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Abstract: Recent studies show that zinc oxide (ZnO) nanostructures have promising potential as
an absorbing material. In order to improve the optoelectronic properties of the initial system, this
paper considers the process of adsorbing multilayer graphene-like ZnO onto a Si (111) surface. The
density of electron states for two- and three-layer graphene-like zinc oxide on the Si (111) surface
was obtained using the Vienna ab-initio simulation package by the DFT method. A computer model
of graphene-like Zinc oxide on a Si (111)-surface was created using the DFT+U approach. One-,
two- and three-plane-thick graphene-zinc oxide were deposited on the substrate. An isolated cluster
of Zn3O3 was also considered. The compatibility of g-ZnO with the S (100) substrate was tested,
and the energetics of deposition were calculated. This study demonstrates that, regardless of the
possible configuration of the adsorbing layers, the Si/ZnO structure remains stable at the interface.
Calculations indicate that, in combination with lower formation energies, wurtzite-type structures
turn out to be more stable and, compared to sphalerite-type structures, wurtzite-type structures form
longer interlayers and shorter interplanar distances. It has been shown that during the deposition of
the third layer, the growth of a wurtzite-type structure becomes exothermic. Thus, these findings
suggest a predictable relationship between the application method and the number of layers, implying
that the synthesis process can be modified. Consequently, we believe that such interfaces can be
obtained through experimental synthesis.

Keywords: ZnO; DFT; VASP; Si; nanoclusters; adsorbed; Ab initio; computational modelling; material
properties

1. Introduction

Graphene-like ZnO (g-ZnO) nanostructures are currently being investigated, which
are interesting as nanomaterials not only because of their electrical and mechanical proper-
ties [1–3] but also because of their interesting structure and morphology [4]. Primarily, zinc
oxide is characterized by a wide band gap (3.37 eV), high exciton binding energy (60 MeV)
and natural n-type electrical conductivity [5,6]. The ZnO nanostructure is one of the safest
semiconductor materials and is distinguished by such properties as low toxicity, thermal sta-
bility, large specific surface area and high electron mobility, which gives this structure great
potential for numerous uses in sensor applications [7–10]. In particular, nanowires [11],
nanorods [12], and nanotubes [13] are of interest, which are obtained from nanoparticles,
that is, one-dimensional semiconductor nanostructures are given more attention because of
their elongated morphology with a large ratio of surface area to their volume [14]. These
structures, obtained with the help of ZnO nanoparticles, make these one-dimensional
semiconductor materials promising for use in various areas of nanotechnology due to their
uniqueness and diverse set of positive characteristics.

To expand the range of application of ZnO, researchers apply various methods of
modification of the crystal structure using both experimental and theoretical methods
of deposition and alloying with various structures [15–19]. The synthesis of zinc oxide
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nanostructures can be carried out by many methods, such as depositing by surface epi-
taxy [20], the coprecipitation method [21] and chemical bath deposition [22]. Thus, due to
the excellent properties of ZnO, many works are devoted to the effect of doping of various
molecules on the surface of ZnO. For example, in [23], the influence of manganese doping
sites of different depths on the electromagnetic properties of ZnO, which makes it possible
to obtain ferromagnetism or antiferromagnetism, is reported. The study in [24] shows the
effect of silicon doping on the electrical, optical, and magnetic properties of ZnO. And
in [25], the effect of co-doping with carbon and silicon on the optoelectronic properties of
ZnO is shown. In addition, silicon plays an important role in the modern semiconductor
direction and is an alloying impurity that predominantly occupies cationic positions in
AIIIBV semiconductors to improve their electrical and optical properties [26].

Theoretical methods that save time and resources are potentially of great interest [27–29].
So, in order to study and calculate the adsorption energies of the studied systems, we
performed density functional theory (DFT) calculations. DFT is a computational method
that uses the fundamental laws of quantum mechanics to calculate the electronic structure
of atoms, molecules, and solids [30,31]. This modelling method is widely used to calculate
the electronic properties of systems with a multilayer nanostructure and shows good
convergence results between the experiment and the DFT computational experiment [32].

To the best of our knowledge, there is no theoretical study of graphene-like ZnO
adsorbed by two and three layers on the terminated surface of Si (111). Substantial efforts
have been made in studying the process of ZnO growth on Si substrates, experimentally
and computationally [33]. Yet, the structural stability of the interface between the materials
needs to be investigated further. To examine the deposition of the initial g-ZnO layers
on the Si (111) surface at the atomistic level, we performed computational modelling of
the process.

2. Models and Methods

Modelling of g-ZnO/Si (111) interfaces was performed by the DFT + U method, as
implemented in the computer code VASP5.3 [34]. Core electrons were substituted by the
PAW potentials [35], standard version. The PBE [36] exchange-correlation functional was
used. The Hubbard correction was applied by the Lichtenstein method [37]. U and J
parameters were chosen, based on other theoretical studies (Table 1).

Table 1. Potential details and Hubbard correction parameters for Si and ZnO.

Potentials Hubbard Correction

Element Free
Electrons

Potential Cut-Off
Energy, eV Orbital U, eV J, eV Source

Si 3s23p2 245.345 p 0 4 [38]

Zn 3d104p2 276.723 d 10 0 [39,40]

O 2s22p4 400 p 7 0 [39,40]

The plane wave basis set was restricted to 400 eV. The Brillouin zone for interface
calculations was sampled by the Monkhorst-Pack scheme [41] 4 × 4 × 2. The surface was
modelled as the 8-plane (4-layer)-thick slab with the surface cell of 7.53 × 7.53 Å and the
vacuum gap of 17 Å. A complete geometry optimization was performed for the Si bulk.
The Si (111) unreconstructed surface is considered as a model substrate for adsorption
modelling. As was shown experimentally [33], Si can be successfully used for this purpose.
The Si slab’s optimization as well as the g-ZnO plane’s deposition, was achieved by keeping
the parameters of the surface cell fixed to simulate a rigid substrate. The reference ZnO
monolayer was optimized completely (Figure 1), forming a flat (interplanar distance = 0 Å)
layer [42].
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Figure 2. Si (111) slab with closed (a,d) and open (b,d) packing. Top (a,b) (terminating layer only) 

and side (c,d) view. The edges of the supercell in the corresponding projections are defined by the 

lines. 

3. Results and Discussion 

The Si (111) surface implies the possibility of two terminations—with closed (Figure 

2a,c) and open packing (Figure 2b,d)—with surface energies of 1.43 eV/surf.unit (117 

meV/Å 2) and 2.79eV/surf.unit, which are in good agreement with the value of 124.5 

Figure 1. Graphene-like ZnO monolayer: 6.02 × 6.02 Å surface unit (dotted line), four ZnO formula
units. Zn-O distance—1.74 Å. Gray and red balls denote Zn and O, respectively.

No vdW interaction was taken into account, although it is beneficial for calculating
the absolute energy values [43]. However, the main qualitative conclusions remain the
same, since they are based not on the absolute values but on the interactive differences
between them (Equation (1)). The energy values are given relative to the structural (surface)
units, which makes comparison with other studies straightforward. The surface energy
was calculated relative to the bulk and normalized to a 3.76 × 3.76 Å surface unit (or 0.25
of the surface area cell, as shown in Figure 2a).
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Figure 2. Si (111) slab with closed (a,d) and open (b,d) packing. Top (a,b) (terminating layer only) and
side (c,d) view. The edges of the supercell in the corresponding projections are defined by the lines.

3. Results and Discussion

The Si (111) surface implies the possibility of two terminations—with closed (Figure 2a,c)
and open packing (Figure 2b,d)—with surface energies of 1.43 eV/surf.unit (117 meV/Å2)
and 2.79eV/surf.unit, which are in good agreement with the value of 124.5 meV/Å
from [44]. Therefore, the termination with open packaging, which is energetically very
unfavourable, was eliminated from further modelling.

The structure of ZnO, both sphalerite- (Figure 3a) and wurtzite-type (Figure 3b), makes
it suitable for a planar deposition on Si substrate.
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Figure 3. Sphalerite (a) and wurtzite-type (b) ZnO structures. Gray and red balls denote Zn an O,
respectively.

The calculated g-ZnO formation energy is 0.5 eV per ZnO f.u. The ZnO (111) mono-
layer lattice constant is 80% of that for the Si (111) surface, which makes the materials
compatible. The difference between sphalerite- and wurtzite-type structures is in stack-
ing order (Figure 3). Due to the small difference in energy (<0.03 eV), both types have
been considered.

Two types of stacking—sphalerite and wurtzite—have been modelled, relative to the
Si and relative to the ZnO surface layer (Figure 4).

The deposition energy of g-ZnO has been calculated differentially, relative to the
monolayer:

E+g−ZnO = ENg−ZnO −(E (N−1)g−ZnO + EML g−ZnO

)
(1)

where ENg−ZnO—the energy of the system with N deposited g-ZnO layers,
E(N−1)g−ZnO—the energy of the system with (N − 1) deposited g-ZnO layers,
EML g−ZnO—the energy of g-ZnO (MonoLayer).
The values have been normalized to the ZnO formula unit in the g-ZnO monolayer.
Deposited on the Si (111) surface, the ZnO monolayer was stretched to match the

lattice constant of Si. The g-ZnO monolayer was deposited with oxygen anions forming
bonds with silicon cations. Zn cations have been placed, depending on the type of the
interface, atop of the subsurface Si cation (sphalerite-type) (Figure 4a) and atop of the
surface Si cations (wurtzite-type) (Figure 4f). In both cases, oxygen formed strong bonds
with Si from the surface layer. Due to the lattice constant mismatch, the ZnO monolayer
was stretched flat without the gap between the Zn and the O planes as in the bulk (Figure 3).
Energetically, it requires 0.12 and 0.04 eV to per ZnO f.u. (Table 2) to deposit the monolayer
in sphalerite and wurtzite stacking., which makes the latter type of deposition more likely
to occur. Yet, the sphalerite type of adsorption is structurally stable and therefore shall
not be completely eliminated. The first g-ZnO ML builds an interface between the two
materials and provides better sorption conditions (more energetically favourable) for the
next layers of ZnO.

Table 2. Adsorption energy of the next g-ZnO layer on Si (g-ZnO) substrate in eV per ZnO formula
unit (Equation (1)).

Si/g-ZnO ZnO 1 2 3

sphalerite sphalerite 0.12 Figure 4a 0.56 Figure 4b 0.53 Figure 4c

sphalerite wurtzite 0.49 Figure 4d −0.07 Figure 4e

wurtzite wurtzite 0.04 Figure 4f 0.44 Figure 4g −0.06 Figure 4h

wurtzite sphalerite 0.57 Figure 4i 0.52 Figure 4j
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Two and three ZnO planes were deposited in sphalerite or wurtzite order, relative to
the interface ZnO layer. So, total ten stacking combinations were investigated. All of them
appeared to be structurally stable.

The smallest Zn-O interplanar was observed in the last deposited layer (exposed to
the vacuum) (Table 3, Figure 5a). Wurtzite-type ZnO stacking has, in general, smaller
interplanar distances than those of sphalerite type. As the number of deposited ZnO layers
grows, the interplanar distance becomes smaller.

Table 3. Interplanar Zn-O (a) and interlayer Si-O and Zn-O distances in g-ZnO/Si interfaces (Å). The
data are aligned starting from the vacuum.

Number of ZnO Layers

Si/ZnO Interface ZnO Stacking 1 2 3

sphalerite

wurtzite

vacuum

0.29 0.16 0.15

1.71 1.86 1.89

Si 0.62 0.49

1.69 1.81

Si 0.61

1.69

Si

sphalerite

vacuum

0.07 0.04

1.86 1.91

0.38 0.10

1.72 1.85

Si 0.05

1.73

Si

wurtzite

wurtzite

vacuum

0.24 0.04 0.03

1.71 1.85 1.85

Si 0.24 0.11

1.71 1.83

Si 0.10

1.73

Si

sphalerite

vacuum

0.17 0.12

1.86 1.88

0.49 0.46

1.68 1.81

Si 0.49

1.68

Si
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Figure 5. Interplanar (a) Zn-O and interlayer (b) Si-O and Zn-O distances in g-ZnO/Si interfaces.
Note that in this analysis ZnO layers are numbered from the surface.

The interlayer distance is the largest in the last deposited ZnO layer. The sphalerite-
type Si/ZnO interface demonstrated larger interlayer distances. The interlayer distance
increases with the number of deposited ZnO layers (Table 3, Figure 5b).

The energetic analysis of the process reveals that the deposition of the first g-ZnO either
in sphalerite or wurtzite configuration requires extremely low energy. The deposition of
the second layer also requires energy, and the absolute values are below 0.6eV per ZnO f.u.
(Figure 6). Overall, the wurtzite ZnO structure is more favourable, which is in agreement
with the study [33]. The deposition of the third layer, however, is qualitatively different for
wurtzite and sphalerite structures. The former appears to be exothermic, which makes the
further deposition self-sustaining.
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For reference, the energy levels, relative to ZnO ML (Equation (2)), are listed in Table 4.
The energy levels clearly demonstrate the decrease in total energy after the deposition of
the third layer of ZnO in the wurtzite-type stacked structure.

Ere f , = ENg−ZnO −
(
ESi + NEMLg−ZnO

)
(2)

where ENg−ZnO is the energy of the system with N deposited g-ZnO layers, ESi is the energy
of the substrate, and EML g−ZnO is the energy of g-ZnO (MonoLayer).
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Table 4. Energy states (eV) calculated relative to ZnO monolayer.

Si/ZnO Sphalerite Number of ZnO Layers
ZnO Stacking

Wurtzite Sphalerite

sphalerite

1 0.12

2 0.61

3 0.54

2 0.68

3 1.21

wurtzite

1 0.04

2 0.48

3 0.42

2 0.62

3 1.14

All g-ZnO/Si (111) systems appeared to be conducting, which makes such interfaces a
promising material for microelectronics. Although the state could be different for thicker
systems, in our ultra-thin film model, no band gap was observed.

4. Conclusions

A detailed analysis of g-ZnO deposition on the Si (111) ultra-thin film revealed that
adsorption of the g-ZnO monolayer requires a negligible, small amount of energy. Regard-
less of the Si/ZnO adsorption configuration, the structure of the interface is stable. In
comparison to sphalerite-type stacking, the wurtzite-like one forms longer interlayer and
shorter interplanar distances. In combination with lower formation energies, wurtzite-type
structures appear to be more stable. Moreover, already at the third layer deposition step,
the growth of the wurtzite-type structure becomes exothermic. This indicates a possibility
to synthesize such interfaces experimentally.

The present study reveals the key energetic characteristics of a hexagonal-type interface
and the process of epitaxial growth of a polymorph material on a structurally compatible
substrate. The results of the study suggest that the method of deposition can be changed,
depending on the number of deposited layers.
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