Analytical Modeling Approaches for the Cyclic Behavior of Concrete-Filled Circular Filament Wounded GFRP Tube Columns
Abstract
:1. Introduction
2. Stress–Strain Models for FRP Confined Concrete
2.1. Samaan Confinement Model
2.2. Saiidi Confinement Model
2.3. Teng Confinement Model
2.4. Megalooikonomou’s Confinement Model
3. Baseline Experimental Study
4. Analytical Modeling Approaches
4.1. Distributed Inelasticity Modeling Approach
4.2. Lumped Inelasticity/Concentrated Plasticity Modeling Approach
5. Comparison of Analysis Results with the Baseline Experimental Study
5.1. Monotonic Pushover Analysis
5.2. Full Cyclic Pushover Analysis
6. Proposed Modeling Approach
6.1. Experimental Study Used for Validation of the Proposed Modeling Approaches
6.2. Results of Analytical Validation
7. Conclusions
- Enhanced FRP Confinement Model: Develop an improved FRP confinement model that accounts for contributions from both FRP and internal steel reinforcement. This model should address convergence issues while maintaining computational efficiency and capture the accurate shape of the hysteresis curve including precise predictions of both peak value and dissipated energy within finite element software OpenSeesPy3.5.1.12. This will enhance our understanding of the column’s behavior under cyclic loading.
- Experimental Validation: Conduct experimental tests to validate the proposed analytical models. Comparing the results with real-world behavior will enhance their reliability.
- Application to Practical Design: Apply the developed models to practical design scenarios, considering different column geometries and loading conditions.
- Material properties of FRP tubes: Conduct detailed investigations and experimental studies to understand the material properties of FRP tubes with varying fiber orientations in specific CFFT elements.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ortiz, J.D.; Khedmatgozar Dolati, S.S.; Malla, P.; Nanni, A.; Mehrabi, A. FRP-reinforced/strengthened concrete: State-of-the-art review on durability and mechanical effects. Materials 2023, 16, 1990. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Ahmad, I.; Mirmiran, A. Fiber element modeling for seismic performance of bridge columns made of concrete-filled FRP tubes. Eng. Struct. 2006, 28, 2023–2035. [Google Scholar] [CrossRef]
- Zhu, Z.; Mirmiran, A.; Saiidi, M.S. Seismic performance of reinforced concrete bridge substructure encased in fiber composite tubes. Transp. Res. Rec. 2006, 1976, 197–206. [Google Scholar] [CrossRef]
- Zaghi, A.E.; Saiidi, M.S.; Mirmiran, A. Shake table response and analysis of a concrete-filled FRP tube bridge column. Comp. Struct. 2012, 94, 1564–1574. [Google Scholar] [CrossRef]
- Echevarria, A.E.; Zaghi, A.E.; Saiidi, M. Applicability of Concrete-Filled FRP Tube (CFFT) System for Multihazard Resilient Bridge Columns. Struct. Cong 2014, 2014, 441–452. [Google Scholar] [CrossRef]
- Echevarria, A.; Zaghi, A.E.; Chiarito, V.; Christenson, R.; Woodson, S. Experimental comparison of the performance and residual capacity of CFFT and RC bridge columns subjected to blasts. J. Bridge Eng. 2016, 21, 04015026. [Google Scholar] [CrossRef]
- Papavasileiou, G.S.; Megalooikonomou, K.G. Numerical simulation of FRP-confined circular bridge piers using OpenSees, Proc. In OpenSees Days Italy (OSD), Second International Conference; University of Salerno: Salerno, Italy, 2015. [Google Scholar]
- Hain, A.; Zaghi, A.E.; Saiidi, M.S. Flexural behavior of hybrid concrete-filled fiber reinforced polymer tube columns. Comp. Struct. 2019, 230, 111540. [Google Scholar] [CrossRef]
- Shao, Y.; Mirmiran, A. Experimental investigation of cyclic behavior of concrete-filled fiber reinforced polymer tubes. J. Comp. Constr. 2005, 9, 263–273. [Google Scholar] [CrossRef]
- Zhu, Z.; Ahmad, I.; Mirmiran, A. Seismic performance of concrete-filled FRP tube columns for bridge substructure. J. Bridge Eng. 2006, 11, 359–370. [Google Scholar] [CrossRef]
- Shi, Y.; Zohrevand, P.; Mirmiran, A. Assessment of Cyclic Behavior of Hybrid FRP Concrete Columns. J. Bridge Eng. 2013, 18, 553–563. [Google Scholar] [CrossRef]
- Youm, K.; Cho, J.; Lee, Y.; Kim, J.J. Seismic performance of modular columns made of concrete filled FRP tubes. Eng. Struct. 2013, 57, 37–50. [Google Scholar] [CrossRef]
- Ali, A.M.; Robillard, D.; Masmoudi, R.; Khan, I.M. Experimental investigation of bond and tube thickness effect on the flexural behavior of concrete-filled FPR tube under lateral cyclic loading. J. King Saud Univ. Eng. Sci. 2019, 31, 32–41. [Google Scholar] [CrossRef]
- Lanning, A.; Hain, A.; Zaghi, A.E.; Saiidi, M.S. Experimental study on hybrid concrete-filled fiber reinforced polymer tube (HCFFTs) columns under simulated seismic loading. Eng. Struct. 2022, 264, 114478. [Google Scholar] [CrossRef]
- Samaan, M.; Mirmiran, A.; Shahawy, M. Model of concrete confined by fiber composites. J. Struct. Eng. 1998, 124, 1025–1031. [Google Scholar] [CrossRef]
- Saiid Saiidi, M.; Sureshkumar, K.; Pulido, C. Simple carbon-fiber-reinforced-plastic-confined concrete model for moment-curvature analysis. J. Comp. Constr. 2005, 9, 101–104. [Google Scholar] [CrossRef]
- Youssef, M.N.; Feng, M.Q.; Mosallam, A.S. Stress–strain model for concrete confined by FRP composites. Comp. Eng. 2007, 38, 614–628. [Google Scholar] [CrossRef]
- Lam, L.; Teng, J.G. Design-oriented stress–strain model for FRP-confined concrete. Constr. Build. Mat. 2003, 17, 471–489. [Google Scholar] [CrossRef]
- Lam, L.; Teng, J.G. Stress–strain model for FRP-confined concrete under cyclic axial compression. Eng. Struct. 2009, 31, 308–321. [Google Scholar] [CrossRef]
- Teng, J.G.; Jiang, T.; Lam, L.; Luo, Y.Z. Refinement of a design-oriented stress–strain model for FRP-confined concrete. J. Comp. Constr. 2009, 13, 269–278. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, Y.; Jiang, J. Effect of aggregate size on stress-strain behavior of concrete confined by fiber composites. Compos. Struct. 2017, 168, 851–862. [Google Scholar] [CrossRef]
- Jiang, C. Strength enhancement due to FRP confinement for coarse aggregate-free concretes. Eng. Struct. 2023, 277, 115370. [Google Scholar] [CrossRef]
- Ozbakkaloglu, T.; Lim, J.C.; Vincent, T. FRP-confined concrete in circular sections: Review and assessment of stress–strain models. Eng. Struct. 2013, 49, 1068–1088. [Google Scholar] [CrossRef]
- Pessiki, S.; Harries, K.A.; Kestner, J.T.; Sause, R.; Ricles, J.M. Axial behavior of reinforced concrete columns confined with FRP jackets. J. Comp. Constr. 2001, 5, 237–245. [Google Scholar] [CrossRef]
- Guo, H.; Yuan, H.; Zhang, J.; Ruan, D. Review of sandwich structures under impact loadings: Experimental, numerical, and theoretical analysis. Thin-Walled Struct. 2023, 196, 111541. [Google Scholar] [CrossRef]
- Fahmy, M.F.; Ismail, A.M.; Wu, Z. Numerical study on the applicability of design-oriented models of FRP-confined concrete for predicting the cyclic response of circular FRP-jacketed RC columns. J. Comp. Constr. 2017, 21, 04017017. [Google Scholar] [CrossRef]
- Megalooikonomou, K.G.; Monti, G.; Santini, S. Constitutive model for fiber-reinforced polymer-and tie-confined concrete. ACI Struct. J. 2012, 109, 569. [Google Scholar] [CrossRef]
- Scott, M.H.; Fenves, G.L. Plastic hinge integration methods for force-based beam–column elements. J. Struct. Eng. 2006, 132, 244–252. [Google Scholar] [CrossRef]
- Scott, M.H.; Ryan, K.L. Moment-rotation behavior of force-based plastic hinge elements. Earth Spec. 2013, 29, 597–607. [Google Scholar] [CrossRef]
- Mackie, K.R.; Scott, M.H. Implementation of nonlinear elements for seismic response analysis of bridges. Pract. Periodical Struct. Des. Constr. 2019, 24, 04019011. [Google Scholar] [CrossRef]
- Rahai, A.R.; Fallah Nafari, S. A comparison between lumped and distributed plasticity approaches in the pushover analysis results of a pc frame bridge. Int. J. Civil. Eng. 2013, 11, 217–225. [Google Scholar]
- Pozo, J.D.; Hube, M.A.; Kurama, Y.C. Effective nonlinear simulations of RC columns with force-based elements. J. Earthquake Eng. 2023, 27, 340–361. [Google Scholar] [CrossRef]
- Gu, D.; Wu, Y.; Wu, G.; Wu, Z. Plastic hinge analysis of FRP confined circular concrete columns. Constr. Build. Mater. 2012, 27, 223–233. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, Y.; Wu, G. Plastic hinge length of FRP-confined square RC columns. J. Comp. Constr. 2014, 18, 04014003. [Google Scholar] [CrossRef]
- Paulay, T.; Priestley, M.N. Seismic Design of Reinforced Concrete and Masonry Buildings; John Wiley & Sons: New York, NY, USA, 1992; pp. 141–142. [Google Scholar]
- Youssf, O.; ElGawady, M.A.; Mills, J.E. Displacement, and plastic hinge length of FRP-confined circular reinforced concrete columns. Eng. Struct. 2015, 101, 465–476. [Google Scholar] [CrossRef]
- Yuan, F.; Wu, Y.; Li, C. Modelling plastic hinge of FRP-confined RC columns. Eng. Struct. 2017, 131, 651–668. [Google Scholar] [CrossRef]
- Hisham, M.; Yassin, M. Nonlinear Analysis of Prestressed Concrete Structures under Monotonic and Cycling Loads. Ph.D. Dissertation, University of California, Berkeley, CA, USA, 1994. [Google Scholar]
- Teng, J.G.; Lam, L.; Lin, G.; Lu, J.Y.; Xiao, Q.G. Numerical simulation of FRP-jacketed RC columns subjected to cyclic and seismic loading. J. Comp. Constr. 2016, 20, 04015021. [Google Scholar] [CrossRef]
- Richard, R.M.; Abbott, B.J. Versatile elastic-plastic stress-strain formula. J. Eng. Mech. Div. 1975, 101, 511–515. [Google Scholar] [CrossRef]
- Ahmad, S.H. Properties of Confined Concrete under Static and Dynamic Loads. Ph.D. Dissertation, University of Illinois at Chicago Circle, Chicago, IL, USA, 1981. [Google Scholar]
- Ahmad, S.H.; Shah, S.P. Stress-strain curves of concrete confined by spiral reinforcement. J. Proc. 1982, 79, 484–490. [Google Scholar] [CrossRef]
- Karsan, I.D.; Jirsa, J.O. Behavior of concrete under compressive loadings. J. Struct. Div. 1969, 95, 2543–2564. [Google Scholar] [CrossRef]
- Triantafillou, T.; Matthys, S.; Audenaert, K.; Balázs, G.; Blaschko, M.; Blontrock, H.; Czaderski, C.; David, E.; Di Tomasso, A.; Duckett, W.; et al. Externally Bonded FRP Reinforcement for RC Structures, Bulletin FIB 14; International Federation for Structural Concrete (fib): Lausanne, Switzerland, 2001; pp. 1–130. [Google Scholar]
- Braga, F.; Gigliotti, R.; Laterza, M. Analytical stress–strain relationship for concrete confined by steel stirrups and/or FRP jackets. J. Struct. Eng. 2006, 132, 1402–1416. [Google Scholar] [CrossRef]
- Shao, Y. Seismic Performance of FRP-Concrete Beam-Column. Ph.D. Dissertation, North Carolina State University, Raleigh, NC, USA, 2003. [Google Scholar]
- Mazzoni, S.; McKenna, F.; Scott, M.H.; Fenves, G.L. OpenSees command language manual. Pac. Earthq. Eng. Res. (PEER) Cent. 2006, 264, 137–158. [Google Scholar]
- Megalooikonomou, K.G.; Monti, G. Numerical modeling of FRP-retrofitted circular RC columns including shear. In Proceedings of the 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete Island, Greece, 25 May 2015. [Google Scholar]
- Hain, A.; Zaghi, A.E.; Lanning, A. Moment-Curvature Analysis of Hybrid Concrete-Filled Fiber Reinforced Polymer Tube Columns. Struct. Cong 2018, 2018, 338–348. [Google Scholar] [CrossRef]
- Hain, A.; Motaref, S.; Zaghi, A.E. Influence of fiber orientation and shell thickness on the axial compressive behavior of concrete-filled fiber-reinforced polymer tubes. Const. Build. Mat. 2019, 220, 353–363. [Google Scholar] [CrossRef]
- Fiber Glass Systems UL/ULC Listed Red Thread (R) IIA Piping Catalog. Available online: https://www.lbltrading.com/wp-content/uploads/2016/12/Red-Thread-IIA-piping-catalog-Fibercast.pdf (accessed on 1 October 2007).
Analysis Type | Modeling Approach | Plastic Hinge Length Model | Concrete Confinement Model |
---|---|---|---|
Monotonic Pushover | (I) Distributed inelasticity modeling approach—Fiber section to full-length | - | Samaan [15] Saiidi [16] Teng [20] Megalooikonomou [27] |
(II) Distributed inelasticity modeling approach—Fiber section to plastic hinge length | Paulay and Priestley [35] | ||
(III) Lumped inelasticity modeling approach using HingeRadau beam integration | Paulay and Priestley [35] Gu [33] Youssf [36] Yuan [37] Zaghi [4] | ||
Full Cyclic Pushover | (I) Distributed inelasticity modeling approach—Fiber section to full-length | - | Saiidi [16] Teng [20] |
(II) Distributed inelasticity modeling approach—Fiber section to plastic hinge length | Paulay and Priestley [35] | ||
(III) Lumped inelasticity modeling approach using HingeRadau beam integration | Paulay and Priestley [35] Youssf [36] | Saiidi [16] Teng [20] Megalooikonomou [27] |
S.N. | Plastic Hinge Length Model | Plastic Hinge Length (Lp)—mm | Lp/D |
---|---|---|---|
1 | Gu [33] | 863 | 2.76 |
2 | Youssf [36] | 401 | 1.24 |
3 | Yuan [37] | 573 | 1.84 |
4 | Paulay and Priestley [35] | 329 | 1.05 |
5 | Zaghi [4] | 449 | 1.44 |
Modeling Approach | Concrete Confinement Model | Plastic Hinge Length Model | Cumulative Dissipated Energy (kNmm) |
---|---|---|---|
(I) Distributed inelasticity modeling approach—Fiber section to full-length | Saiidi [16] | - | 141,096 |
Teng [20] | - | 140,403 | |
(II) Distributed inelasticity modeling approach—Fiber section to plastic hinge length | Saiidi [16] | Paulay and Priestley [35] | 100,523 |
Teng [20] | Paulay and Priestley [35] | 100,485 | |
(III) Lumped inelasticity modeling approach using HingeRadau beam integration | Megalooikonomou [27] | Paulay and Priestley [35] | 78,716 |
Youssf [36] | 79,097 | ||
Saiidi [16] | Paulay and Priestley [35] | 87,211 | |
Youssf [36] | 87,414 | ||
Teng [20] | Paulay and Priestley [35] | 86,721 | |
Youssf [36] | 87,020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakya, S.; Hain, A. Analytical Modeling Approaches for the Cyclic Behavior of Concrete-Filled Circular Filament Wounded GFRP Tube Columns. J. Compos. Sci. 2024, 8, 259. https://doi.org/10.3390/jcs8070259
Shakya S, Hain A. Analytical Modeling Approaches for the Cyclic Behavior of Concrete-Filled Circular Filament Wounded GFRP Tube Columns. Journal of Composites Science. 2024; 8(7):259. https://doi.org/10.3390/jcs8070259
Chicago/Turabian StyleShakya, Sajan, and Alexandra Hain. 2024. "Analytical Modeling Approaches for the Cyclic Behavior of Concrete-Filled Circular Filament Wounded GFRP Tube Columns" Journal of Composites Science 8, no. 7: 259. https://doi.org/10.3390/jcs8070259
APA StyleShakya, S., & Hain, A. (2024). Analytical Modeling Approaches for the Cyclic Behavior of Concrete-Filled Circular Filament Wounded GFRP Tube Columns. Journal of Composites Science, 8(7), 259. https://doi.org/10.3390/jcs8070259