Hydrolyzed Forms of Cellulose and Its Metal Composites for Hydrogen Generation: An Experimental and Theoretical Investigation
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Preparation of Cellulose Doped with Niobium, Titanium, and Magnesium
2.3. Powder X-ray Diffraction
2.4. Scanning Electron Microscopy
2.5. X-ray Photoelectron Spectroscopy
2.6. Hydrogen Production Procedure
3. Results and discussion
3.1. X-ray Diffraction Analysis
3.2. Scanning Electron Microscopy Analysis
3.3. X-ray Photoelectron Spectroscopy
3.4. Computational Method
3.5. Hydrogen Generation from Cellulose
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perea-Moreno, M.-A.; Samerón-Manzano, E.; Perea-Moreno, A.-J. Biomass as Renewable Energy: Worldwide Research Trends. Sustainability 2019, 11, 863. [Google Scholar] [CrossRef]
- Ji, S.; Jang, J.; Cho, E.; Kim, S.H.; Kang, E.S.; Kim, J.; Kim, H.K.; Kong, H.; Kim, S.K.; Kim, J.Y.; et al. High Dielectric Performances of Flexible and Transparent Cellulose Hybrid Films Controlled by Multidimensional Metal Nanostructures. Adv. Mater. 2017, 29, 1700538. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhang, L. Recent Advances in Regenerated Cellulose Materials. Prog. Polym. Sci. 2016, 53, 169–206. [Google Scholar] [CrossRef]
- Fridrihsone, V.; Zoldners, J.; Skute, M.; Grinfelds, U.; Filipova, I.; Sivacovs, I.; Spade, M.; Laka, M. Dissolution of Various Cellulosic Materials and Effect of Regenerated Cellulose on Mechanical Properties of Paper. Key Eng. Mater. 2019, 800, 138–144. [Google Scholar] [CrossRef]
- Fu, F.; Gu, J.; Cao, J.; Shen, R.; Liu, H.; Zhang, Y.; Liu, X.; Zhou, J. Reduction of Silver Ions Using an Alkaline Cellulose Dope: Straightforward Access to Ag/ZnO Decorated Cellulose Nanocomposite Film with Enhanced Antibacterial Activities. ACS Sustain. Chem. Eng. 2018, 6, 738–748. [Google Scholar] [CrossRef]
- Chang, S.T.; Chen, L.C.; Lin, S.B.; Chen, H.H. Nano-Biomaterials Application: Morphology and Physical Properties of Bacterial Cellulose/Gelatin Composites via Crosslinking. Food Hydrocoll. 2012, 27, 137–144. [Google Scholar] [CrossRef]
- Mohammed, N.; Grishkewich, N.; Tam, K.C. Cellulose Nanomaterials: Promising Sustainable Nanomaterials for Application in Water/Wastewater Treatment Processes. Environ. Sci. Nano 2018, 5, 623–658. [Google Scholar] [CrossRef]
- Rahman, N.S.A.; Yhaya, M.F.; Azahari, B.; Ismail, W.R. Utilisation of Natural Cellulose Fibres in Wastewater Treatment. Cellulose 2018, 25, 4887–4903. [Google Scholar] [CrossRef]
- Peng, B.; Yao, Z.; Wang, X.; Crombeen, M.; Sweeney, D.G.; Tam, K.C. Cellulose-Based Materials in Wastewater Treatment of Petroleum Industry. Green Energy Environ. 2020, 5, 37–49. [Google Scholar] [CrossRef]
- Jang, M.; Kim, S.K.; Lee, J.; Ji, S.; Song, W.; Myung, S.; Lim, J.; Lee, S.S.; Jung, H.K.; Lee, J.; et al. Amplifying Gas Sensor Performance by Embedding a Cellulose-Based Buffer Layer in Organic Transistors. J. Mater. Chem. C Mater. 2019, 7, 14504–14510. [Google Scholar] [CrossRef]
- Peres, B.U.; Vidotti, H.A.; de Carvalho, L.D.; Manso, A.P.; Ko, F.; Carvalho, R.M. Nanocrystalline Cellulose as a Reinforcing Agent for Electrospun Polyacrylonitrile (PAN) Nanofibers. J. Oral. Biosci. 2019, 61, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, F.; Jiang, L.; Zhu, J.Y.; Haagenson, D.; Wiesenborn, D.P. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Appl. Mater. Interfaces 2013, 5, 2999–3009. [Google Scholar] [CrossRef]
- Xu, J.T.; Chen, X.Q.; Shen, W.H.; Li, Z. Spherical vs Rod-like Cellulose Nanocrystals from Enzymolysis: A Comparative Study as Reinforcing Agents on Polyvinyl Alcohol. Carbohydr. Polym. 2021, 256, 117493. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yao, C.; Wang, F.; Li, Z. Cellulose-Based Nanomaterials for Energy Applications. Small 2017, 13, 1702240. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Kim, J.; Ide, Y.; Ho Kim, J.; Hossain, M.S.A.; Bando, Y.; Yamauchi, Y.; Wu, K.C.W. 3D Network of Cellulose-Based Energy Storage Devices and Related Emerging Applications. Mater. Horiz. 2017, 4, 522–545. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Mei, C.; Li, Y.; Duan, G.; Agarwal, S.; Greiner, A.; Ma, C.; Jiang, S. Wood-Inspired Anisotropic Cellulose Nanofibril Composite Sponges for Multifunctional Applications. ACS Appl. Mater. Interfaces 2020, 12, 35513–35522. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.S.; Machado, R.G.; Romão, B.B.; Batista, F.R.X.; Ferreira, J.S.; Cardoso, V.L. Improvement of Hydrogen Production by Biological Route Using Repeated Batch Cycles. Process Biochem. 2017, 58, 60–68. [Google Scholar] [CrossRef]
- Faye, O.; Szpunar, J.A. An Efficient Way to Suppress the Competition between Adsorption of H2 and Desorption of n H2-Nb Complex from Graphene Sheet: A Promising Approach to H2 Storage. J. Phys. Chem. C 2018, 122, 28506–28517. [Google Scholar] [CrossRef]
- Kayfeci, M.; Keçebaş, A.; Bayat, M. Hydrogen Production. In Solar Hydrogen Production: Processes, Systems and Technologies; Elsevier Science: London, UK; San Diego, CA, USA, 2019; ISBN 9780128148549. [Google Scholar]
- Coutanceau, C.; Baranton, S.; Audichon, T. Hydrogen Electrochemical Production. In Hydrogen Electrochemical Production; Pollet, B.G., Ed.; Academic Press: Cambridge, UK, 2018; pp. 1–6. ISBN 978-0-12-811250-2. [Google Scholar]
- Mohanty, P.; Pant, K.K.; Mittal, R. Hydrogen Generation from Biomass Materials: Challenges and Opportunities. WIREs Energy Environ. 2015, 4, 139–155. [Google Scholar] [CrossRef]
- Huang, M.; Ouyang, L.; Wang, H.; Liu, J.; Zhu, M. Hydrogen Generation by Hydrolysis of MgH2 and Enhanced Kinetics Performance of Ammonium Chloride Introducing. Int. J. Hydrogen Energy 2015, 40, 6145–6150. [Google Scholar] [CrossRef]
- Tan, Z.H.; Ouyang, L.Z.; Huang, J.M.; Liu, J.W.; Wang, H.; Shao, H.Y.; Zhu, M. Hydrogen Generation via Hydrolysis of Mg2Si. J. Alloys Compd. 2019, 770, 108–115. [Google Scholar] [CrossRef]
- Ma, M.; Yang, L.; Ouyang, L.; Shao, H.; Zhu, M. Promoting Hydrogen Generation from the Hydrolysis of Mg-Graphite Composites by Plasma-Assisted Milling. Energy 2019, 167, 1205–1211. [Google Scholar] [CrossRef]
- Faye, O.; Udoetok, I.A.; Szpunar, J.A.; Wilson, L.D. Experimental and Theoretical Studies of Hydrogen Generation by Binary Metal (Oxide)-Graphene Oxide Composite Materials. Int. J. Hydrogen Energy 2021, 46, 19802–19813. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Q.; Fu, F.; Astruc, D. Hydrogen Generation upon Nanocatalyzed Hydrolysis of Hydrogen-Rich Boron Derivatives: Recent Developments. Acc. Chem. Res. 2020, 53, 2483–2493. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Ouyang, L.; Wang, H.; Liu, J.; Shao, H.; Zhu, M. A High-Performance Hydrogen Generation System: Hydrolysis of LiBH4-Based Materials Catalyzed by Transition Metal Chlorides. Renew. Energy 2020, 156, 655–664. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Xu, B.; Liu, X.; Zhang, K.; Fan, G.; Jiang, W. Efficient Hydrogen Generation from the NaBH4 Hydrolysis by Cobalt-Based Catalysts: Positive Roles of Sulfur-Containing Salts. ACS Appl. Mater. Interfaces 2020, 12, 9376–9386. [Google Scholar] [CrossRef] [PubMed]
- Zagrodnik, R.; Seifert, K. Direct Fermentative Hydrogen Production from Cellulose and Starch with Mesophilic Bacterial Consortia. Pol. J. Microbiol. 2020, 69, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Caravaca, A.; Jones, W.; Hardacre, C.; Bowker, M. H2 Production by the Photocatalytic Reforming of Cellulose and Raw Biomass Using Ni, Pd, Pt and Au on Titania. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 20160054. [Google Scholar]
- Gadow, S.I.; Li, Y.Y.; Liu, Y. Effect of Temperature on Continuous Hydrogen Production of Cellulose. Int. J. Hydrog. Energy 2012, 37, 15465–15472. [Google Scholar] [CrossRef]
- Zou, J.; Oladipo, J.; Fu, S.; Al-Rahbi, A.; Yang, H.; Wu, C.; Cai, N.; Williams, P.; Chen, H. Hydrogen Production from Cellulose Catalytic Gasification on CeO2/Fe2O3 Catalyst. Energy Convers. Manag. 2018, 171, 241–248. [Google Scholar] [CrossRef]
- Minowa, T.; Ogi, T. Hydrogen Production from Cellulose Using a Reduced Nickel Catalyst. Catal. Today 1998, 45, 411–416. [Google Scholar] [CrossRef]
- Udoetok, I.A.; Wilson, L.D.; Headley, J.V. Self-Assembled and Cross-Linked Animal and Plant-Based Polysaccharides: Chitosan-Cellulose Composites and Their Anion Uptake Properties. ACS Appl. Mater. Interfaces 2016, 8, 33197–33209. [Google Scholar] [CrossRef] [PubMed]
- Kantürk Figen, A.; Coşkuner, B.; Pişkin, S. Hydrogen Generation from Waste Mg Based Material in Various Saline Solutions (NiCl2, CoCl2, CuCl2, FeCl3, MnCl2). Int. J. Hydrogen Energy 2015, 40, 7483–7489. [Google Scholar] [CrossRef]
- Shetty, T.; Szpunar, J.A.; Faye, O.; Eduok, U. A Comparative Study of Hydrogen Generation by Reaction of Ball Milled Mixture of Magnesium Powder with Two Water-Soluble Salts (NaCl and KCl) in Hot Water. Int. J. Hydrogen Energy 2020, 45, 25890–25899. [Google Scholar] [CrossRef]
- Amini, M.; Rahimipour, M.R.; Tayebifard, S.A.; Palizdar, Y. Effect of Milling Time on XRD Phases and Microstructure of a Novel Al 67 Cu 20 Fe 10 B 3 Quasicrystalline Alloy Effect of Milling Time on XRD Phases and Microstructure of a Novel Al67Cu20Fe10B3 Quasicrystalline Alloy. Mater. Res. Express 2020, 7, 065011. [Google Scholar] [CrossRef]
- Shen, X.; Liu, F.; Guan, J.; Dong, F.; Zhang, Y.; Guo, Z.; Yuan, Y.; Wang, B.; Luo, L.; Su, Y.; et al. Effect of hydrogen on thermal deformation behavior and microstructure evolution of MoNbHfZrTi refractory high-entropy alloy. Intermetallics 2024, 166, 108193. [Google Scholar] [CrossRef]
- Das, K.; Ray, D.; Bandyopadhyay, N.R.; Sengupta, S. Study of the Properties of Microcrystalline Cellulose Particles from Different Renewable Resources by XRD, FTIR, Nanoindentation, TGA and SEM. J. Polym. Environ. 2010, 18, 355–363. [Google Scholar] [CrossRef]
- Zheng, Y.; Fu, Z.; Li, D.; Wu, M. Effects of Ball Milling Processes on the Microstructure and Rheological Properties of Microcrystalline Cellulose as a Sustainable Polymer Additive. Materials 2018, 11, 1057. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Sun, G.; Yin, L.; Zhang, Z.; Tian, S. Ti4O7/g-C3N4 Visible Light Photocatalytic Performance on Hypophosphite Oxidation: Effect of Annealing Temperature. Front. Chem. 2018, 6, 37. [Google Scholar] [CrossRef]
- Hryniewicz, T.; Rokosz, K.; Sandim, H.R.Z. SEM/EDX and XPS Studies of Niobium after Electropolishing. Appl. Surf. Sci. 2012, 263, 357–361. [Google Scholar] [CrossRef]
- Chukwuike, V.; Kesavan, R.; Barik, R.C. Surface and Electrochemical Corrosion Analysis of Niobium Oxide Film Formed in Various Wet Media. Appl. Surf. Sci. Adv. 2021, 4, 100079. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Koblar, A.J.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, Molecules, Solids and Surfaces: Applications of the GGA for Exchange Correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar] [CrossRef] [PubMed]
- Su, S.T.; Xiong, J.; Ye, J. Effect of Ball Milling on Structure of Microcrystalline Cellulose. Appl. Mech. Mater. 2013, 394, 201–204. [Google Scholar] [CrossRef]
- Luc, W.; Jiang, Z.; Chen, J.G.; Jiao, F. Role of Surface Oxophilicity in Copper-Catalyzed Water Dissociation. ACS Catal. 2018, 8, 9327–9333. [Google Scholar] [CrossRef]
- Jin, H.; Liu, X.; Jiao, Y.; Vasileff, A.; Zheng, Y.; Qiao, S.-Z. Constructing Tunable Dual Active Sites on Two-Dimensional C3N4@ MoN Hybrid for Electrocatalytic Hydrogen Evolution. Nano Energy 2018, 53, 690–697. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, L.; Lai, J.; Luque, R.; Niu, W.; Xu, G. Modulating the Oxophilic Properties of Inorganic Nanomaterials for Electrocatalysis of Small Carbonaceous Molecules. Nano Today 2019, 29, 100802. [Google Scholar] [CrossRef]
- Kim, J.; Jung, H.; Jung, S.-M.; Hwang, J.; Kim, D.Y.; Lee, N.; Kim, K.-S.; Kwon, H.; Kim, Y.-T.; Han, J.W.; et al. Tailoring Binding Abilities by Incorporating Oxophilic Transition Metals on 3D Nanostructured Ni Arrays for Accelerated Alkaline Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2021, 143, 1399–1408. [Google Scholar] [CrossRef]
Elements/ Materials | Magnesium (Mg 2p) | Titanium (Ti 2p) | Niobium (Nb 3d) | ||||||
---|---|---|---|---|---|---|---|---|---|
Position | Area | % | Position | Area | % | Position | Area | % | |
MCC-Mg | 49.2 | 7117 | 69.7 | NA | NA | ||||
50.1 | 3098 | 30.3 | |||||||
MCC-Ti | NA | 460 | 32.9 | 54.6 | NA | ||||
457 | 24.3 | 40.3 | |||||||
456 | 3.06 | 5.08 | |||||||
MCC-Nb | NA | NA | 206 | 36.9 | 26.0 | ||||
209 | 79.1 | 55.6 | |||||||
211 | 26.3 | 18.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faye, O.; Udoetok, I.A.; Szpunar, J.A.; Wilson, L.D. Hydrolyzed Forms of Cellulose and Its Metal Composites for Hydrogen Generation: An Experimental and Theoretical Investigation. J. Compos. Sci. 2024, 8, 262. https://doi.org/10.3390/jcs8070262
Faye O, Udoetok IA, Szpunar JA, Wilson LD. Hydrolyzed Forms of Cellulose and Its Metal Composites for Hydrogen Generation: An Experimental and Theoretical Investigation. Journal of Composites Science. 2024; 8(7):262. https://doi.org/10.3390/jcs8070262
Chicago/Turabian StyleFaye, Omar, Inimfon A. Udoetok, Jerzy A. Szpunar, and Lee D. Wilson. 2024. "Hydrolyzed Forms of Cellulose and Its Metal Composites for Hydrogen Generation: An Experimental and Theoretical Investigation" Journal of Composites Science 8, no. 7: 262. https://doi.org/10.3390/jcs8070262
APA StyleFaye, O., Udoetok, I. A., Szpunar, J. A., & Wilson, L. D. (2024). Hydrolyzed Forms of Cellulose and Its Metal Composites for Hydrogen Generation: An Experimental and Theoretical Investigation. Journal of Composites Science, 8(7), 262. https://doi.org/10.3390/jcs8070262