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Abstract: Global poultry waste production is substantial, with billions of poultry raised annually
for meat and egg production, resulting in significant feather waste. Conventional poultry waste
disposal methods are restricted due to environmental concerns. Meanwhile, wood-composite panel
industries face raw material shortages, emphasizing the need for sustainable, renewable fiber sources.
In this study, in the core layer of panels, wood particles were replaced with 5 wt% clean duck feathers
without pretreatment to take advantage of feather attributes like hydrophobicity, thermal insulation,
and sound damping as an alternative construction material. Three adhesives—urea-formaldehyde
(UF), polymeric 4,4′-diphenylmethane diisocyanate (pMDI), and polyvinyl acetate (PVAc)—were
examined for resin–feather compatibility. The control panels in this study were identical but wood
was not replaced with feathers. The results revealed that wood–feather particleboard with pMDI
and PVAc resins meets the requirements of the relevant standard for P2 boards (where applicable)
concerning their modulus of rupture (MOR: 11 N·mm−2), modulus of elasticity (MOE: 1600 N·mm−2),
internal bond (IB: 0.35 N·mm−2), and screw withdrawal resistance (SWR). However, those produced
with UF resin did not meet the standards for IB and MOE. Furthermore, the physical properties
showed similar water resistance and thickness swelling to control panels with pMDI. Notably,
substituting 5 wt% wood with feathers improved thermal insulation by approximately 10% for UF
and pMDI resins. Additionally, particleboard with feathers demonstrated improved sound absorption
at high frequencies, ranging from 2500 to 500 Hz, particularly with pMDI resin, approaching Class B
classification according to EN ISO 11654:1997. This study identifies the higher compatibility of pMDI
over PVAc and UF adhesives for feather-based composite materials in construction applications.

Keywords: particleboard; composites; poultry waste; duck feathers

1. Introduction

The global consumption of poultry meat, including duck, turkey, goose, and chicken,
is projected to increase to 154 Mt by 2031, accounting for nearly half of the additional meat
consumed. Consumers are attracted to poultry because it is cheaper (farming and fast
growth), consistent, and has a lower fat/protein ratio [1]. Based on OECD data from 2024,
global consumption projections indicate an average consumption of 136,808.8 thousand
tonnes worldwide, equivalent to approximately 14.9 kg per capita [2]. The European Union
is one of the largest producers and traders of poultry products globally and produces
around 13.4 million tonnes of products annually [3]. Feathers are a major waste of this
food industry sector, accounting for an average volume of 3.6 million tonnes annually
in Europe [4]. Disposing of such poultry wastes, especially feathers, in incinerators or
landfills increases financial and environmental costs due to their extreme resistance to
physical, chemical, and biological agents [5] and their emission of hazardous greenhouse
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gases [6]. As a result, the use of these methods has been restricted. Feathers comprise
approximately half fiber and half quill (by weight) [7]. The fiber and quill consist of 90%
hydrophobic keratin [8,9], a rigid protein consisting of several amino acids, largely made
up of cystine, lysine, proline, and serine [8,9]. These amino acids crosslink via disulfide
and hydrogen bonds, making them extremely resistant to degradation and lightweight,
and they have good thermal and acoustic insulating properties [10,11]. The quills, as
hard keratins, have marginal commercial applications in industries like the textile, rubber,
cosmetics, biomedical, bioenergy, and pharmaceutical industries [12]. However, due to the
low volume requirements of these applications, waste feathers remain a significant waste
product each year. For instance, the cost of disposing of one tonne of feathers in Poland
can be up to EUR 77 [13], and in Malaysia, the annual disposal cost reaches approximately
EUR 380,000 [14].

From another perspective, the wood-based composite industry continuously needs
raw materials [15]. Therefore, natural fibers of renewable resources other than wood and
lignocellulosic materials should be considered to maintain sustainable production. Com-
posite building materials and interior fitment panels, such as fiberboard and particleboard,
are high-volume and have the potential to consume large quantities of waste feathers
efficiently. Even if we only consider the 3.6 million tonnes of feather waste generated in
Europe annually, this would be enough to manufacture 90 thousand tonnes of composite
panels with a five percent feather content. Considering the average demand for wood raw
material in a single line of particleboard plants is about 25 tonnes per hour, working 24/7,
excluding one month per year for service works, it consumes about 201,000 tonnes of wood
per year [16]. Replacing 5% of this with feathers would yield savings of approximately
EUR 1,507,500 annually, based on the current cost of wood at EUR 150 per tonne [17]. This
substantial saving underscores the financial viability of using feathers in particleboard
production, offering a cost-effective, renewable source of fiber that benefits both the poultry
and wood industries. A new Circular Economy Action Plan was launched in 2020 to acceler-
ate the EU sustainability transition and move from a fossil-fuel-based economy to a circular
bioeconomy. This includes the Sustainable Product Policy Framework (SPPF), which aims
to address high-impact products, including textiles, construction products, electronics, and
plastics, and to ensure that production in the EU is resource-efficient, climate-neutral, and
aligned with principles of a circular bio-based economy (European Commission 2020) [18].
The construction sector is responsible for over 35% of the EU’s total waste generation. The
greenhouse gas (GHG) emissions from material extraction, manufacturing of construc-
tion products, and renovation of buildings are estimated at 5–12% of the total national
GHG emissions. Using more efficient materials could save 80% of those emissions [18].
Researchers have developed materials that are thermally and acoustically insulating us-
ing natural waste biomass such as reed straws [18,19], bagasse [20,21], cattail [22], corn
cob [23], cotton stalks [24,25], coconut chips [26], rice and wheat straw [27], regenerated
cellulose [28], and seaweeds [29], among other alternatives. Moreover, recycled materials
such as glass [28], waste paper and textile fibers [29], and plastics [30] have been investi-
gated. Chicken feathers have been reported to be used partially, along with wood chips
and fibers, as a low-cost option [30–33]. Medium-density fiberboard (MDF) and particle-
board with a portion of chicken feathers demonstrated promising physical and mechanical
properties [31]. However, adding poultry feathers in amounts greater than 10% resulted in
lower mechanical properties and higher water repellency in the composite materials.

Additionally, the building sector has become one of the most energy-consuming sectors
in recent years in terms of heating and cooling loads and elaboration of sound-absorbing
materials based on petrochemicals, with Europe accounting for 40% of energy consumption
and 36% of CO2 emissions [34]. Therefore, building insulation materials need to be devel-
oped at lower costs, and feather waste is one of the most effective and cheap insulation
materials for reducing energy consumption, with thermal conductivities ranging from 0.024
to 0.034 W·mK−1 depending on the type of feather [35], and they have a highest noise
absorption coefficient of 0.6 [36]. This is due to their chemical composition and honeycomb
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microstructure (Figure 1), which effectively traps air, promoting sound absorption and
acting as a thermal barrier. In this study, various wood composite particleboards were
prepared by substituting 5 wt% of the wood particles with clean duck feathers without any
pretreatments in the core layer, keeping the density of the panels constant (0.66 g·cm−3)
and the structure of the panels even. In addition to this, three different binders were used as
adhesives, urea-formaldehyde (UF), polymeric 4,4′-diphenylmethane diisocyanate (pMDI),
and polyvinyl acetate (PVAc), to study the resin–feather compatibility. The emphasis was
on evaluating waste duck feathers as a component of natural insulation composites and
mixed waste wood residues, ensuring their physical and mechanical properties meeting
the requirements of EN 312 standard for P2 boards. The physical, mechanical, thermal,
and acoustic properties of wood particleboard containing feathers were investigated and
compared to those of control panels without feathers. Additionally, the effect of adhesive
type on the exploitation properties of the particleboard was evaluated.
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2.1. Materials 
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abies (L.) H. Karst and some deciduous species, with an about 6% moisture content (MC), 
which were intended for the face and core layers particleboard production, were received 
from a plant located in Poland. An industrial partner generously supplied white duck 
feathers (Plum’Export, Saint-Sever, France). As binders, an industrial urea-formaldehyde 
(UF) resin Silekol S-123 (Silekol Sp. z o. o., Kędzierzyn—Koźle, Poland) of about 66% dry 
content was used. The hardener for UF adhesive mass was a 40 wt% water solution of 
ammonium nitrate. The UF bonding mass composition had a weight ratio of 100:8:8 (resin, 
water, hardener solution, respectively) to reach the curing time of the adhesive mass at 
100 °C for about 86 s. PVAc was prepared by adding distilled water to 40% of the total 
solid content to achieve the consistency of a thick liquid. PMDI was used directly. The 
viscosity of all used binders before application was about 420–450 mPa·s. No hydrophobic 
agents were added. 

 

Figure 1. Scanning ELECTRON MICROSCOPY (SEM) images of the cross-section of a feather rachis
showing the hollow honeycomb-shaped structures: (a) bar = 20 µm; (b) bar = 1 µm. The SEM analysis
used a Gemini SEM 300 FESEM (Zeiss, Oberkochen, Germany). The samples were mounted on
specific stubs, platinum-coated using a Q150T sputter coater (Quorum Technologies, Kent, UK), and
observed at 2 kV.

2. Materials and Methods
2.1. Materials

The industrial particles, ca. 95 wt% of pine Pinus sylvestris L. and 5 wt% spruce Picea
abies (L.) H. Karst and some deciduous species, with an about 6% moisture content (MC),
which were intended for the face and core layers particleboard production, were received
from a plant located in Poland. An industrial partner generously supplied white duck
feathers (Plum’Export, Saint-Sever, France). As binders, an industrial urea-formaldehyde
(UF) resin Silekol S-123 (Silekol Sp. z o. o., Kędzierzyn—Koźle, Poland) of about 66% dry
content was used. The hardener for UF adhesive mass was a 40 wt% water solution of
ammonium nitrate. The UF bonding mass composition had a weight ratio of 100:8:8 (resin,
water, hardener solution, respectively) to reach the curing time of the adhesive mass at
100 ◦C for about 86 s. PVAc was prepared by adding distilled water to 40% of the total solid
content to achieve the consistency of a thick liquid. PMDI was used directly. The viscosity
of all used binders before application was about 420–450 mPa·s. No hydrophobic agents
were added.

2.2. Wood Material Fraction

The fraction share of wood particles was examined with an IMAL vibrating laboratory
sorter with six sieves of 8, 4, 2, 1, 0.5, 0.25, <0.25 mm. For each fraction, 100 g of raw
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material was used. The set time for conducting the vibrating was 5 min; the sieving results
of both the face and core layers correspond to an average of three examinations in Figure 2.
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2.3. Feather Fibers

According to a preliminary analysis of the costs, separating feather fibers from the
quills would be costly and not encouraging for composite factories. Therefore, it was
decided to use the whole feather in this study to enable any positive results to be applied
commercially. In this study, only the contour feathers of the body, comprising the rachis,
barbs, and barbules, were used. These feathers, which exhibited less fluffiness than the
high-value down feathers typically used for commercial purposes, were mixed with the
core wood particles in a drum mixer to form the wood–duck feather composite mat. The
length of the feathers ranged from one to five centimeters.

2.4. Preparation of Panels

All the composites were manufactured with a goal density of 660 kg·m−3 and dimen-
sions of 320 mm × 320 mm with a nominal thickness of 16 mm, and the mass share of
the face layers was 32%. Resin application to the panels was carried out using the three
different adhesives previously mentioned, adhering to the common practices of particle-
board plants based in Poland. The application consisted of 10% resin for the core layer and
12% for the face layers. For each adhesive, four replicates were created. In two replicates,
5 wt% of the wood panel weight was substituted with clean duck feathers in the core layer.
The remaining two replicates were produced without adding feather fibers, serving as
control boards for comparative analysis. Fine face- and core-layer particles were blended
separately; the face particles with the liquid binder were poured gradually through the
periphery of a rotary mixer (Figure 3a).

In contrast, the core particles were blended using a drum mixer (Figure 3b) to avoid
breaking into smaller particles, and the binder was sprayed with an air gun. Subsequently,
the three layers were distributed sequentially in one mold (Figure 3c). The panels were then
cold pressed with a ZUP-NYSA PH-1P125 (Zup Nysa sp. z o.o. sp.k., Konradowa, Poland)
press with a maximum specific pressing pressure of 1.23 MPa and a pressing time factor
of 5 s·mm−1 of the nominal thickness of the panel; after that, they were pressed in a hot
press (AKE, Mariannelund, Sweden) at a pressing temperature of 180 ◦C, and a pressing
time factor 20 s·mm−1 of the nominal thickness of the panel, with a specific maximum unit
pressure of 2.5 MPa. Figure 3d shows the different panels after the hot-pressing process.
The boards were conditioned in a climatic chamber (Research and Development Centre
for Wood-Based Panels Sp. z o.o. in Czarna Woda, Poland) at 20 ◦C and 65% air humidity
until a constant mass was obtained. Calibration (by sanding an about 0.15 mm thick
layer per every panel side) was conducted with a Houfek Buldog SPB 1100 RC sanding
machine (Houfek a. s., Golčův Jeníkov, Czech Republic) after hot pressing and conditioning
the panels.
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Figure 3. Set up of the experimental procedure: (a) blending mixer for the face’s fine particles (here in
unloading position); (b) drum mixer for the core large particles and feathers; (c) mat after molding,
before hot pressing; (d) panels after hot pressing.

2.5. Physical and Mechanical Examination

The test specimens were cut according to EN 326-2 [37] and EN 326-1 [38]. The modu-
lus of rupture (MOR) and elasticity (MOE) were determined according to EN 310 [39]. The
internal bond (IB) was determined according to EN 319 [40]; screw withdrawal resistance
(SWR) was determined according to EN 320 [41]; water absorption (WA) and thickness
swelling (TS) were determined after 2 h and 24 h of immersion according to EN 317 [42].
All the mechanical properties were examined with an INSTRON 3369 (Instron, Norwood,
MA, USA) computer-controlled laboratory-testing machine, and, whenever applicable,
the results were referenced against standard EN 312 for P2-type panels [43]. No less than
10 replicates of each sample were used for the mechanical and physical tests. The den-
sity was measured according to [44]. The density profiles of the tested particleboards
were measured on a GreCon DAX 5000 device (Fagus-GreCon Greten GmbH & Co. KG,
Alfeld/Hannover, Germany) using samples with 50 mm × 50 mm nominal dimensions.
As many as 3 test specimens of every sample were measured, but 1 representative density
profile per panel type was selected for display.

2.6. Apparent Density Measurement

The studied panels, with their apparent density values, are presented in Table 1.
The apparent density of the panels differed slightly from the theoretical density fixed
when preparing the panels. This was mainly due to the differences in the compactness
and compatibility of the products, where an increase in material compactness reflects an
increase in apparent density [45].

Table 1. Tested panels and their average density.

Sample Binder Feather Share in Core Layers [% by Weight] Nominal Average Density [kg·m−3]

1 UF 0 665 ± 4

2 UF 5 664 ± 4

3 pMDI 0 663 ± 4

4 pMDI 5 663 ± 4

5 PVAc 0 664 ± 5

6 PVAc 5 664 ± 6
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2.7. Thermal Conductivity Measurement

Thermal characteristics of the panels were determined via the transient plane source
method using a TPS 2500S apparatus ( Hot Disk AB, Göteborg, Sweden) with a radius of
6.403 mm. The power was set to 10 mW, and the measuring time was set to 160 s. The
measurements were performed at 22 ◦C. All measurements were performed with two
samples and a thermal sensor between them. In this test, the thermal conductivity is
measured as the amount of heat that can be conducted through a plate of unit thickness per
unit time and unit area. A minimum of three test specimens were measured for each sample.

2.8. Acoustic Analysis

The sound absorption capacity of the panels was evaluated using the Kundt tube
method. The setup involves a cylindrical tube with a 37 mm interior diameter with a
rigid piston at one end to control the sound transmittance zone, a loudspeaker at the other
end generating a flat incident wave, a frequency generator (DG1022), and an oscilloscope
(DS1102E). The test specimen consists of a flat cylinder positioned against the piston and
a mobile microphone that records acoustic pressure variations. The six samples were
tested, each with dimensions of d = 37 mm and thickness of 16 mm, and a 14 mm entry
hole to facilitate their entry into the Kundt tube setup. Each variant test included three
examined specimens.

The Kundt tube impedance measurement technique enables accurate determination
of the material’s acoustic impedance and absorption coefficient upon exposure to a perpen-
dicular incident wave. The mobile microphone captures the highest and lowest pressure
points of the sinusoidal signal emitted by the loudspeaker. As the incident wave interacts
with the sample, a portion is absorbed, and the remainder generates stationary waves by
reflecting within the tube. The reflection coefficient was calculated using the standard wave
ratio method, which is based on the voltage (V) measurements of maximum and minimum
sound levels, as outlined in the ISO standard ISO10534-1 [46]. The equation defining the
reflection coefficient (R) is given by Equation (1):

R =
Vmax−Vmin
Vmax+Vmin

(1)

The acoustic absorption coefficient is defined following Equation (2):

α = 1 − | R |2 (2)

Measurements were conducted within a semireverberant room to mitigate distortion
from environmental noise, covering frequencies in the 400–5000 Hz range. Measures
without samples were conducted as a control.

2.9. Statistical Analysis

Analysis of variance (ANOVA) and t-test calculations were used to test (p < 0.05)
for significant differences between factors and levels using OriginPro 2023 (OriginLab
Corporation, Northampton, MA, USA). The means were compared when the ANOVA
indicated a significant difference by employing the Tukey test. Where applicable, the mean
values of the investigated features and the standard deviation, indicated as error bars, are
presented on the plots.

3. Results and Discussion

The results of the modulus of elasticity investigation are presented in Figure 4a. Ac-
cording to the EN 312 standard for P2-type panels (interior furnishing purposes, including
furniture) [43], the minimum MOE requirement is 1600 N·mm−2. In this sense, the highest
MOE was found for panel 5, followed by panel 4, with panel 2 having the lowest MOE.
This could be attributed to PVAc resin’s ability to form strong physical bonds through
mechanical interlocking via surface wetting and penetration into the feather structure [47],
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providing better stress distribution than UF and pMDI. Nevertheless, despite the lower
modulus of elasticity in panels 2, 4, and 6 compared to the panels without feathers (1, 3,
and 5, respectively), these values meet the requirements of the European standard (EN 312).
The results of the modulus of rupture investigation are displayed in Figure 4b. As seen, in
the presence of feather fibers, the MOR was lower than in the control panels. The lowest
MOR value (9.93 N·mm−2) was found for panel 2, indicating the low feather/UF resin
compatibility. The same explanation applies to panel 4 with feathers, where a higher MOR
(16.11 N·mm−2) was reached than that in panel 6, which could be due to crosslinking
achieved with the pMDI resin, involving the reaction of isocyanate groups (-NCO) with
amine groups present in keratin (-NH2) to form urea linkages [48], making it more resistant
to fracture than PVAc. When comparing the results of the MOR to the requirements in the
EN 312 standard [43] for P2-type panels, a minimum of 11 N·mm−2, all the three-layer
panels meet the mentioned requirements, but panel 2, which was bonded using UF.
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The results of the internal bond investigation are displayed in Figure 4c. The tests
showed that a 5 wt% feather fiber content in the core layer significantly reduced the IB with
all three binders. The lowest value was observed for panel 2, of 0.12 N·mm−2. In Figure 5,
however, panels glued with UF show an internal break on the feather surfaces rather than
wood surfaces, and feathers were not well coated with resin. In contrast, feathers blended
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better with pMDI and PVAc adhesives, and breakage was more common in the center
across wood and feathers (confirmed by the destruction of the feather structure). The poor
performance of the UF resin likely stems from its chemical incompatibility with the keratin
in feathers. UF primarily bonds with the hydroxyl groups found in wood cellulose, unlike
the protein structures in feathers, which lack abundant hydroxyl groups and do not offer
similar reactive sites for UF [31,49]. Even though there was a decrease in the IB values for
the panels with feathers, they still met European standards (EN 312) requirements, except
for panel 2.
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The results of the screw withdrawal resistance investigation are shown in Figure 4d.
The maximum SWR of the panels with feather fiber in the core layer decreased by about
30% compared to that of the reference panels for all three binders. It should be noted that
5 wt% feathers in the core layer did not significantly impact the SWR as it did on the IB;
this can be explained by the fact that thee SWR tends to rely more on the strength of the
face layers than the core layers, owing to their denser and more substantial composition
relative to the core layers within particleboard [50].

Overall, the results show that all particleboards containing feathers had lower me-
chanical properties than their control panels. This can be attributed to the different surface
chemical properties of feathers compared to wood, which may not interact as effectively
with the resins. Additionally, the structure of feathers might not distribute stress as uni-
formly as wood fibers, leading to weaker mechanical properties.

The density profiles across the thickness of particleboards are illustrated in Figure 6.
Panels 1 and 2, bonded with UF resin without and with feathers, respectively, exhibited
no notable differences in their density profiles. This suggests that the particleboards
bonded with UF resin maintained a consistent density throughout despite the chemical
compatibility issues between the UF resin and feather keratin.
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Conversely, panels bonded with pMDI and PVAc showed significant differences in
density profiles upon the inclusion of feathers, where panels 4 and 6 displayed higher core
densities than their respective control panels 3 and 5, which did not include feathers. This
phenomenon could be attributed to the enhanced interaction of the pMDI and PVAc resins
with feathers, which likely improved the cohesive and adhesive forces within the core.
The resins possibly encapsulated the feather fibers more effectively, resulting in the better
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distribution of resin, which would have been required for the higher volume of feathers
and increased core density, while reducing the face densities compared to that of the panels
bonded with UF.

The results of the thickness swelling and water absorption after soaking for 2 h and
24 h are presented in Figure 7. As shown, the composite thicknesses after 2 h had the
following trend: panel 6 > 5 > 2 > 1 > 4 > 3; this trend remained approximately the same
after 24 h but with fewer differences, meaning that a longer soaking time did not cause a
large thickness change in the panels. After 24 h of soaking, samples from panel 6 bonded by
PVAc (44%) reached the highest thickness swelling. In the case of water absorption (WA),
composites followed the same trend after 2 h and 24 h, being panels 6 > 2 > 5 > 1 > 4 > 3.
The highest WA was found in panel 6 after 2 h and 24 h. It is worth noting that panels
3 and 4, bonded with pMDI, had the best physical properties, showing no significant
differences in physical properties between those with and without feathers and with less
swelling equilibration between 2 h and 24 h compared to those of the panels produced
with UF and PVAc adhesives. This superior performance of pMDI-bonded panels can
be attributed to the extensive crosslinking reactions between the isocyanate groups of
the resin and the hydroxyl groups present in wood, as well as the amines in feathers
during curing [51,52], resulting in a highly crosslinked polymer network that enhances
water resistance and reduces swelling. Conversely, UF and PVAc resins may exhibit lower
resistance to moisture due to their less robust crosslinking and polar nature compared to
pMDI [53–55], resulting in inferior physical properties. Furthermore, PVAc is a nonresistant
moisture polymer, particularly thermoplastic, compared to UF resin. This characteristic
means that strength can substantially decrease when such adhesive joints are exposed to a
moist environment [56]. It should also be noted that no hydrophobic agents were applied
during the panels’ production.
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The thermal conductivity values of the studied panels and their respective standard
deviations are presented in Table 2. The thermal conductivity of the different panels aver-
aged around 0.1 W·mK−1, which aligns with the literature values for wood-based panels
(0.12 W·mK−1) at a density of 660 kg·m−3 [57]. This is lower than that of particleboard
made from fibrous chips [58] and comparable to that of wood fiberboard made with poultry
feathers (0.11 W·mK−1), where the feathers themselves exhibit low thermal conductivity
values ranging from 0.024 to 0.034 W·mK−1 [59,60]. Explaining the decrease in thermal
conductivity of these materials is complex, as it involves multiple factors, including the
compactness, nature of the materials, and resin compatibility. The manufacture of insulating
panels considers factors such as pressing temperatures, durations, and resin distribution.
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As expected, panels 2 and 4, which included feathers, demonstrated a 10% reduction in
thermal conductivity compared to their respective control panels 1 and 3, with panel 2
exhibiting the lowest thermal conductivity of 0.09 W·mK-1. However, this trend was not
observed for panels using PVAc resin. This could be explained by the natural properties of
feathers; in UF- and pMDI-bonded panels, the addition of feathers generally reduced the
thermal conductivity due to their porous honeycomb structure and air-trapping properties,
which helped insulate by reducing effective heat transfer through the material. However,
PVAc did not seem to enhance the insulative properties when adding feathers. This could
be attributed to the adhesive’s nature, which tended to capture more moisture as observed
in the physical properties, generally resulting in higher thermal conductivities than UF
and pMDI. Additionally, the high wettability of PVAc, as demonstrated in the mechanical
properties, might have resulted in the feathers being coated too effectively, thereby sealing
or filling their porous structure and reducing the air pockets that are crucial for insulation.

Table 2. Thermal conductivity (λ) of the different panels, with standard deviation (σ) in W·mK−1.

Sample 1 2 3 4 5 6

λ (W·mK−1) 0.10 0.09 0.11 0.10 0.11 0.11

σ (W·mK−1) 0.004 0.005 0.005 0.007 0.005 0.005

In acoustics, materials within the frequency range of 250 Hz to 3 kHz are of consider-
able interest. This frequency band encompasses musical tones and human speech while
aligning with octave frequencies. Figure 8 shows the values obtained for the acoustic
absorption coefficient (α), with error bars representing the standard deviations from the
tests performed on three specimens of each type of experimental particleboard. It can be
observed in Figure 5 that there were major differences between the boards based on the
differences of the face and core densities in correlation with the adhesives employed and
the addition of feathers. As previously observed, these feathers affected the composite den-
sities, resulting in different absorption coefficients across distinct sound octave frequencies.
Material density significantly impacts sound absorption.
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Additionally, absorption tendencies rely on the elaboration of the board, adhesive
characteristics, face and core densities, and the honeycomb configuration of the incorpo-
rated feather fibers. It is known that materials with less structural density tend to be better
at absorbing sounds of lower frequencies (400–2000 Hz), while denser structures perform
better at frequencies exceeding 2000 Hz [61]. At an initial frequency of 400 Hz, higher
sound absorption coefficients were apparent in samples with lower core densities devoid of
feathers, as indicated by the density profiles in Figure 5. This pattern remained consistent
for frequencies ranging from 1 kHz to 2 kHz in panels bonded with UF and pMDI. In the
case of pMDI resin, materials with lower core density, and, in the case of UF resin, the
presence of voids disrupted sound waves more effectively.

However, the peak values of the sound absorption coefficients within the samples were
noticeable across the 2000 and 5000 Hz frequencies. Adding feathers to the particleboards in-
creased the core densities and the honeycomb fiber content per unit area, notably enhancing
sound absorption at these higher frequencies. At higher frequencies, variations in absorp-
tion coefficients tend to decrease due to the stabilization of wave–material interactions
and the limitations of the pore or fiber efficiency in disrupting sound wave propagation.
Optimal sound absorption was achieved in wood-based materials with low-density face
layers, particularly with pMDI, as demonstrated in Figure 5, due to the improved feather
compaction and adhesive effects. This phenomenon underscores the material’s ability
to facilitate sound penetration through its voids or pores, leading to decreased sound
reflection. Subsequent damping occurs within higher-density honeycomb [62].

Unlike other panels, this effect was particularly pronounced in panels 4 and 5. Maxi-
mum sound absorption coefficients of 0.74, 0.81, 0.77, and 0.79 were recorded for the lowest
face density (starting at 49 kg·m−3), at the frequencies of 2500 Hz, 3150 Hz, 4000 Hz, and
5000 Hz, respectively, within panel 4. This could be attributed to the incorporation of
lightweight feathers, which increased the fiber content per unit area and contributed to a
higher core density, requiring more resin compared to the volume of wood particles. A
similar trend was observed when comparing panel 6 with panel 5. It is important to note
that this phenomenon was not as strongly evident in panels 1 and 2, where lower internal
bonding resulted in less-compact samples after being prepared and cut for the diameter
of Kundt’s tube. Boards are classified in building construction based on their acoustic
coefficient according to EN ISO 11654:1997 [63]: Class B boards have values between 0.80
and 0.85, class C between 0.60 and 0.75, and boards with acoustic coefficients between 0
and 0.1 are unclassified. In general, all studied particleboards with and without feathers
were classified as class C, with those bonded with pMDI approaching class B classification
in the frequency range from 2500 to 5000 Hz.

4. Conclusions

This study assessed particleboard manufactured from industrial wood particles and
waste duck feathers. The findings highlight the potential for producing environmentally
friendly particleboard panels that meet European standards. By incorporating 5 wt%
waste duck feathers into wood particleboard and employing pMDI and PVAc adhesives,
which are known for their favorable environmental profiles compared to UF adhesive, the
resulting panels met the requirements of P2 boards for mechanical properties, a distinction
not achieved with UF adhesive. Additionally, wood–feather particleboards bonded with
pMDI exhibited comparable resistance to water absorption and thickness swelling, likely
due to better compatibility and crosslinking between the adhesive and feather keratin.
Including feathers also improved thermal insulation properties by 10%, observed with both
UF and pMDI adhesives. However, PVAc, despite its higher wettability, which enhanced
the MOR, showed poor water resistance and did not enhance thermal insulation, indicating
that its properties might be less suitable for this application.

Furthermore, feather-enriched particleboards showed improved sound absorption
at higher frequencies, ranging from 2500 to 5000 Hz, with pMDI and PVAc adhesives.
PMDI resin achieved the highest sound absorption coefficient, approaching the class B
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classification. Among the adhesives studied, pMDI exhibited promising compatibility
with feathers, meeting the minimum requirements of mechanical properties according
to European standards and better physical properties than UF and PVAc; in addition, it
enhanced both thermal insulation and acoustic insulation at high frequencies.

Future work should focus on refining resin–feather compatibility through pretreat-
ment processes and optimizing feather surface characteristics, allowing for higher feather
proportions to be incorporated in subsequent studies. The potential for using waste feathers
to reinforce wood composites could help address material scarcity challenges in the wood
and poultry industries while also reducing waste disposal costs and generating additional
revenue through the sale of feathers to the panel industry.
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