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Abstract: A multiscale model is developed for vertically aligned carbon nanotube (CNT)-based
membranes that are made for water purification or gas separation. As a consequence of driving
fluids through the membranes, they carry stress waves along the fiber direction. Hence, a continuum
mixture theory is established for a representative volume element to characterize guided waves
propagating in a periodically CNT-reinforced matrix material. The obtained coupled governing
equations for the CNT-based composite are found to retain the integrity of the wave propagation
phenomenon in each constituent, while allowing them to coexist under analytically derived multiscale
interaction parameters. The influence of the mesoscale characteristics on the continuum behavior of
the composite is demonstrated by dispersion curves of harmonic wave propagation. Analytically
established continuum mixture theory for the CNT-based composite is strengthened by numerical
simulations conducted in COMSOL for visualizing mode shapes and wave propagation patterns.

Keywords: carbon nanotubes; CNT-based membranes; multiscale modeling; continuum mixture
theory; FEM simulation

1. Introduction
1.1. Motivation

With the advent of carbon nanotube (CNT)-based membranes for water purifica-
tion as well as for gas separation systems [1–3], a new class of nanocomposites came to
light. Membranes with vertically aligned carbon nanotubes, which are perpendicular to
the membrane surfaces, have been developed to facilitate fluid flow and exploit unique
nanofluidic characteristics, such as the particles’ large surface area and Brownian motion.
From a structural dynamics perspective, one can regard the CNT-based membrane as a
composite structure with matrix material hosting hollow nanofibers. This nanocomposite is
expected to carry stress waves along the fiber direction as a result to driving fluids through
the membrane. As any structure exposed to dynamic loading, it is important to learn its
dynamic characteristics when it is free of imperfections, to record its “signature”, which is
used as a reference; then, it becomes easy to check its operational condition if it has any
defects. In such a way, this work aimed to gain an understanding of the wave propagation
characteristics of these CNT-based composite structures.

1.2. CNT-Reinforced Composites

When conducting a literature search on CNT-based composites, we found that re-
searchers have been proposing the use of CNT-reinforced composites to create highly strong
materials [3,4]. Since carbon nanotubes (CNTs) are approximately thirty times stronger
than steel and five times less dense, they are ideal candidates to be used as reinforcing
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fibers. Hence, if CNT-fiber reinforced composites are manufactured “right”, i.e., with a suit-
able fiber distribution and alignment, they are expected to form lightweight, super strong
materials. In order to estimate the properties and predict the behavior of CNT-reinforced
composites, researchers have spent time conducting delicate experiments to measure load
transfer and deformation mechanisms in carbon nanotube–polystyrene composites [5],
investigate the detachment of carbon nanotubes from a polymer matrix [6], estimate the
mechanical and electrical properties of CNT/epoxy composites [7], evaluate the carbon
nanotube–polymer interfacial strength [8], and measure the bending strength and fracture
toughness of CNT-reinforced alumina composites [9].

Since experiments at the nano level are quite elaborate and molecular dynamic (MD)
simulations are computationally involved [10,11], continuum mechanics models have
been proven to establish a link between experimental/computational molecular chemistry
and solid mechanics [12]. Research groups have designed constitutive models for two
types of CNT–polyimide composite structures [13] and built a model that accounted for
CNT reinforcement geometry, to show the sensitivity of elastic properties to the nanotube
diameter and volume fraction in composites [14].

Various continuum approaches based on representative volume elements (RVEs) were
proposed to express the interaction of CNT “fibers” with the surrounding matrix. Liu
et al. [15] used a finite element approach on a three-dimensional nanoscale RVE to evaluate
the effective mechanical properties of CNT-based composites. Karimzadeh et al. [16] ap-
plied a finite element method using two-dimensional axisymmetric and three-dimensional
square RVEs to predict the mechanical behavior of CNT-reinforced polymers. Tserpes
et al. [17] proposed an RVE to be used to study the tensile behavior of a unidirectional nan-
otube/polymer composite and compared the results with corresponding rule-of-mixture
predictions. Meguid et al. [18] employed an energy approach on atomistic-based RVEs to
characterize the behavior of CNT-reinforced amorphous epoxies. Montazeri and Naghd-
abadi [19] utilized a multiscale modeling procedure to investigate the interfacial effects
on the Young’s modulus of CNT/polymer composites and compared the results with MD
simulations. Ayatollahi et al. [20] considered a CNT-reinforced composite under tensile,
bending, and torsional loading conditions, proposing an equivalent beam element for
evaluating the nanocomposite stiffness. García-Macías et al. [21] utilized a homogenization
approach to model CNT-reinforced polymers, focusing on the sensitivity of the macroscopic
response to microstructural properties including the filler volume fraction, chirality, and
aspect ratio. For a recent reference on basic approaches for analyzing multiscale hybrid
nanocomposites, the reader is referred to the book by Ebrahimi and Dabbagh [22].

1.3. Dynamic Modeling of CNT-Based Composites

Given the importance of developing nanomechanical oscillators/resonators, dynamic
characterization of nanocomposites has attracted special attention, with value for estimating
resonant frequencies and vibration modes. Continuum approaches have been utilized to
calculate resonant frequencies and associated vibrational modes of nanocomposites with
embedded CVTs and assess vibration damping characteristics in CNT-epoxy-reinforced
composites. For a review on vibrations of CNT-based composites, the reader is referred
to the paper by Gibson et al. [23]. The recent trend in the continuum approach of CNT-
reinforced composites is to apply numerical models on RVEs. A demonstrative paper in this
direction was published by Palacios and Ganesan [24], who implemented an RVE-based
finite element study on the dynamic response of a CNT-reinforced polymer to determine
the natural frequencies and damping properties, and established a relationship between
the damping ratio and natural frequencies.

Since the CNT diameter–length ratios are very small, researchers prefer to consider the
dynamic behaviors of nanocomposites within the context of wave propagation. Natsuki
et al. [25] studied flexural symmetrical and asymmetrical modes of nanotubes embedded
in an elastic matrix, treating the CNT surrounding medium as a Winkler material, and
identified the different wave characteristics of single- and double-walled CNT-reinforced
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elastic medium. Mitra and Gopalakrishnan [26] considered waves propagating in an RVE,
taking the geometry of a shear deformable beam with a square cross-section. Using a
wavelet solution, they predicted the transfer of shear stress between the CNT fibers and
the surrounding matrix due to terahertz-frequency elastic waves. Alavinasab et al. [27]
studied CNT-based composites within the framework of nonlocal elasticity and found
that the dispersion curve of plain waves was close to that obtained using the atomic
Born–von Karman model. Ebrahimi et al. [28] considered higher-order flexural wave
propagation in a polymeric composite plate that is reinforced by a combination of glass
fibers and carbon nanotubes, and investigated the influence of fibers’ arrangements on
wave dispersion characteristics. They found that waves in hybrid nanocomposites can
propagate at higher wave frequencies than those propagating in other types of composites.
Since the authors of these publications were motivated to propose high-strength CNT-
reinforced composite structural components, they focused on flexural and shear waves that
are normally encountered in these composite elements.

1.4. Problem Statement and Solution Methodology

As the current study was performed primarily to model the dynamic behavior of
CNT-based membranes that are employed in water purification and gas separation systems,
our attention was on modeling the propagation of axisymmetric longitudinal elastic waves
in a CNT-based composite membrane, since these are the types of waves generated due to
the fluid pumping effect through the membrane. Hence, a continuum mixture model was
established to model the dynamic behavior of a CNT-based composite with an RVE that had
a hexagonal cross-section. As this was the first work focusing on CNT-based membrane dy-
namics, we applied a rigorous analytical method to tackle the problem. An area averaging
approach for building a continuum mixture theory was utilized. This method was proven
effective in studying elastic, electromagnetic, piezoelectric, and thermoelastic waves and
heat conduction in composites by Nayfeh et al. [29–34]. In this study, a continuum mixture
theory was developed for longitudinal elastic waves along the CNT direction, as described
in Section 2. Interesting is looking at the nanostructured composite as a matrix hosting
hollow fibers; in this way, one can consider the nanocomposite as a three-phase medium.
Our analytical study was further supplemented by numerical simulations conducted in
COMSOL to visualize mode shapes and wave propagation patterns. The results obtained
from the unique mixture model in the form of the dispersion relationship of propagating
elastic modes, and numerically obtained mode shapes, are presented and discussed in
Section 3. The work is concluded in Section 4.

2. Mathematical Modeling and Numerical Simulation

The composite structure under consideration was inspired by using membranes host-
ing arrays of carbon nanotubes to act as filters for water desalination or purification, or
as membranes for separating different gas molecules. In both applications, some fluid
runs through the nanotubes and some other fluid(s) cannot pass through due to the size(s)
of its molecules, as shown schematically in Figure 1. In all cases, the membrane can be
regarded as a small-sized composite structure composed of a matrix material that embraces
hollow nanofibers. Due to the “pumping effect” of the fluid, stress waves propagate in
the direction along the fibers. Multiscale modeling is adopted to gain an understanding
of the wave propagation characteristics of the composite structure. The analysis aims at
describing a system’s behavior on one level using information from different levels, where
appropriate methodologies are applied on each level.
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Figure 1. Schematic of CNT-based membrane for water purification or gas separation.

2.1. Mathematical Modeling

Let us start with fundamental assumptions: Under investigation is a composite struc-
ture composed of a matrix embracing periodically distributed CNTs as fibers. The manufac-
turing of composites with vertically aligned CNTs is nowadays a maturing technology [35].
Thus, the CNT-based composite with an appropriate distribution and alignment of nan-
otubes can be considered a unidirectionally reinforced periodic composite, as shown in
Figure 2. It is assumed that the matrix maintains a homogeneous structure throughout the
material and that the CNT fibers are directly incorporated into the matrix material; thus,
the CNT/matrix interface is fully bonded. The assumption of perfect interfacial bonding
of the CNT to the host matrix seems to be ambitious. However, recent techniques for im-
proving interfacial shear strength have been presented. Examples include the work of Park
et al. [36], who showed the formation of good covalent bonding between Al and CNT when
considering the formation of Al4C3 sub-elements; the computational study of Norouzi
et al. [37], on strengthening the CNT/matrix interfacial bond, which showed this was
possible when the aspect ratio of CNT fibers was increased [36]; and the review presented
by Hashim et al. [38] on the interfacial bonding of CNT reinforcement of aluminum matrix
composites. The cores of CNT fibers are assumed to be continually filled with air or water.
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Figure 2. CNT-based composite with periodic carbon nanotube distribution.

For the case of CNT-based composites, two levels can be identified: (i) mesoscale (or
nano-level) information including information about groups of molecules is included; and
(ii) continuum-level models. Thus, the continuum prediction of composite behavior is
based on knowledge of carbon nanotubes’ mechanical properties.
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2.1.1. Representative Volume Element

The CNT-based composite has a hexagonal symmetry with a representative volume
element, as shown in Figure 3. In order to facilitate the analysis, the RVE may be approxi-
mated by concentric cylinders, as shown in the same figure, where the RVE has an outer
radius r2 while the single-walled CNT fiber has an outer radius r1 and an inner radius
r0. The use of an RVE in the form of a circular cylinder instead of a hexagonal cylinder
is solely based on making the problem amenable to analytical treatment. The validity of
using an approximate RVE is yet to be checked, as covered in Section 2.2 using the finite
element method.
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The following cylindrical coordinate momentum equations and constitutive relations
can be written for each of the three constituents of the RVE (matrix, CNT, and filling) to
describe the dynamic behavior in each individual component:

∂σzz

∂z
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1
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∂

∂z
(rσrz) = ρ

∂2u
∂t2 (1)

∂σrr

∂r
+
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∂z
+

1
r
(σrr − σθθ) = ρ

∂2v
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∂u
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+
C12

r
∂

∂r
(rv) (3)

σrr = C22
∂v
∂r

+
C12

r
v + C12

∂u
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(4)
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v
r
+ C12

∂v
∂r

+ C12
∂u
∂z

(5)

σrz = C44(
∂v
∂z

+
∂u
∂r

) (6)

where σij is the stress tensor, u and v are the displacement components in the longitudinal
and radial directions of the RVE, and Cij is the stiffness coefficient. The two-dimensional
field Equations (1)–(6) that hold in all RVE layers (the matrix, CNT, and filling) can be
applied to define dynamic mixture equations by utilizing a geometric averaging process.

2.1.2. Averaging Process

The averaging process followed in this paper is based on converting a two-dimensional
dynamic system of equations into a quasi-one-dimensional system of coupled partial differ-
ential equations, which retains the dynamics in individual constituents of the representative
volume element while allowing them to coexist under interfacial interaction of the con-
stituents. Inspired by the works of Nayfeh et al. [29–34], the equations of motion and the
constitutive Equations (1)–(6) are subjected to the following area averaging:

( ) f=
1

π r0
2

∫ r
0 2π( ) f dr,

( )c=
1

π (r1
2−r 0

2
) ∫ r

0 2π( )c dr, and

( )m=
1

π (r2
2−r 1

2
) ∫ r

0 2π ( )m dr
(7)
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where the subscripts f , c, and m are used to identify the filling, carbon nanotube, and
matrix material, respectively. This leads to three systems of partial differential equations in
the axial direction (z) and time.

Due to cylindrical symmetry, the radial displacements and shear stresses vanish at
r = 0 and r = r2; thus,

v f (z, 0, t) = 0, σrz f (z, 0, t) = 0, vm(z, r2, t) = 0, and
σrzm(z, r2, t) = 0

(8)

Interfacial continuity of radial displacements and shear stresses are intuitively realized
at r = r0; thus,

σrz f (z, r0, t) = σrzc(z, r0, t), σr f (z, r0, t) = σrc(z, r0, t),
u f (z, r0, t) = uc(z, r0, t), and v f (z, r0, t) = vc(z, r0, t)

(9)

and at r = r1; thus,

σrzc(z, r1, t) = σrzm(z, r1, t), σrc(z, r1, t) = σrm(z, r1, t),
uc(z, r1, t) = um(z, r1, t), and vc(z, r1, t) = vm(z, r1, t)

(10)

The “common” radial displacement and shear stress at the two interfaces are used to

define four interaction (coupling) terms S1 (=
2n f v1

*

r0
), S2 (=

2(n f+nc)v2
*

r1
), ζ1 (=

2n f σrz1
*

r0
), and

ζ2 (=
2[(n f )+(nc)]σrz2

*

r1
), where v1

*, v2
*, σrz1

*, and σrz2
* are the interface the radial displacement

and shear stress at r0 and r1, respectively; and n f (= r0
2

r2
2 ), nc(=

(r 1
2−r0

2)
r2

2 ), and nm(=
(r 2

2−r1
2)

r2
2 )

are the volume fractions of the fillings, carbon nanotube, and matrix, respectively.
In order to solve the interaction parameters in terms of averaged radial displacement

and averaged shear stress, one can utilize the following approximate conditions: (i) neglect
( ∂v

∂z ), and (ii) consider u and σrz to be linearly dependent on r[29]. For a steady-state
harmonic solution, assume

(u f , uc, um, A1, A2 , B1, B2)= (X1, X2, X3, X4, X5, X6, X7)ei(kz−wt) (11)

Then, derive the characteristic dispersion equation as the determinant of

[M] =



n f

(
ρ f ω2 − C11 f k2

)
0 0 2n f 0

0 ncρcω2 − C11ck2nc 0 −2n f 2
(

nc + n f

)
0 0 nmρmω2 − k2C11mnm 0 −2

(
nc + n f

)
4C55 f −4C55 f 0 r2

0 − 4C55 f χ1 −4C55 f χ2
0 −2C55m C55m −C55mχ1 χ2 − C55mχ2

−4iC12 f k 4iC12ck 0 ik
(
r2

0 − 4γ5b
)

−4ikγ6b
0 −2iC12ck ikC12m ikγ5b ikγ6b − ikγc2

2iC12 f kn f 0

−2iC12ckn f 2iC12ck
(

nc + n f

)
0 −2ikC12m

(
nc + n f

)
−iC55 f k

(
r2

0 + 4ψ1
)

−4iC55 f kψ2
−ikC55mψ1 ikψ2 − ikC55mψ2(

ρ f r2
0 + 4γ3b

)
ω2 − 4

(
C12 f + C22 f + γ1b + δ1

)
−4

(
−γ4bω2 + γ2b + δ2

)
−γ3bω2 + γ1b + 2δ1 −γ4bω2 + γc3ω2 + γ2b − γc1 + 2δ2 − κ



(12)

2.2. Numerical Simulation

To verify the analytical model and confirm the influence of CNT reinforcement on
the vibrational characteristics of the aggregate composite structure, three-dimensional
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(3D) finite element simulations are conducted. Eigenfrequency analysis is performed to
predict the corresponding resonant frequencies of the CNT-based composite structure.
Mode shapes are appropriately normalized so that the orthonormality condition is satisfied
for each mode. The generalized equation of dynamic equilibrium, i.e., M ∂2u

∂t2 + Ku = 0,
governing the motion of free vibrations of the hexagonal cylindrical and the circular
cylindrical RVE domains, is considered; here, u is the displacement vector, M is the mass
matrix, and K is the stiffness matrix. For the free vibration of both hexagonal cylindrical
and circular cylindrical RVEs, two generalized eigenvalue problems taking the general
form of Kψ = ω2Mψ are solved to yield “n” eigensolutions for the mode shapes:

(
ψ1, ω2

1
)
,(

ψ2, ω2
2
)
,
(
ψ3, ω2

3
)
, . . .,

(
ψn, ω2

n
)
, where ψi is the ith mode shape vector, and ωi is the ith

angular frequency, from which the ith natural frequency is calculated, i.e., fi =
ωi
2π . The

orthonormality criteria are satisfied for each mode by carefully normalizing the mode
forms. The hexagonal cylindrical RVE with the dimensions 5 nm × 5 nm × 50 nm was
used to perform the finite element simulation of the CNT-based composite in the multi-
physics package COMSOL, incorporating the required initial and boundary conditions.
The circular cylindrical RVE has the same cross-sectional area as that of the hexagonal
cylindrical RVE. While it is feasible to host suitable fillings, the CNT fibers are assumed
to be hollow with air-filled cores. The initial displacement and velocity vector elements
are set to zero. Periodic boundary conditions are applied at the top and bottom of the
faces of both RVEs to resemble infinitely long RVEs. Neumann boundary conditions are
applied to the side faces of both RVEs. As assumed in the analytical formulation, perfect
mechanical bonding is applied at the CNT–matrix interfaces. The elastic properties of the
CNT and host matrix are imposed in their respective domains. The RVE is meshed with
about 339,141 tetrahedral quadratic elements with an average quality of 0.7, as shown in
Figure 4. To improve the accuracy of numerical solutions at the CNT–matrix interface,
a higher mesh density is used around these boundary regions. To verify finite element
solution convergence, the simulations are run for various element sizes. A converged
solution is obtained with the 339,141 elements, a minimum element size of 0.5 nm, and a
maximum of 300 iterations for the eigenproblem solver.
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3. Results and Discussion

The dispersion relation that relates the wavenumber (k) and frequency (ω) is solved
numerically as a complex transcendental equation to find the zeros of the determinant of
Equation (12). Wave dispersion characteristics have been utilized as an efficient tool for
the nondestructive evaluation of composite structures. Thus, from a practical view point,
dispersion curves can be used to check the integrity of the CNT-based membrane.

As a first step, the problem was programmed for the case of the classical fiber-
reinforced composite presented in reference [19], to establish confidence in the software
code of the analytical results. Next, four representative cases of CNT-reinforced com-
posites were considered: (A) a silicon carbide (SiC) matrix hosting (10,0) zigzag carbon
nanotubes, (B) a SiC matrix hosting (12,6) chiral carbon nanotubes, (C) a titanium (Ti) matrix
hosting (10,0) zigzag carbon nanotubes, and (D) a Ti matrix hosting (12,6) chiral carbon
nanotubes. The SiC matrix material has a density of 3.2 g/cm3, and stiffness properties
of C11m = 446 Gpa, C12m = 92 Gpa, and C44m = 177 Gpa. The Ti matrix material has a
density of 5.4 g/cm3, and stiffness properties of C11m = 193 Gpa, C12m = 103 Gpa, and
C44m = 45 Gpa.

A (10,0) zigzag carbon nanotube has a density of 1.34 g/cm3 and a modulus of elasticity
of 0.94 Tpa, while a (12,6) chiral carbon nanotube has a density of 1.40 g/cm3 and a modulus
of elasticity of 0.92 Tpa [36]. Poisson’s ratio is assumed to be 0.3 for both carbon nanotubes.

The RVE composite dimensional properties are r0 = 2 nm, r1 = 2.34 nm, and r2 = 8.34 nm.
The core parts of the carbon nanotubes are assumed to be filled with air. With this, the
dispersion curves for the CNT-reinforced composites are constructed.

Figure 5 compares the dispersion curves for a (10,0) zigzag CNT-reinforced SiC matrix
to those for a (12,6) chiral CNT-reinforced SiC matrix. The dispersion curves for the lowest
five modes are given for each of the four representative composites. The curves are depicted
in the phase speed–frequency plane.
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At low frequencies, the lowest three modes of the zigzag-reinforced SiC matrix and
chiral CNT-reinforced SiC matrix tend to be identical, while the higher two modes of each
composite are well-distinguished from each other. The fundamental modes converge at the
zero-frequency limits to the same effective mixture wave speed. The tendency of modes to
converge to the bulk wave speeds at high frequencies is quite typical.

Figure 6 compares the dispersion curves for a (10,0) zigzag CNT-reinforced Ti matrix
with those for a (12,6) chiral CNT-reinforced Ti matrix. The dispersion curves for the
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lowest five modes are given for each of the four representative composites. The curves are
depicted in the phase speed–frequency plane. For the case of the zigzag CNT-reinforced
Ti matrix and chiral CNT-reinforced Ti matrix, the modes of each composite are clearly
differentiated from each other. Two distinct zero-frequency mixture wave speeds can be
observed for the two composites. The modes, however, converge to the bulk wave speeds
as the frequency increases.
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It is thus shown in both Figures 5 and 6 that the “nanostructures” of the carbon
nanotubes play an important role in shaping the dispersion of longitudinally propagating
waves. Continuum modeling based on averaging is attractive for use in preliminary
engineering designs or early nondestructive evaluations. The dispersion curves shown in
Figures 5 and 6 are those for an intact CNT-based composite. If the composite geometry
is altered such as in a case of fouling affecting the value of r0, for example, the dispersion
curves would have different configurations, which indicates an inadequacy that lowers the
performance effectiveness in accomplishing the function it is supposed to perform. Other
factors that could be detected from deviations in the dispersion curves include chemical
reactions that could change mechanical properties of the composite structure’s constituents.

Numerical simulation results are shown in Figure 7, which illustrates the lowest two
longitudinal vibrational mode shapes of the four RVE cases considered for the analytical
modeling presented so far. Mass and stiffness are well-known factors that affect a structural
object’s natural frequency. Whereas stiffer materials vibrate at higher frequencies, heavier
objects vibrate at lower frequencies (Table 1).

It can be noted in Figure 7 that the first mode shape of the circular cylindrical RVE
is very close to that of the hexagonal cylindrical RVE, while the second mode shape of
the circular cylindrical RVE is somewhat close to that of the hexagonal cylindrical RVE.
The investigation of the third and fourth mode shapes showed that mode shapes of the
circular cylindrical RVE are notably different from their corresponding mode shapes of
the hexagonal cylindrical RVE. Hence, the geometric approximation of the hexagonal
cylindrical RVE to the circular cylindrical RVE, which has been used for obtaining the
analytical dispersion relations, should be limited to deriving low-frequency information,
and it should not be used for predicting high-frequency characterizations. The intriguing
observation though is that the wave propagation along the CNT-based composite is affected
by the characteristics of fiber reinforcement. The CNT “nanostructures” (zigzag or chiral
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formed) does play a clear role in determining the mode shape of the first two vibrational
modes. In other words, numerical simulations indicate that the “reinforcing” carbon
nanotubes play a significant role in how the composite RVE deforms when waves propagate
through that RVE.
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Table 1. Calculated natural frequencies of simulated circular cylindrical RVEs and hexagonal cylin-
drical RVEs for the four cases of material formations.

RVE
Geometry

Circular
Cylindrical RVE

Hexagonal
Cylindrical RVE

Cases/Modes Mode 1 Mode 2 Mode 1 Mode 2

A 5.89 THz 11.89 THz 5.86 THz 11.88 THz

B 4.97 THz 12.00 THz 4.97 THz 12.00 THz

C 5.89 THz 11.88 THz 5.88 THz 11.87 THz

D 4.97 THz 12.00 THz 4.94 THz 11.99 THz

In the simulations performed, larger displacements were predicted for the CNT-
reinforced SiC composite structure than the CNT-reinforced Ti composite. This was because
SiC is almost twice as stiff as Ti, even though the density of Ti is close to 1.5 times less than
that of SiC. Moreover, the vibrational mode shapes and displacement magnitudes were
more greatly affected when the (10,0) zigzag CNT was replaced by the (12,6) chiral CNT in
the SiC host matrix.

The mode shapes shown in Figure 7 are those for an intact CNT-based composite. If
either the composite geometry, material properties, or both are altered in cases of fouling or
chemical reactions, the natural frequencies and mode shapes will be different from those
of the intact composite structure. Frequency and/or mode shape changes can indicate
potential improper functioning of the composite membrane.

For future research works on unique CNT composite membranes, we recommend
investigating (i) the effect of having a polymeric matrix and how intrinsic damping of
the polymer will change dispersion and vibration characteristics; (ii) the effect of utilizing
multi-walled CNTs for water purification or gas separation in a multiscale analysis of the
composite membrane; (iii) the effect of including a heavier core material such as water
in place of air on the dynamic properties of the composite structure; (vi) a more realistic
model accounting for weak interfacial bonding, since the assumption of perfect CNT–matrix
bonding with full load transfer is idealistic; (v) the effect of weakening matrix–fiber bonding,
to understand whether this influences structural dynamic characteristics; and (iv) the effect
of an imperfect CNT distribution and/or the effect of deviation of the CNT from being
vertically oriented.

4. Conclusions

Carbon-nanotube-based membranes for water purification or gas separation were
considered from a structural dynamics viewpoint. Hence, the propagation of longitu-
dinal elastic waves in single-walled carbon nanotubes (SWNTs) embedded in a matrix
was studied. The CNT-based composite was considered by focusing on a representative
volume element made from a continuum axisymmetric cylinder building block, as an
approximation of a hexagonal cylindrical element. Then, a continuum mixture model
was established based on an analytical scheme that involves area averaging. Numerical
illustrations were produced to study the axial wave propagation in an SWNT-reinforced
elastic matrix in the terahertz range. Finite element simulations performed in COMSOL
showed the mode shapes of circular cylindrical as well as hexagonal cylindrical RVEs for a
composite membrane hosting zigzag as well as chiral CNTs. Both the analytical continuum
model dispersion curves and the FEM-derived mode shapes indicated that the reinforcing
CNT nanostructure had an effect on the higher-level behavior produced by the composite
dynamic characteristics.
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