D. Biocomposites from Waste Derived Biochars: Mechanical, Thermal, Chemical, and Morphological Properties. Waste Manag. 2016, 49, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Giorcelli, M.; Savi, P.; Khan, A.; Tagliaferro, A. Analysis of Biochar with Different Pyrolysis Temperatures Used as Filler in Epoxy Resin Composites. Biomass Bioenergy 2019, 122, 466–471. [Google Scholar] [CrossRef]
- Shrivastava, A.; Dondapati, S. Biodegradable Composites Based on Biopolymers and Natural Bast Fibres: A Review. Mater. Today Proc. 2021, 46, 1420–1428. [Google Scholar] [CrossRef]
- Chang, B.P.; Rodriguez-Uribe, A.; Mohanty, A.K.; Misra, M. A Comprehensive Review of Renewable and Sustainable Biosourced Carbon through Pyrolysis in Biocomposites Uses: Current Development and Future Opportunity. Renew. Sustain. Energy Rev. 2021, 152, 111666. [Google Scholar] [CrossRef]
- Sobhan, A.; Muthukumarappan, K.; Wei, L.; Qiao, Q.; Rahman, M.T.; Ghimire, N. Development and Characterization of a Novel Activated Biochar-Based Polymer Composite for Biosensors. Int. J. Polym. Anal. Charact. 2021, 26, 544–560. [Google Scholar] [CrossRef]
- George, J.; Jung, D.; Bhattacharyya, D. Improvement of Electrical and Mechanical Properties of PLA/PBAT Composites Using Coconut Shell Biochar for Antistatic Applications. Appl. Sci. 2023, 13, 902. [Google Scholar] [CrossRef]
- Das, O.; Bhattacharyya, D.; Sarmah, A.K. Sustainable Eco–Composites Obtained from Waste Derived Biochar: A Consideration in Performance Properties, Production Costs, and Environmental Impact. J. Clean. Prod. 2016, 129, 159–168. [Google Scholar] [CrossRef]
- Mašek, O.; Budarin, V.; Gronnow, M.; Crombie, K.; Brownsort, P.; Fitzpatrick, E.; Hurst, P. Microwave and Slow Pyrolysis Biochar—Comparison of Physical and Functional Properties. J. Anal. Appl. Pyrolysis 2013, 100, 41–48. [Google Scholar] [CrossRef]
- Duku, M.H.; Gu, S.; Hagan, E.B. Biochar Production Potential in Ghana—A Review. Renew. Sustain. Energy Rev. 2011, 15, 3539–3551. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science and Technology; Earthscan: London, UK; Sterling, VA, USA, 2009; pp. 01–13. ISBN 978-1-84407-658-1. [Google Scholar]
- Janu, R.; Mrlik, V.; Ribitsch, D.; Hofman, J.; Sedláček, P.; Bielská, L.; Soja, G. Biochar Surface Functional Groups as Affected by Biomass Feedstock, Biochar Composition and Pyrolysis Temperature. Carbon Resour. Convers. 2021, 4, 36–46. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Deng, Q.; Li, D. Three Kinds of Charcoal Powder Reinforced Ultra-High Molecular Weight Polyethylene Composites with Excellent Mechanical and Electrical Properties. Mater. Des. 2015, 85, 54–59. [Google Scholar] [CrossRef]
- Sahoo, S.S.; Vijay, V.K.; Chandra, R.; Kumar, H. Production and Characterization of Biochar Produced from Slow Pyrolysis of Pigeon Pea Stalk and Bamboo. Clean. Eng. Technol. 2021, 3, 100101. [Google Scholar] [CrossRef]
- Azargohar, R.; Nanda, S.; Rao, B.V.S.K.; Dalai, A.K. Slow Pyrolysis of Deoiled Canola Meal: Product Yields and Characterization. Energy Fuels 2013, 27, 5268–5279. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis Temperature Induced Changes in Characteristics and Chemical Composition of Biochar Produced from Conocarpus Wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Kane, S.; Ulrich, R.; Harrington, A.; Stadie, N.P.; Ryan, C. Physical and Chemical Mechanisms That Influence the Electrical Conductivity of Lignin-Derived Biochar. Carbon Trends 2021, 5, 100088. [Google Scholar] [CrossRef]
- Bartoli, M.; Troiano, M.; Giudicianni, P.; Amato, D.; Giorcelli, M.; Solimene, R.; Tagliaferro, A. Effect of Heating Rate and Feedstock Nature on Electrical Conductivity of Biochar and Biochar-Based Composites. Appl. Energy Combust. Sci. 2022, 12, 100089. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Cui, Y.; Xue, Z.; Ba, Y. Slow Pyrolysis Polygeneration of Bamboo (Phyllostachys Pubescens): Product Yield Prediction and Biochar Formation Mechanism. Bioresour. Technol. 2018, 263, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Aktar, S.; Hossain, M.A.; Rathnayake, N.; Patel, S.; Gasco, G.; Mendez, A.; de Figueiredo, C.; Surapaneni, A.; Shah, K.; Paz-Ferreiro, J. Effects of Temperature and Carrier Gas on Physico-Chemical Properties of Biochar Derived from Biosolids. J. Anal. Appl. Pyrolysis 2022, 164, 105542. [Google Scholar] [CrossRef]
- Bird, M.I.; Wurster, C.M.; de Paula Silva, P.H.; Bass, A.M.; de Nys, R. Algal Biochar—Production and Properties. Bioresour. Technol. 2011, 102, 1886–1891. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Mackey, H.R.; Mariyam, S.; Zuhara, S.; Al-Ansari, T.; McKay, G. Char Products From Bamboo Waste Pyrolysis and Acid Activation. Front. Mater. 2021, 7, 624791. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, D.; Lu, W.; Khan, M.U.; Xu, H.; Yi, W.; Lei, H.; Huo, E.; Qian, M.; Zhao, Y.; et al. Production of High-Density Polyethylene Biocomposites from Rice Husk Biochar: Effects of Varying Pyrolysis Temperature. Sci. Total Environ. 2020, 738, 139910. [Google Scholar] [CrossRef]
- Kim, W.-K.; Shim, T.; Kim, Y.-S.; Hyun, S.; Ryu, C.; Park, Y.-K.; Jung, J. Characterization of Cadmium Removal from Aqueous Solution by Biochar Produced from a Giant Miscanthus at Different Pyrolytic Temperatures. Bioresour. Technol. 2013, 138, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, N.; Mohd Taib, R.; Mohamad Aziz, N.S.; Omar, M.R.; Md Disa, N. Banana Pseudo-Stem Biochar Derived from Slow and Fast Pyrolysis Process. Heliyon 2023, 9, e12940. [Google Scholar] [CrossRef]
- Du, J.; Dou, B.; Zhang, H.; Wu, K.; Gao, D.; Wang, Y.; Chen, H.; Xu, Y. Non-Isothermal Kinetics of Biomass Waste Pyrolysis by TG-MS/DSC. Carbon Capture Sci. Technol. 2023, 6, 100097. [Google Scholar] [CrossRef]
- Hong, Z.; Zhong, F.; Niu, W.; Zhang, K.; Su, J.; Liu, J.; Li, L.; Wu, F. Effects of Temperature and Particle Size on the Compositions, Energy Conversions and Structural Characteristics of Pyrolysis Products from Different Crop Residues. Energy 2020, 190, 116413. [Google Scholar] [CrossRef]
- Fu, P.; Hu, S.; Xinag, J.; Sun, L.; Yang, T.; Zhang, A.; Wang, Y.; Chen, G. Effects of Pyrolysis Temperature on Characteristics of Porosity in Biomass Chars. In Proceedings of the 2009 International Conference on Energy and Environment Technology, Guilin, China, 16–18 October 2009; pp. 109–112. [Google Scholar] [CrossRef]
- Narzari, R.; Bordoloi, N.; Sarma, B.; Gogoi, L.; Gogoi, N.; Borkotoki, B.; Kataki, R. Fabrication of Biochars Obtained from Valorization of Biowaste and Evaluation of Its Physicochemical Properties. Bioresour. Technol. 2017, 242, 324–328. [Google Scholar] [CrossRef]
- Tan, S.; Zhou, G.; Yang, Q.; Ge, S.; Liu, J.; Cheng, Y.W.; Yek, P.N.Y.; Wan Mahari, W.A.; Kong, S.H.; Chang, J.-S.; et al. Utilization of Current Pyrolysis Technology to Convert Biomass and Manure Waste into Biochar for Soil Remediation: A Review. Sci. Total Environ. 2023, 864, 160990. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhu, W.; Kookana, R.; Katayama, A. Characteristics of Biochar and Its Application in Remediation of Contaminated Soil. J. Biosci. Bioeng. 2013, 116, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Park, Y.-K.; Kwon, E.E. Strategic Use of Biochar for CO2 Capture and Sequestration. J. CO2 Util. 2019, 32, 128–139. [Google Scholar] [CrossRef]
- Shafawi, A.N.; Mohamed, A.R.; Lahijani, P.; Mohammadi, M. Recent Advances in Developing Engineered Biochar for CO2 Capture: An Insight into the Biochar Modification Approaches. J. Environ. Chem. Eng. 2021, 9, 106869. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, N.; Xing, C.; Cui, Q.; Sun, Q. The Adsorption, Regeneration and Engineering Applications of Biochar for Removal Organic Pollutants: A Review. Chemosphere 2019, 223, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Shao, Q.; Shi, J.; Yang, C.; Chu, H. Application of Biochar for the Adsorption of Organic Pollutants from Wastewater: Modification Strategies, Mechanisms and Challenges. Sep. Purif. Technol. 2022, 300, 121925. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Van Hullebusch, E.D.; Amrane, A.; Rtimi, S. Mechanisms and Adsorption Capacities of Biochar for the Removal of Organic and Inorganic Pollutants from Industrial Wastewater. Int. J. Environ. Sci. Technol. 2021, 18, 3273–3294. [Google Scholar] [CrossRef]
- Liang, L.; Xi, F.; Tan, W.; Meng, X.; Hu, B.; Wang, X. Review of Organic and Inorganic Pollutants Removal by Biochar and Biochar-Based Composites. Biochar 2021, 3, 255–281. [Google Scholar] [CrossRef]
- Cho, S.-H.; Lee, S.; Kim, Y.; Song, H.; Lee, J.; Tsang, Y.F.; Chen, W.-H.; Park, Y.-K.; Lee, D.-J.; Jung, S.; et al. Applications of Agricultural Residue Biochars to Removal of Toxic Gases Emitted from Chemical Plants: A Review. Sci. Total Environ. 2023, 868, 161655. [Google Scholar] [CrossRef]
- Wen, C.; Liu, T.; Wang, D.; Wang, Y.; Chen, H.; Luo, G.; Zhou, Z.; Li, C.; Xu, M. Biochar as the Effective Adsorbent to Combustion Gaseous Pollutants: Preparation, Activation, Functionalization and the Adsorption Mechanisms. Prog. Energy Combust. Sci. 2023, 99, 101098. [Google Scholar] [CrossRef]
- Abioye, A.M.; Ani, F.N. Recent Development in the Production of Activated Carbon Electrodes from Agricultural Waste Biomass for Supercapacitors: A Review. Renew. Sustain. Energy Rev. 2015, 52, 1282–1293. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Pei, L.; Ying, D.; Xu, X.; Zhao, L.; Jia, J.; Cao, X. Converting Ni-Loaded Biochars into Supercapacitors: Implication on the Reuse of Exhausted Carbonaceous Sorbents. Sci. Rep. 2017, 7, 41523. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, L.; Li, H.; Westholm, L.J.; Carvalho, L.; Thorin, E.; Yu, Z.; Yu, X.; Skreiberg, Ø. A Critical Review on Production, Modification and Utilization of Biochar. J. Anal. Appl. Pyrolysis 2022, 161, 105405. [Google Scholar] [CrossRef]
- Kane, S.; Storer, A.; Xu, W.; Ryan, C.; Stadie, N.P. Biochar as a Renewable Substitute for Carbon Black in Lithium-Ion Battery Electrodes. ACS Sustain. Chem. Eng. 2022, 10, 12226–12233. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, H.; Ma, T.; Deng, H.; Zha, Z. Effect of Cotton Stalk Particle Size on the Structure of Biochar and the Performance of Anode for Lithium-Ion Battery. J. Phys. Chem. Solids 2022, 169, 110845. [Google Scholar] [CrossRef]
- Perroud, T.; Shanmugam, V.; Mensah, R.A.; Jiang, L.; Xu, Q.; Neisiany, R.E.; Sas, G.; Försth, M.; Kim, N.K.; Hedenqvist, M.S.; et al. Testing Bioplastic Containing Functionalised Biochar. Polym. Test. 2022, 113, 107657. [Google Scholar] [CrossRef]
- Bartoli, M.; Giorcelli, M.; Jagdale, P.; Rovere, M.; Tagliaferro, A. A Review of Non-Soil Biochar Applications. Materials 2020, 13, 261. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Xu, Z.; Hou, D.; Gao, B.; Cao, X.; Ok, Y.S.; Rinklebe, J.; Bolan, N.S.; Tsang, D.C.W. Waste-Derived Biochar for Water Pollution Control and Sustainable Development. Nat. Rev. Earth Environ. 2022, 3, 444–460. [Google Scholar] [CrossRef]
- Chen, W.-H.; Peng, J.; Bi, X.T. A State-of-the-Art Review of Biomass Torrefaction, Densification and Applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Gronnow, M.J.; Budarin, V.L.; Mašek, O.; Crombie, K.N.; Brownsort, P.A.; Shuttleworth, P.S.; Hurst, P.R.; Clark, J.H. Torrefaction/Biochar Production by Microwave and Conventional Slow PyrolysisComparison of Energy Properties. GCB Bioenergy 2013, 5, 144–152. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lin, B.-J.; Colin, B.; Pétrissans, A.; Pétrissans, M. A Study of Hygroscopic Property of Biomass Pretreated by Torrefaction. Energy Procedia 2019, 158, 32–36. [Google Scholar] [CrossRef]
- Soria-Verdugo, A.; Cano-Pleite, E.; Panahi, A.; Ghoniem, A.F. Kinetics Mechanism of Inert and Oxidative Torrefaction of Biomass. Energy Convers. Manag. 2022, 267, 115892. [Google Scholar] [CrossRef]
- Kota, K.B.; Shenbagaraj, S.; Sharma, P.K.; Sharma, A.K.; Ghodke, P.K.; Chen, W.-H. Biomass Torrefaction: An Overview of Process and Technology Assessment Based on Global Readiness Level. Fuel 2022, 324, 124663. [Google Scholar] [CrossRef]
- Yang, C.; Wang, S.; Yang, J.; Xu, D.; Li, Y.; Li, J.; Zhang, Y. Hydrothermal Liquefaction and Gasification of Biomass and Model Compounds: A Review. Green Chem. 2020, 22, 8210–8232. [Google Scholar] [CrossRef]
- He, X.; Zheng, N.; Hu, R.; Hu, Z.; Yu, J.C. Hydrothermal and Pyrolytic Conversion of Biomasses into Catalysts for Advanced Oxidation Treatments. Adv. Funct. Mater. 2021, 31, 2006505. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Baloch, H.A.; Griffin, G.J.; Mubarak, N.M.; Bhutto, A.W.; Abro, R.; Mazari, S.A.; Ali, B.S. An Overview of Effect of Process Parameters on Hydrothermal Carbonization of Biomass. Renew. Sustain. Energy Rev. 2017, 73, 1289–1299. [Google Scholar] [CrossRef]
- Xiao, L.-P.; Shi, Z.-J.; Xu, F.; Sun, R.-C. Hydrothermal Carbonization of Lignocellulosic Biomass. Bioresour. Technol. 2012, 118, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Jones, D.D.; Hanna, M.A. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies 2009, 2, 556–581. [Google Scholar] [CrossRef]
- Neves, D.; Thunman, H.; Matos, A.; Tarelho, L.; Gómez-Barea, A. Characterization and Prediction of Biomass Pyrolysis Products. Prog. Energy Combust. Sci. 2011, 37, 611–630. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, Y.; Chen, P.; Liu, S.; Zhou, N.; Ding, K.; Fan, L.; Peng, P.; Min, M.; Cheng, Y.; et al. Chapter 14—Gasification Technologies and Their Energy Potentials. In Sustainable Resource Recovery and Zero Waste Approaches; Taherzadeh, M.J., Bolton, K., Wong, J., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 193–206. ISBN 978-0-444-64200-4. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.; Champagne, P. Overview of Recent Advances in Thermo-Chemical Conversion of Biomass. Energy Convers. Manag. 2010, 51, 969–982. [Google Scholar] [CrossRef]
- Tezer, Ö.; Karabağ, N.; Öngen, A.; Çolpan, C.Ö.; Ayol, A. Biomass Gasification for Sustainable Energy Production: A Review. Int. J. Hydrogen Energy 2022, 47, 15419–15433. [Google Scholar] [CrossRef]
- Muvhiiwa, R.; Kuvarega, A.; Llana, E.M.; Muleja, A. Study of Biochar from Pyrolysis and Gasification of Wood Pellets in a Nitrogen Plasma Reactor for Design of Biomass Processes. J. Environ. Chem. Eng. 2019, 7, 103391. [Google Scholar] [CrossRef]
- Li, D.-C.; Jiang, H. The Thermochemical Conversion of Non-Lignocellulosic Biomass to Form Biochar: A Review on Characterizations and Mechanism Elucidation. Bioresour. Technol. 2017, 246, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Nzediegwu, C.; Naeth, M.A.; Chang, S.X. Chapter 7—Biochar Production from Lignocellulosic and Nonlignocellulosic Biomass Using Conventional and Microwave Heating. In Biochar in Agriculture for Achieving Sustainable Development Goals; Tsang, D.C., Ok, Y.S., Eds.; Academic Press: New York, NY, USA, 2022; pp. 85–95. ISBN 978-0-323-85343-9. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of Process Parameters on Production of Biochar from Biomass Waste through Pyrolysis: A Review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Sohi, S.; Lopez-Capel, E.; Krull, E.; Bol, R. Biochar, Climate Change and Soil: A Review to Guide Future Research. CSIRO 2009, 5, 17–31. [Google Scholar] [CrossRef]
- Yuan, T.; He, W.; Yin, G.; Xu, S. Comparison of Bio-Chars Formation Derived from Fast and Slow Pyrolysis of Walnut Shell. Fuel 2020, 261, 116450. [Google Scholar] [CrossRef]
- Ghysels, S.; Estrada Léon, A.E.; Pala, M.; Schoder, K.A.; Van Acker, J.; Ronsse, F. Fast Pyrolysis of Mannan-Rich Ivory Nut (Phytelephas Aequatorialis) to Valuable Biorefinery Products. Chem. Eng. J. 2019, 373, 446–457. [Google Scholar] [CrossRef]
- Cornelissen, T.; Yperman, J.; Reggers, G.; Schreurs, S.; Carleer, R. Flash Co-Pyrolysis of Biomass with Polylactic Acid. Part 1: Influence on Bio-Oil Yield and Heating Value. Fuel 2008, 87, 1031–1041. [Google Scholar] [CrossRef]
- Foong, S.Y.; Liew, R.K.; Yang, Y.; Cheng, Y.W.; Yek, P.N.Y.; Wan Mahari, W.A.; Lee, X.Y.; Han, C.S.; Vo, D.-V.N.; Van Le, Q.; et al. Valorization of Biomass Waste to Engineered Activated Biochar by Microwave Pyrolysis: Progress, Challenges, and Future Directions. Chem. Eng. J. 2020, 389, 124401. [Google Scholar] [CrossRef]
- Dusso, D.; Téllez, J.F.; Fuertes, V.C.; De Paoli, J.M.; Moyano, E.L. Vacuum Pyrolysis of Chia Flour Residues: An Alternative Way to Obtain Omega-3/Omega-6 Fatty Acids and Calcium-Enriched Biochars. J. Anal. Appl. Pyrolysis 2022, 161, 105379. [Google Scholar] [CrossRef]
- Lam, S.S.; Russell, A.D.; Lee, C.L.; Chase, H.A. Microwave-Heated Pyrolysis of Waste Automotive Engine Oil: Influence of Operation Parameters on the Yield, Composition, and Fuel Properties of Pyrolysis Oil. Fuel 2012, 92, 327–339. [Google Scholar] [CrossRef]
- Lam, S.S.; Yek, P.N.Y.; Cheng, W.Y.; Liew, R.K.; Tabatabaei, M.; Aghbashlo, M. Production of Biochar Using Sustainable Microwave Pyrolysis Approach. In Biochar in Agriculture for Achieving Sustainable Development Goals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 323–332. ISBN 978-0-323-85343-9. [Google Scholar]
- Nzediegwu, C.; Arshad, M.; Ulah, A.; Naeth, M.A.; Chang, S.X. Fuel, Thermal and Surface Properties of Microwave-Pyrolyzed Biochars Depend on Feedstock Type and Pyrolysis Temperature. Bioresour. Technol. 2021, 320, 124282. [Google Scholar] [CrossRef]
- Li, H.; Xu, J.; Mbugua Nyambura, S.; Wang, J.; Li, C.; Zhu, X.; Feng, X.; Wang, Y. Food Waste Pyrolysis by Traditional Heating and Microwave Heating: A Review. Fuel 2022, 324, 124574. [Google Scholar] [CrossRef]
- Demirbas, A.; Arin, G. An Overview of Biomass Pyrolysis. Energy Sources 2002, 24, 471–482. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Vuppaladadiyam, S.S.V.; Awasthi, A.; Sahoo, A.; Rehman, S.; Pant, K.K.; Murugavelh, S.; Huang, Q.; Anthony, E.; Fennel, P.; et al. Biomass Pyrolysis: A Review on Recent Advancements and Green Hydrogen Production. Bioresour. Technol. 2022, 364, 128087. [Google Scholar] [CrossRef] [PubMed]
- Zaker, A.; Chen, Z.; Wang, X.; Zhang, Q. Microwave-Assisted Pyrolysis of Sewage Sludge: A Review. Fuel Process. Technol. 2019, 187, 84–104. [Google Scholar] [CrossRef]
- Kebelmann, K.; Hornung, A.; Karsten, U.; Griffiths, G. Intermediate Pyrolysis and Product Identification by TGA and Py-GC/MS of Green Microalgae and Their Extracted Protein and Lipid Components. Biomass Bioenergy 2013, 49, 38–48. [Google Scholar] [CrossRef]
- De Mendonça, F.G.; da Cunha, I.T.; Soares, R.R.; Tristão, J.C.; Lago, R.M. Tuning the Surface Properties of Biochar by Thermal Treatment. Bioresour. Technol. 2017, 246, 28–33. [Google Scholar] [CrossRef]
- Arnold, S.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A.K. Slow Pyrolysis of Bio-Oil and Studies on Chemical and Physical Properties of the Resulting New Bio-Carbon. J. Clean. Prod. 2018, 172, 2748–2758. [Google Scholar] [CrossRef]
- Das, O.; Sarmah, A.K. The Love–Hate Relationship of Pyrolysis Biochar and Water: A Perspective. Sci. Total Environ. 2015, 512–513, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Haque, K.E. Microwave Energy for Mineral Treatment Processes—A Brief Review. Int. J. Miner. Process. 1999, 57, 1–24. [Google Scholar] [CrossRef]
- Kazemi Shariat Panahi, H.; Dehhaghi, M.; Ok, Y.S.; Nizami, A.-S.; Khoshnevisan, B.; Mussatto, S.I.; Aghbashlo, M.; Tabatabaei, M.; Lam, S.S. A Comprehensive Review of Engineered Biochar: Production, Characteristics, and Environmental Applications. J. Clean. Prod. 2020, 270, 122462. [Google Scholar] [CrossRef]
- Sajjadi, B.; Chen, W.-Y.; Egiebor, N.O. A Comprehensive Review on Physical Activation of Biochar for Energy and Environmental Applications. Rev. Chem. Eng. 2019, 35, 735–776. [Google Scholar] [CrossRef]
- Sajjadi, B.; Zubatiuk, T.; Leszczynska, D.; Leszczynski, J.; Chen, W.Y. Chemical Activation of Biochar for Energy and Environmental Applications: A Comprehensive Review. Rev. Chem. Eng. 2019, 35, 777–815. [Google Scholar] [CrossRef]
- El-Hendawy, A.-N.A. An Insight into the KOH Activation Mechanism through the Production of Microporous Activated Carbon for the Removal of Pb2+ Cations. Appl. Surf. Sci. 2009, 255, 3723–3730. [Google Scholar] [CrossRef]
- Pedicini, R.; Maisano, S.; Chiodo, V.; Conte, G.; Policicchio, A.; Agostino, R.G. Posidonia Oceanica and Wood Chips Activated Carbon as Interesting Materials for Hydrogen Storage. Int. J. Hydrogen Energy 2020, 45, 14038–14047. [Google Scholar] [CrossRef]
- Pizzanelli, S.; Maisano, S.; Pinzino, C.; Manariti, A.; Chiodo, V.; Pitzalis, E.; Forte, C. The Effect of Activation on the Structure of Biochars Prepared from Wood and from Posidonia Oceanica: A Spectroscopic Study. Physchem 2022, 2, 286–304. [Google Scholar] [CrossRef]
- Ahmed Hared, I.; Dirion, J.-L.; Salvador, S.; Lacroix, M.; Rio, S. Pyrolysis of Wood Impregnated with Phosphoric Acid for the Production of Activated Carbon: Kinetics and Porosity Development Studies. J. Anal. Appl. Pyrolysis 2007, 79, 101–105. [Google Scholar] [CrossRef]
- Vázquez, B.L.; del Lafita, A.S.C.; Tort, D.S. Obtención De Carbón Activado Por Método De Activación Con Etapa De Lixiviación. Tecnol. Química 2005, XXV, 74–82. [Google Scholar]
- Rincón, J.M.; Rincón, S.; Guevara, P.; Ballén, D.; Morales, J.C.; Monroy, N. Producción de carbón activado mediante métodos físicos a partir de carbón de El Cerrejón y su aplicación en el tratamiento de aguas residuales provenientes de tintorerías. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 2015, 39, 171. [Google Scholar] [CrossRef]
- Kołtowski, M.; Hilber, I.; Bucheli, T.D.; Oleszczuk, P. Effect of Steam Activated Biochar Application to Industrially Contaminated Soils on Bioavailability of Polycyclic Aromatic Hydrocarbons and Ecotoxicity of Soils. Sci. Total Environ. 2016, 566–567, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.-H.; Gupta, S.; Lee, C.-Y.; Tai, N.-H. Effects of Physical and Chemical Activations on the Performance of Biochar Applied in Supercapacitors. Appl. Surf. Sci. 2023, 610, 155560. [Google Scholar] [CrossRef]
- Giorcelli, M.; Khan, A.; Pugno, N.M.; Rosso, C.; Tagliaferro, A. Biochar as a Cheap and Environmental Friendly Filler Able to Improve Polymer Mechanical Properties. Biomass Bioenergy 2019, 120, 219–223. [Google Scholar] [CrossRef]
- Dahal, R.K.; Acharya, B.; Saha, G.; Bissessur, R.; Dutta, A.; Farooque, A. Biochar as a Filler in Glassfiber Reinforced Composites: Experimental Study of Thermal and Mechanical Properties. Compos. Part B Eng. 2019, 175, 107169. [Google Scholar] [CrossRef]
- Pudełko, A.; Postawa, P.; Stachowiak, T.; Malińska, K.; Dróżdż, D. Waste Derived Biochar as an Alternative Filler in Biocomposites—Mechanical, Thermal and Morphological Properties of Biochar Added Biocomposites. J. Clean. Prod. 2021, 278, 123850. [Google Scholar] [CrossRef]
- Giorcelli, M.; Bartoli, M. Development of Coffee Biochar Filler for the Production of Electrical Conductive Reinforced Plastic. Polymers 2019, 11, 1916. [Google Scholar] [CrossRef] [PubMed]
- Diaz, C.A.; Shah, R.K.; Evans, T.; Trabold, T.A.; Draper, K. Thermoformed Containers Based on Starch and Starch/Coffee Waste Biochar Composites. Energies 2020, 13, 6034. [Google Scholar] [CrossRef]
- Papadopoulou, K.; Klonos, P.A.; Kyritsis, A.; Mašek, O.; Wurzer, C.; Tsachouridis, K.; Anastasiou, A.D.; Bikiaris, D.N. Synthesis and Study of Fully Biodegradable Composites Based on Poly(Butylene Succinate) and Biochar. Polymers 2023, 15, 1049. [Google Scholar] [CrossRef]
- She, D.; Dong, J.; Zhang, J.; Liu, L.; Sun, Q.; Geng, Z.; Peng, P. Development of Black and Biodegradable Biochar/Gutta Percha Composite Films with High Stretchability and Barrier Properties. Compos. Sci. Technol. 2019, 175, 1–5. [Google Scholar] [CrossRef]
- Tolvanen, J.; Hannu, J.; Hietala, M.; Kordas, K.; Jantunen, H. Biodegradable Multiphase Poly(Lactic Acid)/Biochar/Graphite Composites for Electromagnetic Interference Shielding. Compos. Sci. Technol. 2019, 181, 107704. [Google Scholar] [CrossRef]
- Liu, J.; Liu, G.; Zhang, W.; Li, Z.; Xing, F.; Tang, L. Application Potential Analysis of Biochar as a Carbon Capture Material in Cementitious Composites: A Review. Constr. Build. Mater. 2022, 350, 128715. [Google Scholar] [CrossRef]
- Bartoli, M.; Nasir, M.A.; Jagdale, P.; Passaglia, E.; Spiniello, R.; Rosso, C.; Giorcelli, M.; Rovere, M.; Tagliaferro, A. Influence of Pyrolytic Thermal History on Olive Pruning Biochar and Related Epoxy Composites Mechanical Properties. J. Compos. Mater. 2020, 54, 1863–1873. [Google Scholar] [CrossRef]
- Oral, I. Determination of Elastic Constants of Epoxy Resin/Biochar Composites by Ultrasonic Pulse Echo Overlap Method. Polym. Compos. 2016, 37, 2907–2915. [Google Scholar] [CrossRef]
- Wang, X.; Sotoudehniakarani, F.; Yu, Z.; Morrell, J.J.; Cappellazzi, J.; McDonald, A.G. Evaluation of Corrugated Cardboard Biochar as Reinforcing Fiber on Properties, Biodegradability and Weatherability of Wood-Plastic Composites. Polym. Degrad. Stab. 2019, 168, 108955. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Adhikari, S.; Shojaeiarani, J.; Bajwa, S.G.; Pandey, P.; Shanmugam, S.R. Characterization of Bio-Carbon and Ligno-Cellulosic Fiber Reinforced Bio-Composites with Compatibilizer. Constr. Build. Mater. 2019, 204, 193–202. [Google Scholar] [CrossRef]
- Zhang, Q.; Lei, H.; Cai, H.; Han, X.; Lin, X.; Qian, M.; Zhao, Y.; Huo, E.; Villota, E.M.; Mateo, W. Improvement on the Properties of Microcrystalline Cellulose/Polylactic Acid Composites by Using Activated Biochar. J. Clean. Prod. 2020, 252, 119898. [Google Scholar] [CrossRef]
- Ali, D.; Agarwal, R.; Hanifa, M.; Rawat, P.; Paswan, R.; Rai, D.; Tyagi, I.; Srinivasarao Naik, B.; Pippal, A. Thermo-Physical Properties and Microstructural Behaviour of Biochar-Incorporated Cementitious Material. J. Build. Eng. 2023, 64, 105695. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W. Carbonaceous Micro-Filler for Cement: Effect of Particle Size and Dosage of Biochar on Fresh and Hardened Properties of Cement Mortar. Sci. Total Environ. 2019, 662, 952–962. [Google Scholar] [CrossRef]
- Aup-Ngoen, K.; Noipitak, M. Effect of Carbon-Rich Biochar on Mechanical Properties of PLA-Biochar Composites. Sustain. Chem. Pharm. 2020, 15, 100204. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Tan Cynthia, S.Y. Use of Biochar-Coated Polypropylene Fibers for Carbon Sequestration and Physical Improvement of Mortar. Cem. Concr. Compos. 2017, 83, 171–187. [Google Scholar] [CrossRef]
- Ogunsona, E.O.; Misra, M.; Mohanty, A.K. Accelerated Hydrothermal Aging of Biocarbon Reinforced Nylon Biocomposites. Polym. Degrad. Stab. 2017, 139, 76–88. [Google Scholar] [CrossRef]
- Uram, K.; Kurańska, M.; Andrzejewski, J.; Prociak, A. Rigid Polyurethane Foams Modified with Biochar. Materials 2021, 14, 5616. [Google Scholar] [CrossRef] [PubMed]
- Andrzejewski, J.; Misra, M.; Mohanty, A.K. Polycarbonate Biocomposites Reinforced with a Hybrid Filler System of Recycled Carbon Fiber and Biocarbon: Preparation and Thermomechanical Characterization. J. Appl. Polym. Sci. 2018, 135, 46449. [Google Scholar] [CrossRef]
- Alhelal, A.; Mohammed, Z.; Jeelani, S.; Rangari, V.K. 3D Printing of Spent Coffee Ground Derived Biochar Reinforced Epoxy Composites. J. Compos. Mater. 2021, 55, 3651–3660. [Google Scholar] [CrossRef]
- Yan, J.; Han, L.; Gao, W.; Xue, S.; Chen, M. Biochar Supported Nanoscale Zerovalent Iron Composite Used as Persulfate Activator for Removing Trichloroethylene. Bioresour. Technol. 2015, 175, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xiao, R.; Li, R.; Ali, A.; Chen, A.; Zhang, Z. Enhanced Aqueous Cr(VI) Removal Using Chitosan-Modified Magnetic Biochars Derived from Bamboo Residues. Chemosphere 2020, 261, 127694. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.P.; Pereira, D.; Calisto, V.; Martins, M.A.; Otero, M.; Esteves, V.I.; Lima, D.L.D. Biochar-TiO2 Magnetic Nanocomposites for Photocatalytic Solar-Driven Removal of Antibiotics from Aquaculture Effluents. J. Environ. Manag. 2021, 294, 112937. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yang, S.; Wi, S.; Kim, S. Thermal Transfer Behavior of Biochar-Natural Inorganic Clay Composite for Building Envelope Insulation. Constr. Build. Mater. 2019, 223, 668–678. [Google Scholar] [CrossRef]
- Oancea, I.; Bujoreanu, C.; Budescu, M.; Benchea, M.; Grădinaru, C.M. Considerations on Sound Absorption Coefficient of Sustainable Concrete with Different Waste Replacements. J. Clean. Prod. 2018, 203, 301–312. [Google Scholar] [CrossRef]
- Mo, L.; Fang, J.; Huang, B.; Wang, A.; Deng, M. Combined Effects of Biochar and MgO Expansive Additive on the Autogenous Shrinkage, Internal Relative Humidity and Compressive Strength of Cement Pastes. Constr. Build. Mater. 2019, 229, 116877. [Google Scholar] [CrossRef]
- Gupta, S.; Kashani, A. Utilization of Biochar from Unwashed Peanut Shell in Cementitious Building Materials—Effect on Early Age Properties and Environmental Benefits. Fuel Process. Technol. 2021, 218, 106841. [Google Scholar] [CrossRef]
- Tan, K.; Pang, X.; Qin, Y.; Wang, J. Properties of Cement Mortar Containing Pulverized Biochar Pyrolyzed at Different Temperatures. Constr. Build. Mater. 2020, 263, 120616. [Google Scholar] [CrossRef]
- Roychand, R.; Patel, S.; Halder, P.; Kundu, S.; Hampton, J.; Bergmann, D.; Surapaneni, A.; Shah, K.; Pramanik, B.K. Recycling Biosolids as Cement Composites in Raw, Pyrolyzed and Ashed Forms: A Waste Utilisation Approach to Support Circular Economy. J. Build. Eng. 2021, 38, 102199. [Google Scholar] [CrossRef]
- Laili, Z.; Yasir, M.S.; Wahab, M.A.; Mahmud, N.A.; Abidin, N.Z. Evaluation of the Compressive Strength of Cement-Spent Resins Matrix Mixed with Biochar. Malays. J. Anal. Sci. 2015, 19, 565–573. [Google Scholar]
- Liu, J.; Li, Q.; Xu, S. Influence of Nanoparticles on Fluidity and Mechanical Properties of Cement Mortar. Constr. Build. Mater. 2015, 101, 892–901. [Google Scholar] [CrossRef]
- Restuccia, L.; Ferro, G.A. Promising Low Cost Carbon-Based Materials to Improve Strength and Toughness in Cement Composites. Constr. Build. Mater. 2016, 126, 1034–1043. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Koh, H.J. Application of Biochar from Food and Wood Waste as Green Admixture for Cement Mortar. Sci. Total Environ. 2018, 619–620, 419–435. [Google Scholar] [CrossRef] [PubMed]
- Arrigo, R.; Bartoli, M.; Malucelli, G. Poly(Lactic Acid)–Biochar Biocomposites: Effect of Processing and Filler Content on Rheological, Thermal, and Mechanical Properties. Polymers 2020, 12, 892. [Google Scholar] [CrossRef]
- Ho, M.; Lau, K.; Wang, H.; Hui, D. Improvement on the Properties of Polylactic Acid (PLA) Using Bamboo Charcoal Particles. Compos. Part B Eng. 2015, 81, 14–25. [Google Scholar] [CrossRef]
- Lepak-Kuc, S.; Kiciński, M.; Michalski, P.P.; Pavlov, K.; Giorcelli, M.; Bartoli, M.; Jakubowska, M. Innovative Biochar-Based Composite Fibres from Recycled Material. Materials 2021, 14, 5304. [Google Scholar] [CrossRef] [PubMed]
- Watt, E.; Abdelwahab, M.A.; Mohanty, A.K.; Misra, M. Biocomposites from Biobased Polyamide 4,10 and Waste Corn Cob Based Biocarbon. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106340. [Google Scholar] [CrossRef]
- Mohammed, Z.; Jeelani, S.; Rangari, V.K. Effect of Low-Temperature Plasma Treatment on Starch-Based Biochar and Its Reinforcement for Three-Dimensional Printed Polypropylene Biocomposites. ACS Omega 2022, 7, 39636–39647. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, H.; Chen, C.; Li, X.; Deng, Q.; Li, D. Mechanical, Electrical, and Thermal Properties of Highly Filled Bamboo Charcoal/Ultra-High Molecular Weight Polyethylene Composites. Polym. Compos. 2018, 39, E1858–E1866. [Google Scholar] [CrossRef]
- Cooper, C.J.; Abdelwahab, M.A.; Mohanty, A.K.; Misra, M. Hybrid Green Bionanocomposites of Bio-Based Poly(Butylene Succinate) Reinforced with Pyrolyzed Perennial Grass Microparticles and Graphene Nanoplatelets. ACS Omega 2019, 4, 20476–20485. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Reimer, C.; Wang, T.; Mohanty, A.K.; Misra, M. Thermal and Mechanical Properties of the Biocomposites of Miscanthus Biocarbon and Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) (PHBV). Polymers 2020, 12, 1300. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-C.; Chang, C.-W.; Jahan, K.; Wu, T.-M.; Shih, Y.-F. Effects of the Grapevine Biochar on the Properties of PLA Composites. Materials 2023, 16, 816. [Google Scholar] [CrossRef] [PubMed]
- Zouari, M.; Devallance, D.B.; Marrot, L. Effect of Biochar Addition on Mechanical Properties, Thermal Stability, and Water Resistance of Hemp-Polylactic Acid (PLA) Composites. Materials 2022, 15, 2271. [Google Scholar] [CrossRef] [PubMed]
- Das, O.; Sarmah, A.K.; Bhattacharyya, D. Nanoindentation Assisted Analysis of Biochar Added Biocomposites. Compos. Part B Eng. 2016, 91, 219–227. [Google Scholar] [CrossRef]
- Das, O.; Hedenqvist, M.S.; Johansson, E.; Olsson, R.T.; Loho, T.A.; Capezza, A.J.; Singh Raman, R.K.; Holder, S. An All-Gluten Biocomposite: Comparisons with Carbon Black and Pine Char Composites. Compos. Part A Appl. Sci. Manuf. 2019, 120, 42–48. [Google Scholar] [CrossRef]
- Ertane, E.G.; Dorner-Reisel, A.; Baran, O.; Welzel, T.; Matner, V.; Svoboda, S. Processing and Wear Behaviour of 3D Printed PLA Reinforced with Biogenic Carbon. Adv. Tribol. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Mayakrishnan, V.; Mohamed, J.K.; Selvaraj, N.; SenthilKumar, D.; Annadurai, S. Effect of Nano-Biochar on Mechanical, Barrier and Mulching Properties of 3D Printed Thermoplastic Polyurethane Film. Polym. Bull. 2023, 80, 6725–6747. [Google Scholar] [CrossRef]
- Oliveira da Silva, A.; Cortez-Vega, W.R.; Prentice, C.; Fonseca, G.G. Development and Characterization of Biopolymer Films Based on Bocaiuva (Acromonia aculeata) Flour. Int. J. Biol. Macromol. 2020, 155, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
- Das, C.; Tamrakar, S.; Kiziltas, A.; Xie, X. Incorporation of Biochar to Improve Mechanical, Thermal and Electrical Properties of Polymer Composites. Polymers 2021, 13, 2663. [Google Scholar] [CrossRef] [PubMed]
- Huber, T.; Misra, M.; Mohanty, A.K. The Effect of Particle Size on the Rheological Properties of Polyamide 6/Biochar Composites. AIP Conf. Proc. 2015, 1664, 150004. [Google Scholar] [CrossRef]
- Wang, T.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A.K. Sustainable Carbonaceous Biofiller from Miscanthus: Size Reduction, Characterization, and Potential Bio-Composites Applications. BioResources 2018, 13, 3720–3739. [Google Scholar] [CrossRef]
- Richard, S.; Selwin Rajadurai, J.; Manikandan, V. Effects of Particle Loading and Particle Size on Tribological Properties of Biochar Particulate Reinforced Polymer Composites. J. Tribol. 2017, 139, 012202. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Jadhav, A.; Qureshi, S.S.; Baloch, H.A.; Siddiqui, M.T.H.; Mubarak, N.M.; Griffin, G.; Madapusi, S.; Tanksale, A.; Ahamed, M.I. Synthesis and Characterization of Polylactide/Rice Husk Hydrochar Composite. Sci. Rep. 2019, 9, 5445. [Google Scholar] [CrossRef] [PubMed]
- Billah, M.M.; Rabbi, M.S.; Hasan, A. Injection Molded Discontinuous and Continuous Rattan Fiber Reinforced Polypropylene Composite: Development, Experimental and Analytical Investigations. Results Mater. 2022, 13, 100261. [Google Scholar] [CrossRef]
- Sallih, N.; Lescher, P.; Bhattacharyya, D. Factorial Study of Material and Process Parameters on the Mechanical Properties of Extruded Kenaf Fibre/Polypropylene Composite Sheets. Compos. Part A Appl. Sci. Manuf. 2014, 61, 91–107. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, Y.; Lin, Q.; Chen, L. Effects of Maleic Anhydride-Grafted Polypropylene (MAPP) on the Physico-Mechanical Properties and Rheological Behavior of Bamboo Powder-Polypropylene Foamed Composites. BioResources 2013, 8, 6263–6279. [Google Scholar] [CrossRef]
- Das, O.; Sarmah, A.K.; Bhattacharyya, D. A Novel Approach in Organic Waste Utilization through Biochar Addition in Wood/Polypropylene Composites. Waste Manag. 2015, 38, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Yan, N.; Wang, W. Application of PDMS Pervaporation Membranes Filled with Tree Bark Biochar for Ethanol/Water Separation. RSC Adv. 2016, 6, 47637–47645. [Google Scholar] [CrossRef]
- Subramanian, V.; Luo, C.; Stephan, A.M.; Nahm, K.S.; Thomas, S.; Wei, B. Supercapacitors from Activated Carbon Derived from Banana Fibers. J. Phys. Chem. C 2007, 111, 7527–7531. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, Y.U.; Nam, J.; Kim, S.; Kim, S. Enhancing the Thermal Stability and Fire Retardancy of Bio-Based Building Materials through Pre-Biochar System. Constr. Build. Mater. 2023, 409, 134099. [Google Scholar] [CrossRef]
- Shah, A.U.R.; Imdad, A.; Sadiq, A.; Malik, R.A.; Alrobei, H.; Badruddin, I.A. Mechanical, Thermal, and Fire Retardant Properties of Rice Husk Biochar Reinforced Recycled High-Density Polyethylene Composite Material. Polymers 2023, 15, 1827. [Google Scholar] [CrossRef] [PubMed]
- Das, O.; Kim, N.K.; Kalamkarov, A.L.; Sarmah, A.K.; Bhattacharyya, D. Biochar to the Rescue: Balancing the Fire Performance and Mechanical Properties of Polypropylene Composites. Polym. Degrad. Stab. 2017, 144, 485–496. [Google Scholar] [CrossRef]
- Hazelton, P.; Ye, M.; Chen, X. Introduction to Conducting Polymers. In ACS Symposium Series; Nazarzadeh Zare, E., Makvandi, P., Eds.; American Chemical Society: Washington, DC, USA, 2023; Volume 1438, pp. 1–7. ISBN 978-0-8412-9711-1. [Google Scholar] [CrossRef]
- Nan, N.; DeVallance, D.B.; Xie, X.; Wang, J. The Effect of Bio-Carbon Addition on the Electrical, Mechanical, and Thermal Properties of Polyvinyl Alcohol/Biochar Composites. J. Compos. Mater. 2016, 50, 1161–1168. [Google Scholar] [CrossRef]
- Bartoli, M.; Torsello, D.; Piatti, E.; Giorcelli, M.; Sparavigna, A.C.; Rovere, M.; Ghigo, G.; Tagliaferro, A. Pressure-Responsive Conductive Poly(Vinyl Alcohol) Composites Containing Waste Cotton Fibers Biochar. Micromachines 2022, 13, 125. [Google Scholar] [CrossRef]
- Ahmed, K.; Hasan, M.; Haider, J. Electrical and Mechanical Properties of Sugarcane Bagasse Pyrolyzed Biochar Reinforced Polyvinyl Alcohol Biocomposite Films. J. Compos. Sci. 2021, 5, 249. [Google Scholar] [CrossRef]
- Unterweger, C.; Ranzinger, M.; Duchoslav, J.; Piana, F.; Pasti, I.; Zeppetzauer, F.; Breitenbach, S.; Stifter, D.; Fürst, C. Electrically Conductive Biocomposites Based on Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) and Wood-Derived Carbon Fillers. J. Compos. Sci. 2022, 6, 228. [Google Scholar] [CrossRef]
- Umerah, C.O.; Kodali, D.; Head, S.; Jeelani, S.; Rangari, V.K. Synthesis of Carbon from Waste Coconutshell and Their Application as Filler in Bioplast Polymer Filaments for 3D Printing. Compos. Part B Eng. 2020, 202, 108428. [Google Scholar] [CrossRef]
- Jasim, S.M.; Ali, N.A. Properties Characterization of Plasticized Polylactic Acid/Biochar (Bio Carbon) Nano-Composites for Antistatic Packaging. Iraqi J. Phys. 2019, 17, 13–26. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.; Ling, P.; Zhang, X.; Xu, K.; He, L.; Wang, Y.; Su, S.; Hu, S.; Xiang, J. Raman Spectroscopy of Biochar from the Pyrolysis of Three Typical Chinese Biomasses: A Novel Method for Rapidly Evaluating the Biochar Property. Energy 2020, 202, 117644. [Google Scholar] [CrossRef]
- Fingolo, A.C.; Bettini, J.; da Silva Cavalcante, M.; Pereira, M.P.; Bufon, C.C.B.; Santhiago, M.; Strauss, M. Boosting Electrical Conductivity of Sugarcane Cellulose and Lignin Biocarbons through Annealing under Isopropanol Vapor. ACS Sustain. Chem. Eng. 2020, 8, 7002–7010. [Google Scholar] [CrossRef]
- Gabhi, R.S.; Kirk, D.W.; Jia, C.Q. Preliminary Investigation of Electrical Conductivity of Monolithic Biochar. Carbon 2017, 116, 435–442. [Google Scholar] [CrossRef]
- Gindl-Altmutter, W.; Fürst, C.; Mahendran, A.R.; Obersriebnig, M.; Emsenhuber, G.; Kluge, M.; Veigel, S.; Keckes, J.; Liebner, F. Electrically Conductive Kraft Lignin-Based Carbon Filler for Polymers. Carbon 2015, 89, 161–168. [Google Scholar] [CrossRef]
- Noori, A.; Bartoli, M.; Frache, A.; Piatti, E.; Giorcelli, M.; Tagliaferro, A. Development of Pressure-Responsive PolyPropylene and Biochar-Based Materials. Micromachines 2020, 11, 339. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Huang, T.; He, S.; Liu, X.; Chen, Q.; Chen, J.; Cao, H. Waste Eggshell Membrane-Templated Synthesis of Functional Cu2+–Cu+/Biochar for an Ultrasensitive Electrochemical Enzyme-Free Glucose Sensor. RSC Adv. 2021, 11, 18994–18999. [Google Scholar] [CrossRef]
- Cao, L.; Kang, Z.-W.; Ding, Q.; Zhang, X.; Lin, H.; Lin, M.; Yang, D.-P. Rapid Pyrolysis of Cu2+-Polluted Eggshell Membrane into a Functional Cu2+-Cu+/Biochar for Ultrasensitive Electrochemical Detection of Nitrite in Water. Sci. Total Environ. 2020, 723, 138008. [Google Scholar] [CrossRef]
- Giorcelli, M.; Bartoli, M.; Sanginario, A.; Padovano, E.; Rosso, C.; Rovere, M.; Tagliaferro, A. High-Temperature Annealed Biochar as a Conductive Filler for the Production of Piezoresistive Materials for Energy Conversion Application. ACS Appl. Electron. Mater. 2021, 3, 838–844. [Google Scholar] [CrossRef]
- Sun, W.; Lipka, S.M.; Swartz, C.; Williams, D.; Yang, F. Hemp-Derived Activated Carbons for Supercapacitors. Carbon 2016, 103, 181–192. [Google Scholar] [CrossRef]
- Thomas, D.; Fernandez, N.B.; Mullassery, M.D.; Surya, R.; Jacob, L.E. Banana Stem Biochar Composite with Polyaniline for Energy Storage Applications. Results Chem. 2023, 6, 101088. [Google Scholar] [CrossRef]
- Endler, L.W.; Wolfart, F.; Mangrich, A.S.; Vidotti, M.; Marchesi, L.F. Facile Method to Prepare Biochar–NiO Nanocomposites as a Promisor Material for Electrochemical Energy Storage Devices. Chem. Pap. 2020, 74, 1471–1476. [Google Scholar] [CrossRef]
- Akgül, G.; Iglesias, D.; Ocon, P.; Moreno Jiménez, E. Valorization of Tea-Waste Biochar for Energy Storage. BioEnergy Res. 2019, 12, 1012–1020. [Google Scholar] [CrossRef]
Raw Biochar Material | Tpyro (°C) | SBET (m2/g) | Vp Cm3/g | pH | EC (S/cm) | C % | O % | H % | N % | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Wheat Straw | 500 | - | - | 10.4 | 6.53 × 10−3 | 67.4 | 7.3 | 1.0 | 1.4 | [16] |
Canola | 600 | <2 | 0.001 | 9.4 | 1.12 × 10−3 | 77.5 | 12.3 | 2.3 | 7.6 | [43] |
Conocarp waste | 600 | - | - | 12.2 | 9.03 × 10−3 | 82.9 | 6.5 | 1.3 | 0.7 | [44] |
Alkaline lignin | 900 | 27.0 | - | - | 0.002 | 64.0 | 21.3 | 0.7 | 0.8 | [45] |
Lignin-rich residue | 700 | 14.3 | 0.029 | - | 0.050 | 70.2 | 28.2 | 1.0 | 0.6 | [46] |
Walnut shells | 700 | 296.2 | 0.154 | - | 0.010 | 87.4 | 10.5 | 2.1 | 0.1 | [46] |
Sewage sludge | 700 | 10.2 | 0.041 | - | 0.020 | 80.1 | 10.4 | 1.0 | 8.5 | [46] |
Bamboo | 600 | 181.0 | 0.150 | - | - | 82.9 | 5.0 | 2.2 | 0.5 | [47] |
Bamboo | 600 | 307.1 | 0.180 | 10.1 | - | 88.4 | 8.6 | 2.7 | 0.3 | [42] |
Bio solid | 400 | 7.6 | 0.048 | 7.5 | 167 × 10−4 | 21.4 | 20.4 | 0.9 | 3.3 | [48] |
Bio solid | 600 | 32.0 | 0.058 | 11.3 | 406 × 10−4 | 14.2 | 18.5 | 0.2 | 2.0 | [48] |
Safflower seed cake | 500 | 4.2 | 0.008 | 9.44 | - | 71.37 | 21.76 | 2.96 | 3.91 | [14] |
Ulva flexuousa algae | 450 | 1.2 | - | 8.0 | 0.0418 | 28.9 | - | 2.8 | 5.0 | [49] |
Bamboo | 550 | 140.2 | 0.085 | - | - | 72.58 | 17.05 | 2.40 | 0.29 | [50] |
Rice husk biochar | 600 | 297.4 | 0.152 | - | - | 51.02 | ---- | 1.67 | 0.52 | [51] |
Miscanthus | 500 | 181.0 | - | 9.49 | - | 86.66 | 9.74 | 3.20 | 0.40 | [52] |
Banana pseudo-stem | 500 | 1.078 | 0.005 | 10.16 | - | 43.23 | 36.81 | 0 | 19.96 | [53] |
Pyrolysis Type | ||||||
---|---|---|---|---|---|---|
Slow | Fast | Flash | Intermediate | Microwave—Assisted | Vacuum | |
Temperature °C | 300–700 | 500–1000 | 800–1300 | 500–650 | 300–700 | 300–600 |
Heating rate (°C/s) | 0.01–1 | 10–300 | >1000 | 1.0–10 | 0.5–2 | 0.1–1.0 |
Vapor residence time (s) | Minutes to hours | 0.5–10 | <0.5 | 0.5–20 | <30 | 0.001–1.0 |
Particle size (mm) | 5–50 | <1 | <0.2 | 1–5 | - | - |
Pressure (MPa) | 0.1 | 0.1 | 0.1 | 0.1 | 5–20 | 0.01–0.02 |
References | [10,70,88,93,105,106,107] | [10,70,88,93,101,104,105] | [10,88,93,105,106,107] | [88,93,106,107,108] | [10,92,106] | [99,104,107] |
Polymer or Biopolymer | Raw Biochar | Biochar Temperature (Tpyro°C) | Biochar Load (wt.%) | TC (°C) | Tm (°C) | TS (MPa) | TM (GPa) | Ref. |
---|---|---|---|---|---|---|---|---|
PP | Date palm | 900 | 0 | 120.9 | 165.7 | 35.0 | 1.10 | [19] |
5 | 123.2↗ | 165.2↘ | 34.5↘ | 1.12↗ | ||||
15 | 123.1↗ | 166.6↗ | 34↘ | 1.36↗ | ||||
PLA | Coffee powder waste | 700 | 0 | 129.3 | 153.4 | 52.5 | 2.50 | [159] |
5 | 128.3↘ | 152.8↘ | 51↘ | 2.70↗ | ||||
7.5 | 126.6↘ | 150.2↘ | 50.1↘ | 2.75↗ | ||||
PLA | Bamboo | - | 0 | 129.1 | 159.8 | 34 | 2.80 | [160] |
7.5 | 135.1↗ | 156.6↘ | 40.74↗ | 3.70↗ | ||||
PLA | Cotton fibers | 1000 | 50 | - | 151↘ | 47.56↗ | - | [161] |
PA 4,10 | Corn cob | 500 | 10 | 247.3 | 225.9 | 68 | 3.10 | [162] |
20 | 248.4↗ | 224.9↘ | 66↘ | 3.4↗ | ||||
PP | Starch | 1100 | 0 | 113.2 | 159.7 | 21.73 | 0.38 | [163] |
0.50 | 113.5↗ | 160.2↗ | 36.56↗ | 0.56↗ | ||||
1 | 121.3↗ | 162.9↗ | 36.89↗ | 0.65↗ | ||||
PLA/PBAT 75/20 70/20 | Coconut shell | 800 | 5 | 99.0 | 176.7 | 28.2 | 2.51 | [35] |
10 | 98.0↘ | 176.8↗ | 24.6↘ | 2.54↗ | ||||
UHMWPE | Bamboo | 1000 | 60 | 134.3 | 121.7 | 94.5 | 1.39 | [164] |
70 | 133.9↘ | 122.4↗ | 128.9↗ | 2.03↗ | ||||
80 | 132.8↘ | 122.8↗ | 95.0↗ | 2.1↗ | ||||
PBS | Miscanthus | ~500 | 0 | 91.2 | 115.7 | 41.5 | 0.80 | [165] |
10 | 89.4↘ | 115.2↘ | 42.5↗ | 1.06↗ | ||||
15 | 89.8↘ | 115.8↗ | 42.5↗ | 1.18↗ | ||||
20 | 88.4↘ | 115.5↘ | 43↗ | 1.25↗ | ||||
25 | 87.9 | 115.6↘ | 44↗ | 1.26↗ | ||||
Nylon | Miscanthus | 650 | 20 | 196.4 | 222.3 | 81 | 2.51 | [142] |
PHBV | Miscanthus | 650 | 0 | 124 | 174 | 38.3 | 3.50 | [166] |
10 | 121↘ | 175↗ | 32.2↘ | 3.74↗ | ||||
20 | 122↘ | 174≡ | 33.1↘ | 4.69↗ | ||||
30 | 124≡ | 174≡ | 32.8↘ | 5.24↗ |
Polymer or Biopolymer | Raw Biomass | Biochar Temperature (Tpyro(°C)) | Biochar Load (%) | Electrical Propriety | Possible Applications | Ref. |
---|---|---|---|---|---|---|
70PLA/20PBAT | Noix coco | 800 | 10 | 1.03 × 1011 ohm/sq | Packaging. Personal protective equipment. | [35] |
UHMWPE | Apple | 900 | 70 | 8.2 × 10−2 S/cm | Antistatic materials. Electronic circuit. | [41] |
UHMWPE | Bamboo | 1000 | 80 | 0.53 S/cm | Antistatic materials. Shielding against electromagnetic interference. | [164] |
UHMWPE | Bamboo | 1100 | 70 | 0.39 S/cm | Antistatic materials. Electronic circuit. | [41] |
PLA | Corn Cane | Activated at 800 | 50 | 0.32 mA | Biosensors for smart food packaging. | [34] |
85 | 2.3 mA | |||||
PVA | Leaf mixture | - | 6 | 0.23816 × 10−6 S/cm | Electronic devices. Anti-static materials. | [189] |
10 | 1.833 × 10−6 S/cm | |||||
PVA | Cotton | 1000 | 10 | 1 mS/m | Piezoresistive sensors. Impact detectors. | [190] |
20 | 2.90 S/m | |||||
30 | 7.5 S/m | |||||
PVA | Sugar cane bagasse | 800 | 12 | 2.38 × 10−2 S | Electronic devices. | [191] |
PVA | Sugar cane bagasse | 1000 | 5 | 1.91 × 10−2 S | Resistive piezo materials. | [191] |
Epoxide Resin | Coffee | 1000 | 15 | 35.96 S/m | Electronic devices. | [127] |
Epoxide resin | Miscanthus | 650 | 20 | 0.20 S/m | Sensors. | [31] |
700 | 1.88 S/m | |||||
750 | 2.75 S/m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feliz Florian, G.; Ragoubi, M.; Leblanc, N.; Taouk, B.; Abdelouahed, L. Biochar Production and Its Potential Application for Biocomposite Materials: A Comprehensive Review. J. Compos. Sci. 2024, 8, 220. https://doi.org/10.3390/jcs8060220
Feliz Florian G, Ragoubi M, Leblanc N, Taouk B, Abdelouahed L. Biochar Production and Its Potential Application for Biocomposite Materials: A Comprehensive Review. Journal of Composites Science. 2024; 8(6):220. https://doi.org/10.3390/jcs8060220
Chicago/Turabian StyleFeliz Florian, Guillermina, Mohamed Ragoubi, Nathalie Leblanc, Bechara Taouk, and Lokmane Abdelouahed. 2024. "Biochar Production and Its Potential Application for Biocomposite Materials: A Comprehensive Review" Journal of Composites Science 8, no. 6: 220. https://doi.org/10.3390/jcs8060220
APA StyleFeliz Florian, G., Ragoubi, M., Leblanc, N., Taouk, B., & Abdelouahed, L. (2024). Biochar Production and Its Potential Application for Biocomposite Materials: A Comprehensive Review. Journal of Composites Science, 8(6), 220. https://doi.org/10.3390/jcs8060220