In Situ Synthesis, Characterization and Photocatalytic Efficacy of Silver-Enhanced MXene and Graphene Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Selection
2.2. Preparation of Ammoniacal Solutions
2.3. Synthesis of GO
2.4. Synthesis of rGO–Ag Nanocomposite
2.5. MAX (Ti3AlC2) and MXene Preparation
2.6. MXene–Ag Nanocomposite Preparation
2.7. Characterization
2.8. Catalytic Experimental Method
3. Result and Discussion
3.1. Catalytic Activity
3.1.1. Catalytic Mechanism
- The absorption of photons from solar radiation by the nanoparticles.
- 2.
- Hydrooyle radicals are released as a result of the reaction.
- 3.
- As a result of successful attachment by OH radicals to dye molecules, dye decomposition occurs.
3.1.2. Decomposition of Direct Blue-24
4. Reusability and Stability
5. Conclusions
6. Drawback of the Study and Future Scope
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, X.; Li, C.; Wang, L.; Feng, L.; Han, D.; Wang, W. Fabrication of hierarchical g-C3N4/MXene-AgNPs nanocomposites with enhanced photocatalytic performances. Mater. Lett. 2019, 247, 174–177. [Google Scholar] [CrossRef]
- Xin, W.; Xi, G.-Q.; Cao, W.-T.; Ma, C.; Liu, T.; Ma, M.-G.; Bian, J. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. RSC Adv. 2019, 9, 29636–29644. [Google Scholar] [CrossRef]
- Meng, N.; Zhang, S.; Zhou, Y.; Nie, W.; Chen, P. Novel synthesis of silver/reduced graphene oxide nanocomposite and its high catalytic activity towards hydrogenation of 4-nitrophenol. RSC Adv. 2015, 5, 70968–70971. [Google Scholar] [CrossRef]
- Lv, Z.; Wu, Y.; Lin, J.; Li, W.; Weisbecker, H.; Wang, P.; Song, X.; Sun, W.; Sun, Z.; Xie, Y.; et al. Schottky Heterojunction Facilitates Osteosarcoma Ferroptosis and Enhances Bone Formation in a Switchable Mode. Adv. Funct. Mater. 2024, 34, 2312032. [Google Scholar] [CrossRef]
- Kahrilas, G.A.; Haggren, W.; Read, R.L.; Wally, L.M.; Fredrick, S.J.; Hiskey, M.; Prieto, A.L.; Owens, J.E. Investigation of Antibacterial Activity by Silver Nanoparticles Prepared by Microwave-Assisted Green Syntheses with Soluble Starch, Dextrose, and Arabinose. ACS Sustain. Chem. Eng. 2014, 2, 590–598. [Google Scholar] [CrossRef]
- Deepi, A.; Srikesh, G.; Nesaraj, A.S. One pot reflux synthesis of reduced graphene oxide decorated with silver/cobalt oxide: A novel nano composite material for high capacitance applications. Ceram. Int. 2018, 44, 20524–20530. [Google Scholar] [CrossRef]
- Xia, B.; He, F.; Li, L. Preparation of bimetallic nanoparticles using a facile green synthesis method and their application. Langmuir 2013, 29, 4901–4907. [Google Scholar] [CrossRef]
- Pu, F.; Huang, Y.; Yang, Z.; Qiu, H.; Ren, J. Nucleotide-Based Assemblies for Green Synthesis of Silver Nanoparticles with Controlled Localized Surface Plasmon Resonances and Their Applications. ACS Appl. Mater. Interfaces 2018, 10, 9929–9937. [Google Scholar] [CrossRef]
- Zhao, R.; Kong, W.; Sun, M.; Yang, Y.; Liu, W.; Lv, M.; Song, S.; Wang, L.; Song, H.; Hao, R. Highly Stable Graphene-Based Nanocomposite (GO-PEI-Ag) with Broad-Spectrum, Long-Term Antimicrobial Activity and Antibiofilm Effects. ACS Appl. Mater. Interfaces 2018, 10, 17617–17629. [Google Scholar] [CrossRef]
- Minh Dat, N.; Linh, V.N.P.; Huy, L.A.; Huong, N.T.; Tu, T.H.; Phuong, N.T.L.; Nam, H.M.; Thanh Phong, M.; Hieu, N.H. Fabrication and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus of silver nanoparticle decorated reduced graphene oxide nanocomposites. Mater. Technol. 2019, 34, 369–375. [Google Scholar] [CrossRef]
- Kumar, P.; Huo, P.; Zhang, R.; Liu, B. Antibacterial Properties of Graphene-Based Nanomaterials. Nanomater 2019, 9, 737. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, X.; Li, Y.; Guo, C.; Zhang, C. Preparation and characterization of silver-doped graphene-reinforced silver matrix bulk composite as a novel electrical contact material. Appl. Phys. A 2019, 125, 86. [Google Scholar] [CrossRef]
- Jose, P.P.A.; Kala, M.S.; Kalarikkal, N.; Thomas, S. Reduced graphene oxide produced by chemical and hydrothermal methods. Mater. Today Proc. 2018, 5, 16306–16312. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Pham, V.D.K.; Nguyen, L.P.T.; Hoang, M.N.; Nguyen, H.H. Synthesis and antibacterial activity of silver/reduced graphene oxide nanocomposites against Salmonella typhimurium and Staphylococcus aureus. Nanosci. Nanotechnol. 2018, 60, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Du, Z. Preparation of a Highly Sensitive and Stretchable Strain Sensor of MXene/Silver Nanocomposite-Based Yarn and Wearable Applications. ACS Appl. Mater. Interfaces 2019, 11, 45930–45938. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. Am. Chem. Soc. 2011, 5, 6971–6980. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zhang, L.; Wang, Z.; Luo, Y. Mechanisms of the Antimicrobial Activities of Graphene Materials. J. Am. Chem. Soc. 2016, 138, 2064–2077. [Google Scholar] [CrossRef]
- Koushik, D.; Sen Gupta, S.; Maliyekkal, S.M.; Pradeep, T. Rapid dehalogenation of pesticides and organics at the interface of reduced graphene oxide-silver nanocomposite. J. Hazard. Mater. 2016, 308, 192–198. [Google Scholar] [CrossRef]
- Lawal, A.T. Graphene-based nano composites and their applications. A review. Biosens. Bioelectron. 2019, 141, 111384. [Google Scholar] [CrossRef] [PubMed]
- Ponja, S.D.; Sehmi, S.K.; Allan, E.; MacRobert, A.J.; Parkin, I.P.; Carmalt, C.J. Enhanced Bactericidal Activity of Silver Thin Films Deposited via Aerosol-Assisted Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2015, 7, 28616–28623. [Google Scholar] [CrossRef]
- Jaworski, S.; Wierzbicki, M.; Sawosz, E.; Jung, A.; Gielerak, G.; Biernat, J.; Jaremek, H.; Lojkowski, W.; Wozniak, B.; Wojnarowicz, J.; et al. Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent. Nanoscale Res. Lett. 2018, 13, 116. [Google Scholar] [CrossRef]
- Quezada-Renteria, J.A.; Chazaro-Ruiz, L.F.; Rangel-Mendez, J.R. Poorly conductive electrochemically reduced graphene oxide films modified with alkyne chains to avoid the corrosion-promoting effect of graphene-based materials on carbon steel. Carbon 2020, 167, 512–522. [Google Scholar] [CrossRef]
- Sims, C.M.; Hanna, S.K.; Heller, D.A.; Horoszko, C.P.; Johnson, M.E.; Montoro Bustos, A.R.; Reipa, V.; Riley, K.R.; Nelson, B.C. Redox-active nanomaterials for nanomedicine applications. Nanoscale 2017, 9, 15226–15251. [Google Scholar] [CrossRef]
- Szunerits, S.; Boukherroub, R. Antibacterial activity of graphene-based materials. J. Mater. Chem. B 2016, 4, 6892–6912. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, K.; Wang, J.; Shah, T.; Zhang, Q.; Zhang, B. Preparation of pleated rGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 2021, 172, 1–14. [Google Scholar] [CrossRef]
- Galpaya, D.; Wang, M.; Liu, M.; Motta, N.; Waclawik, E.; Yan, C. Recent Advances in Fabrication and Characterization of Graphene-Polymer Nanocomposites. Graphene 2012, 1, 30–49. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114. [Google Scholar] [CrossRef]
- Mao, S.; Yu, K.; Cui, S.; Bo, Z.; Lu, G.; Chen, J. A new reducing agent to prepare single-layer, high-quality reduced graphene oxide for device applications. Nanoscale 2011, 3, 2849–2853. [Google Scholar] [CrossRef]
- Bo, Z.; Shuai, X.; Mao, S.; Yang, H.; Qian, J.; Chen, J.; Yan, J.; Cen, K. Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci. Rep. 2014, 4, 4684. [Google Scholar] [CrossRef]
- Egorova, M.N.; Tarasova, L.A.; Vasilieva, F.D.; Akhremenko, Y.A.; Smagulova, S.A. Antimicrobial activity of graphene oxide sheets. In Proceedings of the 6th International Conference on Production, Energy and Reliability 2018: World Engineering Science & Technology Congress (ESTCON), Kuala Lumpur, Malaysia, 13–14 August 2018. [Google Scholar]
- Zhang, X.; Zhang, J.; Chen, Y.; Cheng, K.; Yan, J.; Zhu, K.; Ye, K.; Wang, G.; Zhou, L.; Cao, D. Freestanding 3D Polypyrrole@reduced graphene oxide hydrogels as binder-free electrode materials for flexible asymmetric supercapacitors. J. Colloid Interface Sci. 2019, 536, 291–299. [Google Scholar] [CrossRef]
- Sahu, S.K.; Boggarapu, V.; Sreekanth, P.S.R. Improvements in the mechanical and thermal characteristics of polymer matrix composites reinforced with various nanofillers: A brief review. Mater. Today Proc. 2023, in press. [CrossRef]
- Pan, F.; Yu, L.; Xiang, Z.; Liu, Z.; Deng, B.; Cui, E.; Shi, Z.; Li, X.; Lu, W. Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon 2021, 172, 506–515. [Google Scholar] [CrossRef]
- Chen, M.; Hu, X.; Li, K.; Sun, J.; Liu, Z.; An, B.; Zhou, X.; Liu, Z. Self-assembly of dendritic-lamellar MXene/Carbon nanotube conductive films for wearable tactile sensors and artificial skin. Carbon 2020, 164, 111–120. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, D.; Zhang, Y.; Jiao, S.; Tang, W.; Wang, Z.; Wu, N.; Wang, Y.; Zhong, W.; Zhang, A.; et al. Integrated unit-cell-thin MXene and Schottky electric field into piezo-photocatalyst for enhanced photocarrier separation and hydrogen evolution. Chem. Eng. J. 2022, 439, 135640. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13, 8491–8494. [Google Scholar] [CrossRef]
- Wu, Y.; Song, X.; Zhou, X.; Song, R.; Tang, W.; Yang, D.; Wang, Y.; Lv, Z.; Zhong, W.; Cai, H.-L.; et al. Piezo-Activated Atomic-Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasound-Triggered Schottky Electric Field. Small 2023, 19, 2205053. [Google Scholar] [CrossRef]
- Zou, G.; Zhang, Z.; Guo, J.; Liu, B.; Zhang, Q.; Fernandez, C.; Peng, Q. Synthesis of MXene/Ag Composites for Extraordinary Long Cycle Lifetime Lithium Storage at High Rates. ACS Appl. Mater. Interfaces 2016, 8, 22280–22286. [Google Scholar] [CrossRef]
- Carey, M.; Barsoum, M.W. MXene polymer nanocomposites: A review. Mater. Today Adv. 2021, 9, 100120. [Google Scholar] [CrossRef]
- Rasool, K.; Pandey, R.P.; Rasheed, P.A.; Buczek, S.; Gogotsi, Y.; Mahmoud, K.A. Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater. Today 2019, 30, 80–102. [Google Scholar] [CrossRef]
- Huang, X.; Wang, R.; Jiao, T.; Zou, G.; Zhan, F.; Yin, J.; Zhang, L.; Zhou, J.; Peng, Q. Facile Preparation of Hierarchical AgNP-Loaded MXene/Fe3O4/Polymer Nanocomposites by Electrospinning with Enhanced Catalytic Performance for Wastewater Treatment. ACS Omega 2019, 4, 1897–1906. [Google Scholar] [CrossRef]
- Chaudhari, N.K.; Jin, H.; Kim, B.; San Baek, D.; Joo, S.H.; Lee, K. MXene: An emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 2017, 5, 24564–24579. [Google Scholar] [CrossRef]
- Chand, K.; Zhang, X.; Chen, Y. Recent progress in MXene and graphene based nanocomposites for microwave absorption and electromagnetic interference shielding. Arab. J. Chem. 2022, 15, 104143. [Google Scholar] [CrossRef]
- Azeem, M.M.; Shafa, M.; Aamir, M.; Zubair, M.; Souayeh, B.; Alam, M.W. Nucleotide detection mechanism and comparison based on low-dimensional materials: A review. Front. Bioeng. Biotechnol. 2023, 11, 1117871. [Google Scholar] [CrossRef]
- Sangili, A.; Annalakshmi, M.; Chen, S.-M.; Balasubramanian, P.; Sundrarajan, M. Synthesis of silver nanoparticles decorated on core-shell structured tannic acid-coated iron oxide nanospheres for excellent electrochemical detection and efficient catalytic reduction of hazardous 4-nitrophenol. Compos. Part B Eng. 2019, 162, 33–42. [Google Scholar] [CrossRef]
- Chen, X.; Liang, Y.; Wan, L.; Xie, Z.; Easton, C.D.; Bourgeois, L.; Wang, Z.; Bao, Q.; Zhu, Y.; Tao, S.; et al. Construction of porous N-doped graphene layer for efficient oxygen reduction reaction. Chem. Eng. Sci. 2019, 194, 36–44. [Google Scholar] [CrossRef]
- Ocsoy, I.; Paret, M.L.; Ocsoy, M.A.; Kunwar, S.; Chen, T.; You, M.; Tan, W. Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against Xanthomonas perforans. Am. Chem. Soc. 2013, 7, 8972–8980. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Ma, K.; Chen, L.; Hu, Y.; Jiang, H.; Li, C. MXene interlayer anchored Fe3O4 nanocrystals for ultrafast Li-ion batteries. Chem. Eng. Sci. 2020, 212, 115342. [Google Scholar] [CrossRef]
- Zhai, L.-F.; Kong, S.-Y.; Zhang, H.; Tian, W.; Sun, M.; Sun, H.; Wang, S. Facile synthesis of Co-N-rGO composites as an excellent electrocatalyst for oxygen reduction reaction. Chem. Eng. Sci. 2019, 194, 45–53. [Google Scholar] [CrossRef]
- Li, K.; Jiao, T.; Xing, R.; Zou, G.; Zhou, J.; Zhang, L.; Peng, Q. Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci. China Mater. 2018, 61, 728–736. [Google Scholar] [CrossRef]
- Sher Shah, M.S.; Park, A.R.; Zhang, K.; Park, J.H.; Yoo, P.J. Green synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 2012, 4, 3893–3901. [Google Scholar] [CrossRef] [PubMed]
- Shyamala, R.; Gomathi Devi, L. Reduced graphene oxide/SnO2 nanocomposites for the photocatalytic degradation of rhodamine B: Preparation, characterization, photosensitization, vectorial charge transfer mechanism and identification of reaction intermediates. Chem. Phys. Lett. 2020, 748, 137385. [Google Scholar] [CrossRef]
- Gomathi Devi, L.; Shyamala, R. Photocatalytic activity of SnO2–α-Fe2O3 composite mixtures: Exploration of number of active sites, turnover number and turnover frequency. Mater. Chem. Front. 2018, 2, 796–806. [Google Scholar] [CrossRef]
- Kumar, A.; Sadanandhan, A.M.; Jain, S.L. Silver doped reduced graphene oxide as a promising plasmonic photocatalyst for oxidative coupling of benzylamines under visible light irradiation. New J. Chem. 2019, 43, 9116–9122. [Google Scholar] [CrossRef]
- Beiranvand, M.; Farhadi, S.; Mohammadi, A. Graphene Oxide/Hydroxyapatite/Silver (rGO/HAP/Ag) nanocomposite: Synthesis, characterization, catalytic and antibacterial activity. Int. J. Nano Dimens. 2019, 10, 180–194. [Google Scholar]
- Zhang, W.; Li, Z.; Gu, H.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. l-proline covalently anchored on graphene oxide as an effective bifunctional catalyst for ketene forming reaction. Chem. Eng. Sci. 2015, 135, 187–192. [Google Scholar] [CrossRef]
- Saravanan, R.; Gracia, F.; Stephen, A. Basic Principles, Mechanism, and Challenges of Photocatalysis. In Nanocomposites for Visible Light-Induced Photocatalysis; Springer Series on Polymer and Composite Materials; Springer: Berlin/Heidelberg, Germany, 2017; pp. 19–40. [Google Scholar]
- Vanaamudan, A.; Soni, H.; Padmaja Sudhakar, P. Palm shell extract capped silver nanoparticles—As efficient catalysts for degradation of dyes and as SERS substrates. J. Mol. Liq. 2016, 215, 787–794. [Google Scholar] [CrossRef]
- Chand, K.; Cao, D.; Eldin Fouad, D.; Hussain Shah, A.; Qadeer Dayo, A.; Zhu, K.; Nazim Lakhan, M.; Mehdi, G.; Dong, S. Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arab. J. Chem. 2020, 13, 8248–8261. [Google Scholar] [CrossRef]
- Chen, Y.; Xiang, Z.; Wang, D.; Kang, J.; Qi, H. Effective photocatalytic degradation and physical adsorption of methylene blue using cellulose/GO/TiO2 hydrogels. RSC Adv. 2020, 10, 23936–23943. [Google Scholar] [CrossRef] [PubMed]
- Bogireddy, N.K.R.; Kiran Kumar, H.A.; Mandal, B.K. Biofabricated silver nanoparticles as green catalyst in the degradation of different textile dyes. J. Environ. Chem. Eng. 2016, 4, 56–64. [Google Scholar] [CrossRef]
- Li, L.; Zhang, N.; Zhang, M.; Wu, L.; Zhang, X.; Zhang, Z. Ag-Nanoparticle-Decorated 2D Titanium Carbide (MXene) with Superior Electrochemical Performance for Supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 7442–7450. [Google Scholar] [CrossRef]
- Rasool, K.; Helal, M.; Ali, A.; Ren, C.E.; Gogotsi, Y.; Mahmoud, K.A. Antibacterial Activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, Y.; Wu, Z.S. Recent advancement and key opportunities of MXenes for electrocatalysis. iScience 2024, 27, 108906. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, R.; Matulis, V.E.; Vladimir, K. Structure, Synthesis, and Catalytic Performance of Emerging MXene-Based Catalysts. Molecules 2024, 29, 1286. [Google Scholar] [CrossRef] [PubMed]
- Jakubczak, M.; Bury, D.; Wojciechowska, A.; Karwowska, E.; Jastrzębska, A.M. Excellent antimicrobial and photocatalytic performance of C/GO/TiO2/Ag and C/TiO2/Ag hybrid nanocomposite beds against waterborne microorganisms. Mater. Chem. Phys. 2023, 297, 127333. [Google Scholar] [CrossRef]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef]
- Halim, J.; Kota, S.; Lukatskaya, M.R.; Naguib, M.; Zhao, M.Q.; Moon, E.J.; Pitock, J.; Nanda, J.; May, S.J.; Gogotsi, Y.; et al. Synthesis and Characterization of 2D Molybdenum Carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118–3127. [Google Scholar] [CrossRef]
- Naguib, M.; Barsoum, M.W.; Gogotsi, Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021, 33, e2103393. [Google Scholar] [CrossRef]
- Tariq, A.; Ali, S.I.; Akinwande, D.; Rizwan, S. Efficient Visible-Light Photocatalysis of 2D-MXene Nanohybrids with Gd(3+)- and Sn(4+)-Codoped Bismuth Ferrite. ACS Omega 2018, 3, 13828–13836. [Google Scholar] [CrossRef] [PubMed]
- Jyoti, K.; Singh, A. Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J. Genet. Eng. Biotechnol. 2016, 14, 311–317. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, J.; Li, Z.; Guo, Y.; Tang, B.; Abudula, A.; Guan, G. Two-dimensional Ti3C2Tx -nanosheets/Cu2O composite as a high-performance photocatalyst for decomposition of tetracycline. Carbon Resour. Convers. 2021, 4, 197–204. [Google Scholar] [CrossRef]
- Wang, L.; Lu, F.; Liu, Y.; Wu, Y.; Wu, Z. Photocatalytic degradation of organic dyes and antimicrobial activity of silver nanoparticles fast synthesized by flavonoids fraction of Psidium guajava L. leaves. J. Mol. Liq. 2018, 263, 187–192. [Google Scholar] [CrossRef]
- Naraginti, S.; Stephen, F.B.; Radhakrishnan, A.; Sivakumar, A. Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 135, 814–819. [Google Scholar] [CrossRef]
- Kumari, R.M.; Thapa, N.; Gupta, N.; Kumar, A.; Nimesh, S. Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotomaleaf extract. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 045009. [Google Scholar] [CrossRef]
- Chen, S.; Liu, R.; Kuai, Z.; Li, X.; Lian, S.; Jiang, D.; Tang, J.; Li, L.; Wu, R.; Peng, C. Facile synthesis of a novel BaSnO3/MXene nanocomposite by electrostatic self-assembly for efficient photodegradation of 4-nitrophenol. Environ. Res. 2022, 204, 111949. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Chen, N.; Xing, X.; Dong, C.; Wang, Y. Ag–ZnO heterostructure nanoparticles with plasmon-enhanced catalytic degradation for Congo red under visible light. RSC Adv. 2015, 5, 34456–34465. [Google Scholar] [CrossRef]
- Karthika, V.; Arumugam, A.; Gopinath, K.; Kaleeswarran, P.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: Photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens. J. Photochem. Photobiol. B Biol. 2017, 167, 189–199. [Google Scholar] [CrossRef]
- Liu, Q.; Tan, X.; Wang, S.; Ma, F.; Znad, H.; Shen, Z.; Liu, L.; Liu, S. Correction: MXene as a non-metal charge mediator in 2D layered CdS@Ti3C2@TiO2 composites with superior Z-scheme visible light-driven photocatalytic activity. Environ. Sci. Nano 2019, 6, 3170. [Google Scholar] [CrossRef]
- Bhakya, S.; Muthukrishnan, S.; Sukumaran, M.; Muthukumar, M.; Kumar, S.T.; Rao, M.V. Catalytic Degradation of Organic Dyes using Synthesized Silver Nanoparticles: A Green Approach. J. Bioremediation Biodegrad. 2015, 6, 1. [Google Scholar] [CrossRef]
- Rasheed, T.; Rasheed, A.; Munir, S.; Ajmal, S.; Muhammad Shahzad, Z.; Alsafari, I.A.; Ragab, S.A.; Agboola, P.O.; Shakir, I. A cost-effective approach to synthesize NiFe2O4/MXene heterostructures for enhanced photodegradation performance and anti-bacterial activity. Adv. Powder Technol. 2021, 32, 2248–2257. [Google Scholar] [CrossRef]
- Teimouri, M.; Khosravi-Nejad, F.; Attar, F.; Saboury, A.A.; Kostova, I.; Benelli, G.; Falahati, M. Gold nanoparticles fabrication by plant extracts: Synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity–A review. J. Clean. Prod. 2018, 184, 740–753. [Google Scholar] [CrossRef]
- Chandiran, K.; Pandian, M.S.; Balakrishnan, S.; Pitchaimuthu, S.; Chen, Y.-S.; Nagamuthu Raja, K.C. Ti3C2Tx MXene decorated with NiMnO3/NiMn2O4 nanoparticles for simultaneous photocatalytic degradation of mixed cationic and anionic dyes. Colloids Surf. A Physicochem. Eng. Asp. 2024, 692, 133888. [Google Scholar] [CrossRef]
- Mei, J.; Zhang, L.; Niu, Y. Fabrication of the magnetic manganese dioxide/graphene nanocomposite and its application in dye removal from the aqueous solution at room temperature. Mater. Res. Bull. 2015, 70, 82–86. [Google Scholar] [CrossRef]
- Chandra, S.; Das, P.; Bag, S.; Bhar, R.; Pramanik, P. Mn2O3 decorated graphene nanosheet: An advanced material for the photocatalytic degradation of organic dyes. Mater. Sci. Eng. B 2012, 177, 855–861. [Google Scholar] [CrossRef]
- Ullah, K.; Ye, S.; Zhu, L.; Meng, Z.-D.; Sarkar, S.; Oh, W.-C. Microwave assisted synthesis of a noble metal-graphene hybrid photocatalyst for high efficient decomposition of organic dyes under visible light. Mater. Sci. Eng. B 2014, 180, 20–26. [Google Scholar] [CrossRef]
- Faheem, M.; Riaz, A.; Alam, M.; Wahad, F.; Sohail, M.; Altaf, M.; Abbas, S.M. 2D Nanostructured MXene-Based Silver Nanoparticles for Photocatalytic Degradation of Safranin Dye. Catalysts 2024, 14, 201. [Google Scholar] [CrossRef]
- Romman, U.E.; Shakir, I.; Shaaban, I.A.; Assiri, M.A.; Chaudhary, K.; Warsi, M.F.; Shahid, M. Silver-doped lanthanum nickel oxide decorated Ti3C2Tx MXene nano-composite (Ag–LaNiO3/MXene) for advanced photocatalytic waste-water treatment. Opt. Mater. 2024, 147, 114678. [Google Scholar] [CrossRef]
- Othman, Z.; Sinopoli, A.; Mackey, H.R.; Mahmoud, K.A. Efficient Photocatalytic Degradation of Organic Dyes by AgNPs/ Ti3C2Tx MXene Composites under UV and Solar Light. ACS Omega 2021, 6, 33325–33338. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Kong, Y.; Wang, M.; Cai, T.; Zeng, Q. MXene derived Ti3C2Tx /Ag persistent photocatalyst with enhanced electron storage capacity for round-the-clock degradation of organic pollutant. J. Colloid Interface Sci. 2024, 656, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Roy, I.; Rana, D.; Sarkar, G.; Bhattacharyya, A.; Saha, N.R.; Mondal, S.; Pattanayak, S.; Chattopadhyay, S.; Chattopadhyay, D. Physical and electrochemical characterization of reduced graphene oxide/silver nanocomposites synthesized by adopting a green approach. RSC Adv. 2015, 5, 25357–25364. [Google Scholar] [CrossRef]
- Chand, K.; Cao, D.; Fouad, D.E.; Shah, A.H.; Lakhan, M.N.; Dayo, A.Q.; Sagar, H.J.; Zhu, K.; Mohamed, A.M.A. Photocatalytic and antimicrobial activity of biosynthesized silver and titanium dioxide nanoparticles: A comparative study. J. Mol. Liq. 2020, 316, 113821. [Google Scholar] [CrossRef]
S.No | Materials | Purity (%) |
---|---|---|
1. | Graphite powder | 99.95% and 4000 mesh size |
2. | Silver nitrate (AgNO3) | 99.9% |
3. | Titanium | 98% |
4. | Carbon | 99% |
5. | Aluminum | 98% |
6. | Sulfuric acid (H2SO4) | Concentrated |
7. | Sodium boro hydride (NaBH4) | 97% |
8. | Hydrochloric acid (HCl) | Concentrated |
9. | Sodium hydroxide (NaOH) | 99% |
10. | Potassium permanganate (KMnO4) | 97% |
11. | Ammonium hydroxide-28% (NH4OH) | 25–28% |
12. | Sodium nitrate (NaNO3) | 99.8% |
13. | Sodium bisulfate (NaHSO4) | 98.5–100% |
14. | Hydrogen peroxide (H2O2) | 30% |
15. | Direct Blue dye (C34H22N6Na4O16S4) | ≥98% |
Nanocomposite | XRD | AFM | TEM | ||
---|---|---|---|---|---|
FWHM (Deg) | 2θ (Deg) | Size (nm) | Size (nm) | ||
MX–Ag | 0.73214 | 38.1 | 11.4 | 0–30 | 6.43 |
rGO–Ag | 0.516441 | 38.2 | 16.2 | 0–40 | 16.14 |
Name of Dye | Samples (mg mL−1) | Decomposition/Reduction Time (min.) | Decomposition/Reduction Efficiency (%DE) | Rate Constant (k, min−1) | R2 |
---|---|---|---|---|---|
DB-24 | rGO | 0–50 | 94 | 1.0597 × 10−2 | 0.924 |
rGO–Ag | 0–35 | 96 | 2.037 × 10−2 | 0.903 | |
MX | 0–16 | 97 | 2.149 × 10−2 | 0.961 | |
MX–Ag | 0–10 | 98 | 3.456 × 10−2 | 0.924 |
S.No. | Materials | Methods | Name of Dyes | Time | Ref. |
---|---|---|---|---|---|
1 | BGFSO/MXene nanohybrids | Co-precipitation | Congo red | 120 min | [71] |
2 | AgNPs | Green synthesis | M.O | 24 h | [72] |
3 | MXene/Cu2O | Precipitation method | Tetracycline hydrochloride | 50 min | [73] |
4 | AgNPs | Green synthesis | M.O | 10 h | [74] |
5 | AgNPs and TiO2 | Chemical method | M.O | 30 min | [75] |
6 | AgNPs | Green synthesis | C.R | 35 min | [76] |
7 | BaSnO3/Mxene | Electrostatic self assemble | 4 Nitrophenol | 75 min | [77] |
8 | Ag and Zn NPs | Chemical method | C.R | 50 min | [78] |
9 | Ag and Au NPs | Green synthesis | C.R | 60 min | [79] |
10 | Cds/Ti3C2/TiO2 | Hydrothermal | Methylene blue | 150 min | [80] |
11 | AgNPs | Green synthesis | MO | 3 h | [81] |
12 | NiFe2O4/Mxene | Ultra-sonification | Methylene blue | 70 min | [82] |
13 | Ag and Au NPs | Green synthesis | C.R | 60 min | [83] |
14 | MXene/NiMnO3/NiMn2O4 | Electrostatic self-assembly method | Rhodamine B, Methylene blue, and methyl orange | 50 min | [84] |
16 | rGO/Fe3O4 | Facile and eco-friendly co-blending method | Methylene blue, | 50 min | [85] |
17 | Bi2O3–rGO | Sono chemical route | Methylene blue, | 2 h 40 min, 2 h 20 min and 1 h | [86] |
18 | CdSe–Graphene | Facile synthesis | Rhodamine B | 150 min | [87] |
19 | MXene–Silver | Chemical method | Safranin dye | 15 min | [88] |
20 | Ag-LaNiO3/MXene | Facile routes | Bromophenol blue, Methyl orange, and benzoic acid | 70 min | [89] |
21 | AgNPs/TiO2/Ti3C2Tx | Hydrothermal method | Methylene blue and Rhodamine B | 120 min | [90] |
22 | MXene-derived Ti3C2/TiO2/Ag | Hydrothermal oxidation method | Oxytetracycline, rhodamine b, methyl orange, and methylene blue | 15 min and 45 min | [91] |
23 | rGO–Ag | Hydrothermal method | Direct Blue-24 | 35 min | This work |
24 | MX–Ag | Selective etching and self-reduction method | Direct Blue-24 | 10 min | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chand, K.; Azeem, M.M.; Lakhan, M.N.; Ahmed, M.; Aslam, M.J.; Shah, A.H. In Situ Synthesis, Characterization and Photocatalytic Efficacy of Silver-Enhanced MXene and Graphene Nanocomposites. J. Compos. Sci. 2024, 8, 243. https://doi.org/10.3390/jcs8070243
Chand K, Azeem MM, Lakhan MN, Ahmed M, Aslam MJ, Shah AH. In Situ Synthesis, Characterization and Photocatalytic Efficacy of Silver-Enhanced MXene and Graphene Nanocomposites. Journal of Composites Science. 2024; 8(7):243. https://doi.org/10.3390/jcs8070243
Chicago/Turabian StyleChand, Kishore, M. Mustafa Azeem, Muhammad Nazim Lakhan, Mukhtiar Ahmed, Muhammad Jehanzaib Aslam, and Ahmer Hussain Shah. 2024. "In Situ Synthesis, Characterization and Photocatalytic Efficacy of Silver-Enhanced MXene and Graphene Nanocomposites" Journal of Composites Science 8, no. 7: 243. https://doi.org/10.3390/jcs8070243
APA StyleChand, K., Azeem, M. M., Lakhan, M. N., Ahmed, M., Aslam, M. J., & Shah, A. H. (2024). In Situ Synthesis, Characterization and Photocatalytic Efficacy of Silver-Enhanced MXene and Graphene Nanocomposites. Journal of Composites Science, 8(7), 243. https://doi.org/10.3390/jcs8070243