Woven Fabrics for Composite Reinforcement: A Review
Abstract
:1. Introduction
2. Fabrics
2.1. Plain Woven Fabrics
2.2. Twill Woven Fabrics
2.3. Satin Woven Fabrics
2.4. Leno Woven Fabrics
2.5. Two- and Three-Dimensional Woven Fabrics
Forming Methods for 3D Woven Fabrics
3. Woven Fabric-Reinforced Composites
Mechanical Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Castellaro, S.; Russo, S. Dynamic characterization of an all-FRP pultruded construction. Compos. Struct. 2019, 218, 1–14. [Google Scholar] [CrossRef]
- Koloor, S.S.R.; Khosravani, M.R.; Hamzah, R.I.R.; Tamin, M.N. FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes. Int. J. Mech. Sci. 2018, 141, 223–235. [Google Scholar] [CrossRef]
- Hu, X.; Xiao, J.; Zhang, K.; Zhang, Q. The state-of-the-art study on durability of FRP reinforced concrete with seawater and sea sand. J. Build. Eng. 2022, 51, 104294. [Google Scholar] [CrossRef]
- Lupăsteanu, V.; Tăranu, N.; Mihai, P.; Oprişan, G.; Lupăsteanu, R.; Ungureanu, D. Behaviour of CFRP-to-steel interfaces in adhesively bonded joints. Rom. J. Mater. 2016, 46, 515–522. [Google Scholar]
- Lupăsteanu, V.; Ungureanu, D.; Tăranu, N.; Isopescu, D.N.; Lupăsteanu, R.; Mihai, P. Structural Response of Bonded Joints between FRP Composite Strips and Steel Plates. Materials 2021, 14, 6722. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, D.; Tăranu, N.; Isopescu, D.N.; Lupăsteanu, V.; Scutaru, M.C.; Hudisteanu, I. Failure particularities of adhesively bonded joints between pultruded GFRP composite profiles. IOP Conf. Ser. Mater. Sci. Eng. 2018, 400, 032011. [Google Scholar] [CrossRef]
- Tăranu, N.; Oprişan, G.; Entuc, I.; Budescu, M.; Munteanu, V.; Tăranu, G. Composite and hybrid solutions for sustainable development in civil engineering. Environ. Eng. Manag. J. 2012, 11, 783–793. [Google Scholar] [CrossRef]
- Bejan, L.; Tăranu, N.; Sârbu, A. Advanced polymeric composites with hybrid reinforcement. J. Optoelectron. Adv. Mater. 2010, 12, 1930–1934. [Google Scholar]
- Teyan, S.; Sharma, D.; Gangil, B.; Patnaik, A.; Singh, T. Thermo-mechanical characterization of nonwoven fabric reinforced polymer composites. Mater. Today Proc. 2021, 44, 4770–4774. [Google Scholar]
- Jahangir, H.; Esfahani, M.R.A. Bond Behavior Investigation Between steel reinforced grout composites and masonry substrate. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 3519–3535. [Google Scholar] [CrossRef]
- Hasan, K.M.; Horvath, P.G.; Alpar, T. Potential fabric-reinforced composites: A comprehensive review. J. Mater. Sci. 2021, 56, 14381–14415. [Google Scholar] [CrossRef]
- Hudisteanu, I.; Tăranu, N.; Isopescu, D.N.; Bejan, L.; Axinte, A.; Ungureanu, D. Improving the mechanical properties of composite laminates through the suitable selection of the corresponding materials and configurations. Rom. J. Mater. 2017, 47, 252–266. [Google Scholar]
- Zhou, X.-P.; Wang, L.-F. A field-enriched finite element method for crack propagation in fiber-reinforced composite lamina without remeshing. Compos. Struct. 2021, 270, 114074. [Google Scholar] [CrossRef]
- Hudisteanu, I.; Tăranu, N.; Isopescu, D.N.; Entuc, I.S.; Oprişan, G.; Ungureanu, D. Numerical analysis of intralaminar damage evolution on various composite laminates. IOP Conf. Ser. Mater. Sci. Eng. 2018, 400, 042031. [Google Scholar] [CrossRef]
- Hudisteanu, I.; Tăranu, N.; Isopescu, D.N.; Ungureanu, D.; Axinte, A.; Ghiga, D.A. The influence of fibre orientation and of the adjacent layers on the delamination of laminated composites. IOP Conf. Ser. Mater. Sci. Eng. 2020, 916, 012045. [Google Scholar] [CrossRef]
- Wang, H.W.; Zhou, H.W.; Gui, L.L.; Ji, H.W.; Zhang, X.C. Analysis of effect of fiber orientation on Young’s modulus for unidirectional fiber reinforced composites. Compos. Part B 2014, 56, 733–739. [Google Scholar] [CrossRef]
- Bejan, L.; Sirbu, A.; Tăranu, N. Component properties influence upon the elasticity modules of the cloth-reinforced polymeric composites. Mater. Plast. 2007, 44, 22–25. [Google Scholar]
- Kedar, S.; Pandya, K.S.; Veerraju, C.; Naik, N.K. Hybrid composites made of carbon and glass woven fabrics under quasi-static loading. Mater. Des. 2011, 32, 4094–4099. [Google Scholar]
- Bejan, L.; Taranu, N.; Sirbu, A. Effect of hybridization on stiffness properties of woven textile composites. Appl. Compos. Mater. 2013, 20, 185–194. [Google Scholar] [CrossRef]
- Axinte, A.; Ungureanu, D.; Tăranu, N.; Bejan, L.; Isopescu, D.N.; Lupăsteanu, R.; Hudisteanu, I.; Rosca, V.E. Influence of Woven-Fabric Type on the Efficiency of Fabric-Reinforced Polymer Composites. Materials. 2022, 15, 3165. [Google Scholar] [CrossRef]
- Le Page, B.H.; Guild, F.J.; Ogin, S.L.; Smith, P.A. Finite element simulation of woven fabric composites. Compos Part A 2004, 35, 861–872. [Google Scholar] [CrossRef]
- Perera, Y.S.; Muwanwella, R.M.H.W.; Fernando, P.R.; Fernando, S.K.; Jayawardana, T.S.S. Evolution of 3D weaving and 3D woven fabric structures. Fash. Text. 2021, 8, 11. [Google Scholar] [CrossRef]
- Adovasio, J.M.; Sofer, O.; Illingworth, J.S.; Hyland, D.C. Perishable fber artifacts and Paleoindians: New implications. N. Am. Archaeol. 2014, 35, 331–352. [Google Scholar]
- Kramrisch, S. Unknown India: Ritual Art in Tribe and Village; Philadelphia Museum of Art: Philadelphia, PA, USA, 1968. [Google Scholar]
- Broudy, E. The Book of Looms: A History of the Handloom from Ancient Times to the Present; Brown University Pres: Providence, RI, USA, 1993. [Google Scholar]
- Vassiliadis, S.; Kallivretaki, A.; Domvoglou, D.; Provatidis, C. Mechanical analysis of woven fabrics: The State of the Art. In Advances in Modern Woven Fabrics Technology; Vassiliadis, S., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Narayana, N.G.; Gopalakrishnan, S.; Ganguli, R. Design optimization of composites using Genetic Algorithms and failure mechanism-based failure criterion. Compos. Struct. 2008, 83, 354–367. [Google Scholar] [CrossRef]
- Peirce, F.T. The geometry of cloth structure. J. Text. Inst. 1937, 28, T45–T96. [Google Scholar] [CrossRef]
- Womersley, J.R. The application of differential geometry to the study of deformation of cloth under stress. J. Text. Inst. 1937, 28, T97–T113. [Google Scholar] [CrossRef]
- Peirce, F.T. Geometrical principles applicable to the design of functional fabrics. Text. Res. J. 1947, 17, 123–147. [Google Scholar] [CrossRef]
- Painter, E.V. Mechanics of the elastic performance of textile materials VIII: Graphical analysis of fabric geometry. Text. Res. J. 1952, 22, 153–169. [Google Scholar] [CrossRef]
- Sharma, H.; Kumar, A.; Rana, S.; Sahoo, N.G.; Jamil, M.; Kumar, R.; Sharma, S.; Li, C.; Kumar, A.; Eldin, S.M.; et al. Critical review on advancements on the fiber-reinforced composites: Role of fiber/matrix modification on the performance of the fibrous composites. J. Mater. Res. Technol. 2023, 26, 2975–3002. [Google Scholar] [CrossRef]
- Curtis, P.T. CRAG Test Methods for the Measurement of the Engineering Properties of Fibre Reinforced Plastics; Royal Aerospace Establishment Technical Report 88 012; Ministry of Defence: Farnborough, UK, 1988. [Google Scholar]
- Haque, M.S. Processing and Characterization of Waste Denim Fiber Reinforced Polymer Composites; Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology: Dhaka, Bangladesh, 2014; pp. 1–77. [Google Scholar]
- Boisse, P.; Colmars, J.; Hamila, N.; Naouar, N.; Steer, Q. Bending and wrinkling of composite fiber preforms and prepregs: A review and new developments in the draping simulations. Compos. Part B Eng. 2018, 141, 234–249. [Google Scholar] [CrossRef]
- Bussett, P.; Correia, N. Numerical forming of continuous fibre reinforced composite material: A review. Compos. Part A Appl. Sci. Manuf. 2018, 113, 12–31. [Google Scholar] [CrossRef]
- Summerscales, J.; Grove, S. Manufacturing methods for natural fibre composites. In Natural Fibre Composites; Hodzic, A., Shanks, R., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 176–215. [Google Scholar]
- Umair, M.; Hamdani, S.T.A.; Asghar, M.A.; Hussain, T.; Karahan, M.; Nawab, Y.; Ali, M. Study of influence of interlocking patterns on the mechanical performance of 3D multilayer woven composites. J. Reinf. Plast. Compos. 2018, 37, 429–440. [Google Scholar] [CrossRef]
- Yang, C.; Kim, Y.K.; Qidwai, U.A.; Wilson, A.R. Related strength properties of 3D fabrics. Text. Res. J. 2004, 74, 634–639. [Google Scholar] [CrossRef]
- Khokar, N. 3D fabric-forming processes: Distinguishing between 2D-weaving, 3D-weaving and an unspecified non-interlacing process. J. Text. Inst. 1996, 87, 97–106. [Google Scholar] [CrossRef]
- Abtew, M.A. A comprehensive review on advancements, innovations and applications of 3D warp interlock fabrics and its composite materials. Compos. Part B Eng. 2024, 278, 111395. [Google Scholar] [CrossRef]
- Bilisik, K. Two-dimensional (2D) fabrics and three-dimensional (3D) preforms for ballistic and stabbing protection: A review. Text. Res. J. 2017, 87, 2275–2304. [Google Scholar] [CrossRef]
- Mouritz, A.P.; Bannister, M.K.; Falzon, P.J.; Leong, K.H. Review of applications for advanced three-dimensional fibre textile composites. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1445–1461. [Google Scholar] [CrossRef]
- Kerni, L.; Singh, S.; Patnaik, A.; Kumar, N. A review on natural fiber reinforced composites. Mater. Proceeds. 2020, 28, 1616–1621. [Google Scholar] [CrossRef]
- Worboys, R. Suppressing Delamination through Verticality Aligned Carbon Nanotube (VACNT) Interleaves. Ph.D. Thesis, University of Bristol, Bristol, UK, 2020. [Google Scholar]
- Mouritz, A.P. Tensile fatigue properties of 3D composites with through-thickness reinforcement. Compos. Sci. Technol. 2008, 68, 2503–2510. [Google Scholar] [CrossRef]
- Umair, M.; Hamdani, S.T.A.; Nawab, Y.; Asghar, M.A.; Hussain, T. Compression and recovery behaviour of three-dimensional woven spacer composites. J. Ind. Text. 2019, 50, 750–756. [Google Scholar]
- Zhang, D.; Sun, Y.; Chen, L.; Pan, N. A comparative study on low-velocity impact response of fabric composite laminates. Mater. Des. 2013, 50, 750–756. [Google Scholar] [CrossRef]
- Bilisik, A.K. Multiaxial three-dimensional (3-D) circular weaving and multiaxial 3-D circular woven preforms for composite. In Advanced Multi-Layered and Fibre-Reinforced Composites; Haddad, Y.M., Ed.; Springer: Dordrecht, The Netherlands, 1998; Volume 43, pp. 477–487. [Google Scholar]
- Behera, B.K.; Mishra, R. 3-Dimensional weaving. Indian J. Fibre Text. Res. 2008, 33, 274–287. [Google Scholar]
- Khokar, N. Network-Like Woven 3D Fabric Material. U.S. Patent No. 6,431,222; U.S. Patent and Trademark Office, 13 August 2002. [Google Scholar]
- Khokar, N. Noobing: A nonwoven 3D fabric-forming process explained. J. Text. Inst. 2002, 93, 52–74. [Google Scholar] [CrossRef]
- Umair, M.; Nawab, Y.; Malik, M.H.; Shaker, K. Development and characterization of three-dimensional woven shaped preforms and their associated composites. J. Reinf. Plast. Compos. 2015, 34, 2018–2028. [Google Scholar] [CrossRef]
- Ali, M.; Kausar, F.; Shahid, S.; Zeeshan, M.; Nawab, Y.; Riaz, R.; Memon, A.A.; Mengal, N.; Anjum, A.S. Novel derivatives of 3D woven T-shaped composites with improved performance. J. Text. Inst. 2019, 110, 267–273. [Google Scholar] [CrossRef]
- Kashif, M.; Hamdani, S.T.; Zubair, M.; Nawab, Y. Effect of interlocking pattern on short beam strength of 3D woven composites. J. Compos. Mater. 2019, 53, 2789–2799. [Google Scholar] [CrossRef]
- Bilisik, K. Multiaxis 3D weaving: Comparison of developed two weaving methods (tube-rapier weaving versus tube-carrier weaving) and effects of bias yarn path to the preform properties. Fibers Polym. 2010, 11, 104–114. [Google Scholar] [CrossRef]
- Bilisik, K. Multiaxis three-dimensional weaving for composites: A review. Text. Res. J. 2012, 82, 725–743. [Google Scholar] [CrossRef]
- Bilisik, K.; Karaduman, N.S.; Bilisik, N.E.; Bilisik, H.E. Three-dimensional fully interlaced woven preforms for composites. Text. Res. J. 2013, 83, 2060–2208. [Google Scholar] [CrossRef]
- Liao, M.; Yang, Y.; Hamada, H. Mechanical performance of glass woven fabric composites: Effect of different surface treatment agents. Compos. Part B 2016, 86, 17–26. [Google Scholar] [CrossRef]
- Summerscales, J.; Russell, P.M. Observations on the fibre distribution and fibre strain in a woven fabric reinforcement. Adv. Compos. Lett. 2004, 13, 096369350401300301. [Google Scholar] [CrossRef]
- Mahmood, A.S.; Summerscales, J.; James, M.N. Resin-rich volumes (RRV) and the performance of fibre-reinforced composites: A review. J. Compos. Sci. 2022, 6, 53. [Google Scholar] [CrossRef]
- Kim, J.-K.; Sham, M.-L. Impact and delamination failure of woven-fabric composites. Compos. Sci. Technol. 2000, 60, 745–761. [Google Scholar] [CrossRef]
- Cavallaro, P.V.; Hulton, A.W.; Warner, E.A.; Salama, M.M. Cold temperature effects on consistent and architecturally hybridized woven kevlar/epoxy laminates. J. Dyn. Behav. Mater. 2018, 4, 282–295. [Google Scholar] [CrossRef]
- Stegschuster, G.; Pingkarawat, K.; Wendland, B.; Mouritz, A. Experimental determination of the mode I delamination fracture and fatigue properties of thin 3D woven composites. Compos. Part A Appl. Sci. Manuf. 2016, 84, 308–315. [Google Scholar] [CrossRef]
- Triki, E.; Zouari, B.; Dammak, F. Dependence of the interlaminar fracture toughness of E-glass/polyester woven fabric composites laminates on ply orientation. Eng. Fract. Mech. 2016, 159, 63–78. [Google Scholar] [CrossRef]
- Kang, H.; Shan, Z.; Zang, Y.; Liu, F. Progressive damage analysis and strength properties of fiber-bar composites reinforced by three-dimensional weaving under uniaxial tension. Compos. Struct. 2016, 141, 264–281. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, Z.; Yang, Z. Progressive damage analysis and strength prediction of 2D plain weave composites. Compos. Part B Eng. 2013, 47, 220–229. [Google Scholar] [CrossRef]
- Bodaghi, M.; Lomov, S.V.; Simacek, P.; Correia, N.C.; Advani, S.G. On the variability of permeability induced by reinforcement distortions and dual scale flow in liquid composite moulding: A review. Compos. Part A Appl. Sci. Manuf. 2019, 120, 188–210. [Google Scholar] [CrossRef]
- Ali, M.A.; Umer, R.; Khan, K.A.; Cantwell, W.J. Application of x-ray computed tomography for the virtual permeability prediction of fiber reinforcements for liquid composite molding processes: A review. Compos. Sci. Technol. 2019, 184, 107828. [Google Scholar] [CrossRef]
- Michaud, V. A review of non-saturated resin flow in Liquid Composite Molding processes. Transp. Porous Media 2016, 115, 581–601. [Google Scholar] [CrossRef]
- Patino, I.D.; Vanegas, J.D.; Correa, C.E. State of the art on permeability characterization of fibrous reinforcements used in resin transfer molding process. Adv. Compos. Lett. 2011, 20, 173–182. [Google Scholar] [CrossRef]
- Summerscales, J. The effect of permeant on the measured permeability of a reinforcement. In Proceedings of the 7th International Conference on Flow Processes in Composite Materials, Newark, DE, USA, 7–9 July 2004. [Google Scholar]
- Quinn, J.A.; Randall, J.E. Compliance of composite reinforcement materials. In Proceedings of the 4th International Conference on Fibre Reinforced Composites, Liverpool, UK, 27–29 March 1990. [Google Scholar]
- Toll, S.; Manson, J.A.E. An analysis of the compressibility of fibre assemblies. In Proceedings of the 6th International Conference on Fibre Reinforced Composites, Newcastle-upon-Tyne, UK, 29–31 March 1994. [Google Scholar]
- Zhou, G.; Sun, Q.; Meng, Z.; Li, D.; Peng, Y.; Zeng, D.; Su, X. Experimental investigation on the effects of fabric architectures on mechanical and damage behaviors of carbon/epoxy woven composites. Comp. Strctrs. 2021, 257, 113366. [Google Scholar] [CrossRef]
- Bishop, S.M.; Curtis, P.T. An Assessment of the Potential of Woven Fabric Reinforced Plastics for Aerospace Use; RAE Technical Report 83010; HMSO: London, UK, 1983. [Google Scholar]
- Daggumati, S.; De Baere, I.; Van Paepegem, W.; Degrieck, J.; Xu, J. Local damage in a 5-harness satin weave composite under static tension: Part I-Experimental analysis. Compos. Sci. Technol. 2010, 70, 1926. [Google Scholar] [CrossRef]
- Osada, T.; Nakai, A.; Hamada, H. Initial fracture behaviour of satin woven fabric composites. Compos. Struct. 2003, 61, 333–339. [Google Scholar] [CrossRef]
- Nicoletto, G.; Riva, E. Failure mechanisms in twill-weave laminates: FEM predictions vs. experiments. Compos. Part A Appl. Sci. Manuf. 2004, 35, 787–795. [Google Scholar] [CrossRef]
- Abot, J.L.; Gabbai, R.D.; Harsley, K. Effect of woven fabric architecture on interlaminar mechanical response of composite materials: An experimental study. J. Reinf. Plast. Compos. 2011, 30, 2003–2014. [Google Scholar] [CrossRef]
- De Carvalho, N.V.; Pinho, S.T.; Robinson, P. An experimental study of failure initiation and propagation in 2D woven composites under compression. Compos. Sci. Technol. 2011, 71, 1316. [Google Scholar] [CrossRef]
- Kiasat, M.S.; Sangtabi, M.R. Effects of fiber bundle size and weave density on stiffness degradation and final failure of fabric laminates. Compos. Sci. Technol. 2015, 111, 23–31. [Google Scholar] [CrossRef]
- Kim, J.; Shioya, M.; Kobayashi, H.; Kaneko, J.; Kido, M. Mechanical properties of woven laminates and felt composites using carbon fibers. Part 1: In-plane properties. Compos. Sci. Technol. 2004, 64, 2221–2229. [Google Scholar] [CrossRef]
- Kergomard, Y.D.; Renard, J.; Thionnet, A.; Landry, C. Intralaminar and interlaminar damage in quasi-unidirectional stratified composite structures: Experimental analysis. Compos. Sci. Technol. 2010, 70, 1504–1512. [Google Scholar] [CrossRef]
- Tang, H.; Zhou, G.; Chen, Z.; Huang, L.; Avery, K.; Li, Y. Fatigue behaviour analysis and multi-scale modelling of chopped carbon fber chip-reinforced composites under tension-tension loading condition. Compos. Struct. 2019, 215, 85–97. [Google Scholar] [CrossRef]
- Lomov, S.V.; Bogdanovich, A.E.; Ivanov, D.S.; Mungalov, D.; Karahan, M.; Verpoest, I. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1: Materials, methods and principal results. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1134–1143. [Google Scholar] [CrossRef]
- Lomov, S.V.; Ivanov, D.S.; Truong, T.C.; Verpoest, I.; Baudry, F.; Bosche, K.V. Experimental methodology of study of damage initiation and development in textile composites in uniaxial tensile test. Compos. Sci. Technol. 2008, 68, 2340–2349. [Google Scholar] [CrossRef]
- Böhm, R.; Hufenbach, W. Experimentally based strategy for damage analysis of textile-reinforced composites under static loading. Compos. Sci. Technol. 2010, 70, 1330–1337. [Google Scholar] [CrossRef]
- Bogdanovich, A.E.; Karahan, M.; Lomov, S.V.; Verpoest, I. Quasi-static tensile behavior and damage of carbon/epoxy composite reinforced with 3D non-crimp orthogonal woven fabric. Mech. Mater. 2013, 62, 14–31. [Google Scholar] [CrossRef]
- Tabrizi, I.E.; Khan, R.M.A.; Massarwa, E.; Zanjani, J.S.M.; Ali, H.Q. Determining tab material for tensile test of CFRP laminates with combined usage of digital image correlation and acoustic emission techniques. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105623. [Google Scholar] [CrossRef]
- Yu, B.; Bradley, R.S.; Soutis, C.; Hogg, P.J.; Withers, P.J. 2D and 3D imaging of fatigue failure mechanisms of 3D woven composites. Compos. Part A Appl. Sci. Manuf. 2015, 77, 37–49. [Google Scholar] [CrossRef]
- Li, Z.; Guo, L.; Zhang, L.; Wang, Q. In situ experimental investigation on the out-plane damage evolution of 3D woven carbon-fiber reinforced composites. Compos. Sci. Technol. 2018, 162, 101–109. [Google Scholar] [CrossRef]
- Ullah, H.; Harland, A.R.; Silberschmidt, V.V. Characterisation of mechanical behaviour and damage analysis of 2D woven composites under bending. Compos. Part B Eng. 2015, 75, 156–166. [Google Scholar] [CrossRef]
- Huang, W.; Causse, P.; Brailovski, V.; Hu, H.; Trochu, F. Reconstruction of mesostructural material twin models of engineering textiles based on Micro-CT Aided Geometric Modeling. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105481. [Google Scholar] [CrossRef]
- Godara, A.; Raabe, D. Influence of fiber orientation on global mechanical behavior and mesoscale strain localization in a short glass-fiber-reinforced epoxy polymer composite during tensile deformation investigated using digital image correlation. Compos. Sci. Technol. 2007, 67, 2417–2427. [Google Scholar] [CrossRef]
- Koohbor, B.; Ravindran, S.; Kidane, A. A multiscale experimental approach for correlating global and local deformation response in woven composites. Compos. Struct. 2018, 194, 328–334. [Google Scholar] [CrossRef]
- Tang, H.; Chen, Z.; Zhou, G.; Li, Y.; Avery, K.; Guo, H. Correlation between failure and local material property in chopped carbon fber chip-reinforced sheet molding compound composites under tensile load. Polym. Compos. 2018, 40, E962–E974. [Google Scholar]
- Zeng, Q.; Sun, L.; Ge, J.; Wu, W.; Liang, J.; Fang, D. Damage characterization and numerical simulation of shear experiment of plain-woven glass-fiber reinforced composites on 3D geometric reconstruction. Compos. Struct. 2020, 233, 111746. [Google Scholar] [CrossRef]
- Huang, W.; Causse, P.; Hu, H.; Belouettar, S.; Trochu, F. Transverse compaction of 2D glass woven fabrics based on material twins-Part II: Tow and fabric deformations. Compos. Struct. 2020, 237, 111963. [Google Scholar] [CrossRef]
- Tang, X.; Whitcomb, J.D. Progressive failure behaviors of 2D woven composites. J. Compos. Mater. 2003, 37, 1239–1259. [Google Scholar] [CrossRef]
- John, S.; Herszberg, I.; Coman, F. Longitudinal and transverse damage taxonomy in woven composite components. Compos. Part B Eng. 2001, 32, 659–668. [Google Scholar] [CrossRef]
- Özdemir, H.; Içten, B.M. The mechanical performance of plain and plain derivative woven fabrics reinforced composites: Tensile and impact properties. J. Text. Inst. 2017, 109, 133–145. [Google Scholar] [CrossRef]
- Başer, G. Technique and Art of Weaving; Punto Publishing: İzmir, Turkey, 2004; Volume 1. (In Turkish) [Google Scholar]
- Adumitroaie, A.; Barbero, E.J. Stiffness and Strength Prediction for Plain Weave Textile Reinforced Composites. Mech. Adv. Mater. Struct. 2012, 19, 169–183. [Google Scholar] [CrossRef]
- Chen, G.; Ding, X. Breaking progress simulation and strength prediction of woven fabric under uniaxial tensile loading. Text. Res. J. 2006, 76, 875–882. [Google Scholar] [CrossRef]
- Dabiryan, H.; Jeddi, A.A.A.; Rastgo, A. The influence of frictional energy on the load-extension behavior of plain-woven fabrics. Text. Res. J. 2010, 80, 2223–2229. [Google Scholar] [CrossRef]
- Adanur, S.; Önal, L. Factors affecting the mechanical properties of laminated glass/graphite-epoxy hybrid composites. J. Ind. Text. 2001, 31, 123–133. [Google Scholar] [CrossRef]
- Pothan, L.A.; Mai, Y.W.; Thomas, S.; Li, R.K.Y. Tensile and flexural behaviour of sisal fabric/polyester textile composites prepared by resin transfer moulding technique. J. Reinf. Plast. Compos. 2008, 27, 1847–1866. [Google Scholar] [CrossRef]
- Galceran, V. Weaving Technology; Technical University of Catalonia: Terrassa, Spain, 1962. (In Spanish) [Google Scholar]
- Judd, N.C.W.; Wright, W.W. Voids and their effects on the mechanical properties of composites—An appraisal. SAMPE J. 1978, 14, 10–14. [Google Scholar]
- Ghiorse, S.R. Effect of void content on the mechanical properties of carbon/epoxy laminates. SAMPE Q. 1993, 24, 54–59. [Google Scholar]
- Perumalraj, R.; Dasaradhan, B.S.; Nalankilli, G. Copper, stainless steel, glass core yarn, and ply yarn woven fabric composite materials properties. J. Reinf. Plast. Compos. 2010, 29, 3074–3082. [Google Scholar] [CrossRef]
- Özdemir, H.; Mert, E. The effects of fabric structural parameters on the tensile, bursting and impact strengths of diced woven fabrics. Tekst. Konfeksiyon 2013, 23, 113–123. [Google Scholar]
- Padaki, N.V.; Alagirusamy, R.; Deopura, B.L.; Fangueiro, R. Influence of preform interlacement on the low velocity impact behaviour of multilayer textile composites. J. Ind. Text. 2010, 40, 171–185. [Google Scholar] [CrossRef]
- Hosur, M.V.; Adya, M.; Alexander, J.; Jeelani, S.; Vaidya, U.; Mayer, A. Studies on impact damage resistance of affordable stitched woven carbon/epoxy composite laminates. J. Reinf. Plast. Compos. 2003, 22, 927–952. [Google Scholar] [CrossRef]
- Atas, C.; Sayman, O. An overall view on impact response of woven fabric composite plates. Compos. Struct. 2008, 82, 336–345. [Google Scholar] [CrossRef]
- Sinnppoo, K.; Arnold, L.; Padhye, R. Application of wool in high-velocity ballistic protective fabrics. Text. Res. J. 2009, 80, 1083–1092. [Google Scholar] [CrossRef]
- Pothan, L.A.; Potschke, P.; Habler, R.; Thomas, S. The static and dynamic mechanical properties of banana and glass fiber woven fabric-reinforced polyester composite. J. Compos. Mater. 2005, 39, 1007–1025. [Google Scholar] [CrossRef]
- Hu, Q.; Memon, H.; Qiu, Y.; Liu, W.; Wei, Y. A Comprehensive Study on the Mechanical Properties of Different 3D Woven Carbon Fiber-Epoxy Composites. Materials 2020, 13, 2765. [Google Scholar] [CrossRef] [PubMed]
- Nasution, M.R.E.; Watanabe, N.; Kondo, A.; Yudhanto, A. A novel asymptotic expansion homogenization analysis for 3-D composite with relieved periodicity in the thickness direction. Compos. Sci. Technol. 2014, 97, 63–73. [Google Scholar] [CrossRef]
- Liu, X.; Rouf, K.; Peng, B.; Yu, W. Two-step homogenization of textile composites using mechanics of structure genome. Compos. Struct. 2017, 171, 252–262. [Google Scholar] [CrossRef]
- Majumdar, A.; Laha, A.; Bhattacharjee, D.; Biswas, I. Tuning the structure of 3D woven aramid fabrics reinforced with shear thickening fluid for developing soft body armour. Compos. Struct. 2017, 178, 415–425. [Google Scholar] [CrossRef]
- De Luycker, E.; Morestin, F.; Boisse, P.; Marsal, D. Simulation of 3D interlock composite preforming. Compos. Struct. 2009, 88, 615–623. [Google Scholar] [CrossRef]
- Nathan, S. Positive reinforcement: 21st century 3D weaving. Engineer 2015. Available online: https://www.theengineer.co.uk/content/in-depth/positive-reinforcement-21st-century-3d-weaving/ (accessed on 14 May 2024).
- Chen, X.; Taylor, L.W.; Tsai, L.-J. An overview on fabrication of three-dimensional woven textile preforms for composites. Text. Res. J. 2011, 81, 932–944. [Google Scholar] [CrossRef]
- Legrand, X.; Boussu, F.; Nauman, S.; Cristian, I.; Lapeyronnie, P.; Le Grognec, P. Forming behaviour of warp interlock composite. Int. J. Mater. Form. 2009, 2, 177–180. [Google Scholar] [CrossRef]
- Dufour, C.; Wang, P.; Boussu, F.; Soulat, D. Experimental investigation about stamping behaviour of 3D warp interlock composite preforms. Appl. Compos. Mater. 2014, 21, 725–738. [Google Scholar] [CrossRef]
- Carvelli, V.; Pazmino, J.; Lomov, S.V.; Verpoest, I. Deformability of a non-crimp 3D orthogonal weave E-glass composite reinforcement. Compos. Sci. Technol. 2012, 73, 9–18. [Google Scholar] [CrossRef]
- Pazmino, J.; Carvelli, V.; Lomov, S.V. Micro-CT analysis of the internal deformed geometry of a non-crimp 3D orthogonal weave E-glass composite reinforcement. Compos. B Eng. 2014, 65, 147–157. [Google Scholar] [CrossRef]
- Ansar, M.; Xinwei, W.; Chouwei, Z. Modeling strategies of 3D woven composites: A review. Compos. Struct. 2011, 93, 1947–1963. [Google Scholar] [CrossRef]
- Curiskis, J.I.; Durie, A.; Nicolaidis, A.; Herszberg, I. Developments in multiaxial weaving for advanced composite materials. In Proceedings of the ICCM-11, Gold Coast, Australia, 14–18 July 1997; pp. 86–96. [Google Scholar]
- Chen, X. (Ed.) Advances in 3D Textiles; Elsevier/WP, Woodhead Publishing: Cambridge, UK, 2015. [Google Scholar]
- Stig, F.; Hallström, S. Assessment of the mechanical properties of a new 3D woven fibre composite material. Compos. Sci. Technol. 2009, 69, 1686–1692. [Google Scholar] [CrossRef]
- Bilisik, K.; Karaduman, N.S.; Bilisik, N.E.; Bilisik, H.E. Three-dimensional circular various weave patterns in woven preform structures. Text. Res. J. 2014, 84, 638–654. [Google Scholar] [CrossRef]
- Chan, W.S.; Wang, J.S. Influence of fibre waviness on the structural response of composite laminates. J. Thermoplast. Compos. Mater. 1994, 73, 243–260. [Google Scholar] [CrossRef]
- Stig, F.; Hallström, S. Influence of crimp on 3D-woven fibre reinforced composites. Compos. Struct. 2013, 95, 114–122. [Google Scholar] [CrossRef]
- Stig, F.; Tahir, M.W.; Åkermo, M.; Hallström, S. An experimental study of the influence from fibre architecture on the permeability of 3D-woven textiles. J. Reinf. Plast. Compos. 2015, 34, 1444–1453. [Google Scholar] [CrossRef]
- Endruweit, A.; Long, A.C. Analysis of compressibility and permeability of selected 3D woven reinforcements. J. Compos. Mater. 2010, 44, 2833–2862. [Google Scholar] [CrossRef]
- Parnas, R.S.; Howard, J.G.; Luce, T.L.; Advani, S.G. Permeability characterization. Part 1: A proposed standard reference fabric for permeability. Polym. Compos. 1995, 16, 429–445. [Google Scholar] [CrossRef]
- Xiao, X.; Zeng, X.; Long, A.; Endruweit, A. Modeling of through-thickness permeability for 3D woven fabrics. In Proceedings of the 3rd World Conference on 3D Fabrics and Their Applications, Wuhan, China, 20–21 April 2011; pp. 206–211. [Google Scholar]
- Tahir, M.W.; Stig, F.; Åkermo, M.; Hallström, S. A numerical study of the influence from architecture on the permeability of 3D-woven fibre reinforcement. Compos. Part A Appl. Sci. Manuf. 2015, 74, 18–22. [Google Scholar] [CrossRef]
- Stig, F.; Hallström, S. Spatial modelling of 3D-woven textiles. Compos. Struct. 2012, 94, 1495–1502. [Google Scholar] [CrossRef]
- Stig, F.; Hallström, S. A modelling framework for composites containing 3D reinforcement. Compos. Struct. 2012, 94, 2895–2901. [Google Scholar] [CrossRef]
- Koumpias, A.S.; Tserpes, K.I.; Pantelakis, S. Progressive damage modelling of 3D fully interlaced woven composite materials: Progressive damage modelling of 3D woven fabrics. Fatigue Fract. Eng. Mater. Struct. 2014, 37, 696–706. [Google Scholar] [CrossRef]
- Gereke, T.; Cherif, C. A review of numerical models for 3D woven composite reinforcements. Compos. Struct. 2019, 209, 60–66. [Google Scholar] [CrossRef]
- Wielhorski, Y.; Mendoza, A.; Rubino, M.; Roux, S. Numerical modeling of 3D woven composite reinforcements: A review. Compos. Part A Appl. Sci. Manuf. 2022, 154, 106729. [Google Scholar] [CrossRef]
Fibre | Fabric | Equation | %Vf |
---|---|---|---|
E-glass | Continuous strand mat | 24 | |
E-glass | Chopped strand mat | 38 | |
E-glass | Roving | 62 | |
E-glass | Woven fabric | 58 | |
E-glass | Woven fabric | 45 | |
Kevlar | Fabric | 67 | |
Carbon | Unidirectional cloth | 66 | |
Carbon | ±45° fabric | 55 |
Fibre | kE | Vf0% | n |
---|---|---|---|
Wool | 13 | 1.45 | 3 |
Wool | 420 | 2 | 3 |
Planar | 4500 | 3 | 5 |
Spun glass roving | 820 | - | 8.5 |
Fluffy glass roving | 260 | - | 7 |
Straight glass roving | 700 | - | 15.5 |
Graphite roving | 500 | - | 14.5 |
Mat | 115 | - | 3.5 |
Mat | 100 | - | 4.5 |
Weave | 500 | - | 11 |
Weave | 8 | - | 7 |
Weave | 15 | - | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, I.R.; Summerscales, J. Woven Fabrics for Composite Reinforcement: A Review. J. Compos. Sci. 2024, 8, 280. https://doi.org/10.3390/jcs8070280
Chowdhury IR, Summerscales J. Woven Fabrics for Composite Reinforcement: A Review. Journal of Composites Science. 2024; 8(7):280. https://doi.org/10.3390/jcs8070280
Chicago/Turabian StyleChowdhury, Indraneel R., and John Summerscales. 2024. "Woven Fabrics for Composite Reinforcement: A Review" Journal of Composites Science 8, no. 7: 280. https://doi.org/10.3390/jcs8070280
APA StyleChowdhury, I. R., & Summerscales, J. (2024). Woven Fabrics for Composite Reinforcement: A Review. Journal of Composites Science, 8(7), 280. https://doi.org/10.3390/jcs8070280