Thermal, Mechanical and Electrical Properties of Ag Nanoparticle–Polymethyl Methacrylate Composites Under Different Service Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of AgNP/PMMA Composites
2.3. Characterizations
3. Results and Discussion
3.1. Microstructure Analysis
3.2. Thermal Properties
3.3. Mechanical Properties
3.4. Electrical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, U.; Abd Karim, K.J.B.; Buang, N.A. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Philip, P.; Jose, E.T.; Chacko, J.K.; Philip, K.C.; Thomas, P.C. Preparation and characterisation of surface roughened PMMA electrospun nanofibers from PEO–PMMA polymer blend nanofibers. Polym. Test. 2019, 74, 257–265. [Google Scholar] [CrossRef]
- Soni, G.; Srivastava, S.; Soni, P.; Kalotra, P.; Vijay, Y.K. Optical, mechanical and structural properties of PMMA/SiO2 nanocomposite thin films. Mater. Res. Express 2018, 5, 015302. [Google Scholar] [CrossRef]
- Kausar, A. Poly(methyl methacrylate) nanocomposite reinforced with graphene, graphene oxide, and graphite. Polym.-Plast. Technol. Mater. 2019, 58, 821–842. [Google Scholar] [CrossRef]
- Yang, B.; Pan, Y.; Yu, Y.N.; Wu, J.P.; Xia, R.; Wang, S.Q.; Wang, Y.Y.; Su, L.F.; Miao, J.B.; Qian, J.S.; et al. Filler network structure in graphene nanoplatelet (GNP)-filled polymethyl methacrylate (PMMA) composites: From thermorheology to electrically and thermally conductive properties. Polym. Test. 2020, 89, 106575. [Google Scholar] [CrossRef]
- Kausar, A.; Bocchetta, P. Poly(methyl methacrylate) nanocomposite foams reinforced with carbon and inorganic nanoparticles-state-of-the-art. J. Compos. Sci. 2022, 6, 129. [Google Scholar] [CrossRef]
- Bandla, M.; Abbavaram, B.R.; Kokkarachedu, V.; Sadiku, R.E. Silver nanoparticles incorporated within intercalated clay/polymer nanocomposite hydrogels for antibacterial studies. Polym. Compos. 2017, 38, E16–E23. [Google Scholar] [CrossRef]
- Khammassi, S.; Tarfaoui, M.; Skrlová, K.; Merínská, D.; Plachá, D.; Erchiqui, F. Poly(lactic acid) (PLA)-based nanocomposites: Impact of vermiculite, silver, and graphene oxide on thermal stability, isothermal crystallization, and local mechanical behavior. J. Compos. Sci. 2022, 6, 112. [Google Scholar] [CrossRef]
- Velgosova, O.; Mudra, E.; Vojtko, M.; Veselovsky, L. Embedding of green synthesized silver nanoparticles into polymer matrix. Bull. Mater. Sci. 2021, 44, 47. [Google Scholar] [CrossRef]
- Bang, Y.J.; Roy, S.; Rhim, J.W. A facile in situ synthesis of resorcinol-mediated silver nanoparticles and the fabrication of agar-based functional nanocomposite films. J. Compos. Sci. 2022, 6, 124. [Google Scholar] [CrossRef]
- Carlos, F.A.J.; Rene, G.C.; Germán, V.S.; Susana, A.T.L. Antimicrobial poly (methyl methacrylate) with silver nanoparticles for dentistry: A systematic review. Appl. Sci. 2020, 10, 4007. [Google Scholar] [CrossRef]
- Ara, L.; Shah, L.A.; Ye, D.X.; Khattak, N.S. Silver nanoparticles doped polymethylmethacrylate[Ag/PMMA] nanocomposite as smart material for non-enzymatic glucose sensor. J. Disper. Sci. Technol. 2024, 45, 1120–1128. [Google Scholar] [CrossRef]
- Bansal, G.; Gautam, R.K.; Misra, J.P.; Mishra, A. Synthesis and characterization of poly (methyl methacrylate)/silver-doped hydroxyapatite dip coating on Ti6Al4V. Colloid Surf. A 2024, 689, 133662. [Google Scholar] [CrossRef]
- Dallas, P.; Sharma, V.K.; Zboril, R. Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Adv. Colloid Interface Sci. 2011, 166, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, D.R.; Takamiya, A.S.; Feresin, L.P.; Gorup, L.F.; de Camargo, E.R.; Delbem, A.C.B.; Henriques, M.; Barbosa, D.B. Susceptibility of Candida albicans and Candida glabrata biofilms to silver nanoparticles in intermediate and mature development phases. J. Prosthodont. Res. 2015, 59, 42–48. [Google Scholar] [CrossRef]
- Ali, A.M.; Ali, N.A.; Hussein, S.I.; Hakamy, A.; Raffah, B.; Alofi, A.S.; Abd-Elnaiem, A.M. Nanoarchitectonics of silver/poly (methyl methacrylate) films: Structure, optical characteristics, antibacterial activity, and wettability. J. Inorg. Organomet. P. 2023, 33, 694–706. [Google Scholar]
- Naser, H.; Shanshool, H.M.; Mohammad, S.M.; Hassan, Z.; Abbas, A.M.A.; Abed, S.M.; Sifawa, A.A. The role of the polymer matrix on the energy band gap of nanocomposites of aluminium, silver and zinc oxide. Plasmonics, 2024; early access. [Google Scholar]
- Shilpa, S.A.; Pavithra, A.J.; Hikku, G.S.; Jeyasubramanian, K.; Veluswamy, P.; Ikeda, H. Imparting efficient antibacterial activity to cotton fabrics by coating with green synthesized nano-Ag/PMMA composite. Bionanoscience 2023, 13, 2180–2194. [Google Scholar] [CrossRef]
- De Matteis, V.; Cascione, M.; Toma, C.C.; Albanese, G.; De Giorgi, M.L.; Corsalini, M.; Rinaldi, R. Silver nanoparticles addition in poly(methyl methacrylate) dental matrix: Topographic and antimycotic studies. Int. J. Mol. Sci. 2019, 20, 4691. [Google Scholar] [CrossRef] [PubMed]
- Philip, P.; Jose, T.; Sarath, K.S.; Philip, K.C. Red shifted photoluminescent properties of electrospun poly(methyl methacrylate) nanofibers incorporated with green synthesised silver nanoparticles. Mater. Today Proc. 2020, 33, 1402–1409. [Google Scholar] [CrossRef]
- Matamoros-Ambrocio, M.; Sánchez-Mora, E.; Gómez-Barojas, E. Surface-enhanced raman scattering (SERS) substrates based on Ag-nanoparticles and Ag-nanoparticles/poly (methyl methacrylate) composites. Polymers 2023, 15, 2624. [Google Scholar] [CrossRef]
- Sahputra, I.H.; Alexiadis, A.; Adams, M.J. Temperature and configurational effects on the Young’s modulus of poly (methyl methacrylate): A molecular dynamics study comparing the DREIDING, AMBER and OPLS force fields. Mol. Simul. 2018, 44, 774–780. [Google Scholar] [CrossRef]
- ASTM E1461-13; Standard Test Method for Thermal Diffusivity by the Flash Method. ASTM International: West Conshohocken, PA, USA, 2022.
- ISO 178:2019; Plastics—Determination of Flexural Properties. ISO: Geneva, Switzerland, 2019.
- Gopalakrishnan, S.; Raj, I.; Mathew, T.A.; Abraham, J.; Maria, H.J.; Mozetic, M.; Thomas, S.; Kalarikkal, N. Development of oral-fluid-impervious and fracture-resistant silver–poly(methyl methacrylate) nanoformulations for intra-oral/extra-oral rehabilitation. J. Appl. Polym. Sci. 2019, 136, 47669. [Google Scholar] [CrossRef]
- Wu, Y.J.; Zhang, X.X.; Negi, A.; He, J.X.; Hu, G.X.; Tian, S.S.; Liu, J. Synergistic effects of boron nitride (BN) nanosheets and silver (Ag) nanoparticles on thermal conductivity and electrical properties of epoxy nanocomposites. Polymers 2020, 12, 426. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.F.; Zhou, J.; Chen, J. Thermal transport in conductive polymer-based materials. Adv. Funct. Mater. 2022, 30, 1904704. [Google Scholar] [CrossRef]
- Haque, M.E.; Khan, M.W.; Chowdhury, M.N.K. Synthesis, characterization, biocompatibility, thermal and mechanical performances of sawdust reinforced composite. Polym. Test. 2020, 91, 106764. [Google Scholar] [CrossRef]
- Blokhin, A.; Stolyarov, R.; Burmistrov, I.; Gorshkov, N.; Kolesnikov, E.; Yagubov, V.; Tkachev, A.; Zaytsev, I.; Tarov, D.; Galunin, E.; et al. Increasing electrical conductivity of PMMA-MWCNT composites by gas phase iodination. Compos. Sci. Technol. 2021, 214, 108972. [Google Scholar] [CrossRef]
- Hazim, A.; Hashim, A.; Abduljalil, H.M. Fabrication of novel (PMMA-Al2O3/Ag) nanocomposites and its structural and optical properties for lightweight and low cost electronics applications. Egypt. J. Chem. 2021, 64, 359–374. [Google Scholar] [CrossRef]
- Liu, X.X.; Liu, J.H.; Zhao, X.M.; Zhang, D.; Wang, Q.R. Ag NPs/PMMA nanocomposite as an efficient platform for fluorescence regulation of riboflavin. Opt. Express 2022, 30, 34918–34931. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.-G.; Zhang, Y.-F. Thermal, Mechanical and Electrical Properties of Ag Nanoparticle–Polymethyl Methacrylate Composites Under Different Service Temperatures. J. Compos. Sci. 2024, 8, 279. https://doi.org/10.3390/jcs8070279
Chen X-G, Zhang Y-F. Thermal, Mechanical and Electrical Properties of Ag Nanoparticle–Polymethyl Methacrylate Composites Under Different Service Temperatures. Journal of Composites Science. 2024; 8(7):279. https://doi.org/10.3390/jcs8070279
Chicago/Turabian StyleChen, Xin-Gang, and Yang-Fei Zhang. 2024. "Thermal, Mechanical and Electrical Properties of Ag Nanoparticle–Polymethyl Methacrylate Composites Under Different Service Temperatures" Journal of Composites Science 8, no. 7: 279. https://doi.org/10.3390/jcs8070279
APA StyleChen, X. -G., & Zhang, Y. -F. (2024). Thermal, Mechanical and Electrical Properties of Ag Nanoparticle–Polymethyl Methacrylate Composites Under Different Service Temperatures. Journal of Composites Science, 8(7), 279. https://doi.org/10.3390/jcs8070279