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Abstract: A simple approach was used to create Fe3O4-methylcellulose (MC) nanocomposites, which
were then analyzed using XRD, FTIR, and FE-SEM to determine their structure. The effective factors
for enhancing the ratio of magnetite NPs in the samples were investigated using RTFM and optical
absorbance. Fe3O4 was synthesized utilizing the reverse co-precipitation technique and magnetic
characteristics. Fe3O4/MC nanocomposites with magnetite/MC weight ratios of 0, 0.07, 0.15, and
0.25 have been developed. The diffraction pattern of magnetite is well indexed in accordance with
the spinal reference pattern of Fe3O4 (space group: R¯3m), as confirmed by the Rietveld analysis of
XRD data of magnetite NPs with an average crystallite size of 50 nm. Magnetite’s insertion into the
MC network causes a red shift in the band gap energy (Eg) as the weight percentage of magnetite
nanoparticles in the samples rises. The MC, MC-7, MC-15, and MC-25 samples have Eg values of
5.51, 5.05, 2.84, and 2.20 eV, respectively.

Keywords: magnetite nanoparticles; methylcellulose; chemical synthesis; polymer nanocomposite;
magnetization; reverse co-perception technique; magnetic properties

1. Introduction

Numerous studies have focused on magnetite (Fe3O4) nanoparticles (NPs) in compar-
ison to other transition metal oxides because of their strong magnetic properties, which
are a result of their inverse spinel structure [1–3]. Magnetite is frequently used for its
paramagnetic characteristics, small particle size, and low toxicity. Magnetite is commonly
known as black iron oxide or ferrous metal oxide [4]. Magnetite is utilized in various
fields, such as nanomagnetite fluids [5], drug administration [6], magnetic hyperthermia
therapy [7], and magnetic resonance imaging (MRI) as a contrast agent [8], and extensively
employed in catalysis.

Controlling the surface morphology of nanoparticles, as well as their chemical stability
in the environment, depends on the synthetic route used during the preparation and/or
processing of Fe3O4 NPs. Depending on the goals for use in specific applications, several
methods for preparing Fe3O4 NPs may be employed, such as the sol-gel method [9], co-
precipitation [10], and other used methods as described in [11]. One of the simplest methods
used to prepare magnetite is the reverse co-precipitation method. In the typical reverse
co-precipitation process, the alkaline solution is mixed with the iron salt solution with no
organic solvent, as only a basic reaction environment is needed [3–11]. Then, an increase in
the pH value would result in an increase in crystallites and/or particle size compared to
that of the conventional method [4,12].
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On the other hand, magnetic nanocomposites are widely used as adsorbents for the
removal of various types of pollutants and wastewater treatments with high effectiveness
and well-defined properties due to their high photoactivity and nanoscale structure [13,14].
The properties of Fe3O4 NPs include a large surface area due to their smaller particle size,
and they are environmentally friendly as they prevent the formation of any toxic contami-
nation during their processing [15]. Many efforts are being made to develop new, highly
efficient, durable, and biodegradable magnetic materials that meet the needs of different
types of applications. Such types of materials have attracted attention due to their unique
properties of soft magnetic nanostructures, compared to their bulk counterparts. These
nanocomposites are useful in high-frequency applications, drug delivery, and magnetic
storage media, among many other fields [3,4]. The magnetic properties inside the polymer
matrix interact with each other to influence the magnetism of the nanocomposites. Inter-
particle interactions occur through exchange forces between the particles that are in direct
contact or through long-range magnetic dipole–dipole interactions. Therefore, significant
coupling results in ferromagnetism. The range of magnetic order will be longer when the
combination of interacting forces is strong. However, the paramagnetic state is achieved
when the moments of nearby particles interact weakly. In this case, each magnetic moment
of each nanoparticle changes independently and the magnetic order collapses [16].

Biodegradable polymers are synthetic or natural polymers. Methylcellulose (MC) is
one of the most important cellulose ether derivatives and has been used in many industrial
applications. MC as an ether derivative of cellulose is considered the simplest cellulose
derivative, in which methyl groups (-CH3) replace the hydroxyl positions [17]. The combi-
nation of MC and magnetic nanoparticles creates a form of biomagnetic agent that can be
effective in the photodegradation of organic contaminants found in wastewater, expanding
its use in some industrial applications [17,18].

Furthermore, Kim et al. [19] discovered that MC’s low molecular weight might be
used in medicine delivery. Kim et al. discovered that MC gelled at body temperature,
gradually releasing a drug in vivo, and then disintegrated into a lower molecular weight
chemical that was less harmful to human beings. Magnetic hydrogels are highly valued in
the biomedical field for their applications in tissue engineering, soft actuators, magnetic
resonance imaging, hyperthermia treatments, and drug release systems [20]. Compared
to other stimulation-sensitive drug release systems, they are more appealing due to their
considerable advantages, including their short response times, remotely controlled mo-
bility, noninvasive heat production, and easy physical signal recognition [21]. Hence, it
is crucial to create innovative magnetic hydrogels that possess biodegradability, strong
magnetic properties, and superior mechanical qualities. In order to further understand
their physical properties and assess their potential in biomedical applications, magnetic
biodegradable nanocomposites must be synthesized and analyzed. This work aims to
synthesize magnetite/MC nanocomposites containing up to 25% weight proportion of
magnetite nanoparticles. To the best of our knowledge, no previously published examples
of magnetite/MC nanocomposites exist that might add to the body of knowledge already
available on MC nanocomposites. The reverse co-precipitation method was used to create
the magnetite nanoparticles. The effect of magnetite loading on the optical and magnetic
characteristics of the nanocomposites was investigated.

2. Materials
2.1. Synthetization of Magnetite Nanoparticles

The synthesis of magnetite nanoparticles (NPs) has been conducted by the reverse
co-precipitation approach, as documented in a previous study [1]. To achieve the desired
objective, a solution of NaOH in distilled water with a volume of 350 mL was made, having
a pH value of 13. In a separate procedure, a solution of ferrous sulfate (FeSO4·7H2O) with
a concentration of 0.3 M was generated by combining an iron salt precursor with deionized
water. The resulting mixture was subjected to magnetic dispersion for a duration of 15 min,
followed by an additional 10 min of ultrasonic mixing to guarantee complete dissolution of
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the ferrous salt. Subsequently, the solution containing the iron salt precursor was gradually
introduced into the aqueous solution of NaOH, followed by a one-hour mixing period. The
resulting mixture was promptly rinsed with distilled water until the pH reached a value
of 9. Magnetite powder of high quality was acquired after undergoing a drying process
at 50 ◦C for 24 h. Magnetite NPs were examined for their strong magnetization through
simple attraction with an external magnet, as shown in Figure 1.
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Figure 1. The photograph depicts magnetite nanoparticle powders being drawn to an external magnet.

2.2. Fabrication of MC/Magnetite Nanocomposites

The MC powder provided by Aldon Chemical Inc, Woodbridge, ON, Canada (vis-
cosity 4000 cps for 2% solution in water) was used for the fabrication of MC/magnetite
nanocomposites. The desired mass of magnetite NPs is distributed into a 15 mL solution of
distilled water at a temperature of 75 ◦C, using sonication for a duration of 10 min. The
weight percentage ratios of magnetite nanoparticles to MC were 0, 0.07, 0.15, and 0.25.
The dispersed nanoparticles were mixed with 0.6 g of MC powder for each sample, and
the sonication procedure was run for 15 min at a temperature between 75 and 80 ◦C to
dissolve the MC. The obtained MC/magnetite blend was carefully transferred into a Petri
dish and afterward maintained at room temperature for a duration of 72 h. The nanocom-
posite (NC) sheets that were acquired exhibited homogeneity, with an average thickness of
around 0.25 ± 0.015 mm. The samples were designated with labels corresponding to the
magnetite/MC weight ratios of 0, 0.07, 0.15, and 0.25, denoted as MC, MC-7, MC-15, and
MC-25, respectively.

2.3. Characterizations

X-ray diffraction (XRD) measurements were employed to characterize the structural
properties of the (Fe3O4) magnetite NPs. An XR-Phillips X’pert diffractometer X-ray (MPD
3040) machine (Philips X’Pert-MPD, Malvern, UK) was used for XRD measurements, us-
ing a CuKα (λ = 1.5406 Å) in a 2θ range of 10–80◦ with 0.03◦ steps. Fourier transform
infrared (FTIR) measurements were performed on both NPs for profound structural and
compositional studies. The transmission FTIR spectrums were collected with a (Jasco Inc.,
Tokyo, Japan) FT/IR–4100 spectrometer in the wavenumber range of 400 to 4000 cm−1. The
surface morphological characteristics of the investigated NPs and the fabricated nanocom-
posites were studied using the Thermo-Fisher Quanta S field-emission scanning electron
microscope (FE–SEM, Thermo-Fisher Scientific Inc., Waltham, MA, USA). The morphology
of magnetite nanoparticles was investigated using a JEM-2100 high-resolution transmission
electron microscope (HRTEM, JEOL Ltd., Tokyo, Japan). The UV-Vis measurements were
performed using the Cary 5000 UV–Vis–NIR spectrophotometer (Agilent Technologies
Inc., Santa Clara, CA, USA). A vibrating sample magnetometer (VSM) system, the Lake
Shore 7400 VSM system (Lake Shore Cryotronics, Inc., Westerville, OH, USA) was used to
evaluate the magnetic properties of the materials under investigation at room temperature
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(RT). The magnetization measurements under an external magnetic field were recorded
ranging from −20 kOe to 20 kOe.

3. Results and Discussion
3.1. Structure and Morphologic Characterization of Magnetite Nanoparticles (Fe3O4 NPs)

Figure 2 shows the XRD pattern of the prepared reverse co-precipitated Fe3O4 NPs.
The phase identification and data refinements of the XRD pattern were computed using
Rietveld analysis with FullProf Suite (5.10) software, and the resulting parameters are
shown in Figure 2. The diffraction peaks of magnetite NPs are well indexed according to
the spinal reference pattern of Fe3O4 (space group: R¯3m). The absence of any extra peaks
outside of the desired phase indicates a distinct crystalline character of the synthesized NPs.
It should be noted that the recognized phase is the same as the standard data. Furthermore,
the lattice parameters a, b, and c are 5.9162, 5.9162, and 14.5333 Å, respectively, and with
cell direct cell volume = 440.543 Å3. The Williamson–Hall (W–H) function was used from
the FullProf refinement data to compute the crystallite size and lattice strain of the NPs.
Figure 3 shows the W-H plot of βcosθ vs. 4sinθ of the magnetite NPs under investigation,
where β is the FWHM obtained from FullProf refinements and θ is the diffraction angle.
The obtained average crystallite size and lattice microstrain are identified as ~46 nm and
~0.0015 for Fe3O4 NPs, respectively.

FTIR spectra revealed the structure and functional groups of synthetic Fe3O4 NPs. The
Fe−O band is characterized by a prominent absorption peak at around 553 cm−1. Figure 4
shows significant bands of magnetite in the lower frequency range (500–1000 cm−1), which
are caused by the iron oxide structure [3,22]. The absorption peak at 3440 cm−1 is clearly
associated with the OH groups. The absorption peak at 1350 cm−1 is caused by the
stretching vibration of the C–O bond. Additionally, the signal at 1110 cm−1 reveals the
stretching vibration of the C−O−C group [12]. The bands at 1640 cm−1 and 1490 cm−1

are attributed to H−O−H bending. The presence of these bands verifies the formation
of water adsorbed on the surface of Fe3O4 NPs, as magnetite NPs were generated in an
aqueous media. The band at 2367 cm−1 is distinctly prominent because of the CO2 that is
desorbed from the environment [10,23].
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Figure 2. XRD pattern of the magnetite NPs under investigation.
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Figure 5 displays the SEM micrographs of the magnetite NPs that were examined
in this study. The acquired SEM pictures illustrate that the particles exhibited a rough
surface texture and displayed varying degrees of aggregation. Undoubtedly, the diminutive
particles at the nanoscale exhibit a propensity to aggregate as a result of their elevated
surface energy, which arises from the amplified surface-to-volume ratio. Furthermore, the
potential influence of magnetic moment on this agglomeration phenomenon cannot be
disregarded, given the inherent magnetic properties of the NPs, as elaborated upon in the
subsequent section dedicated to the investigation of magnetization [24]. Figure 6 depicts
HRTEM micrographs of the as-synthesized Fe3O4 NPs. Figure 6 shows that the produced
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particles have a spherical form. Furthermore, the majority of the detected particles range
in diameter from 30 to 60 nm, with some particles aggregating due to their high magnetic
properties. The acquired result validates the nanostructure of the examined Fe3O4 NPs.
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Figure 5. FE-SEM micrographs of the magnetite NPs under investigation. (a) 20,000×. magnification
and 5 µm scale; (b) 70,000× magnification and 1 µm scale.
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FE-SEM was utilized to investigate the surface morphology of the produced nanocom-
posites. FE-SEM micrographs of the MC and MC-7 nanocomposite films are shown in
Figure 7. Figure 7a depicts a thorough investigation of the morphology of the FE-SEM
image for a pristine MC sample, revealing a homogeneous film surface with minimal rough-
ness. However, the introduction of Fe3O4 NPs into the MC matrix, as seen in Figure 7b for
MC-7, results in well-distributed NPs, allowing for a reasonable density of interfacial zones
between the nanoparticles and the MC matrix. The acquired FE-SEM micrograph of MC-7
verifies the successful fabrication procedure for achieving an acceptable dispersion of NPs
across the host MC matrix. Also, Figure 7b shows the production of micron-sized agglom-
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erations from Fe3O4 nanoparticles which influence the optical and magnetic properties of
the samples.
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3.2. Optical Characterization

The UV-VIS absorbance of the samples was measured at room temperature. Figure 8
depicts the UV-VIS absorbance spectra for magnetite/MC nanocomposites. As the wave-
length drops, all of the samples exhibit an increase in absorption. As shown in Figure 8,
all the samples demonstrated significant absorptions, as identified by strong absorbance
peaks. These absorbance peaks occurred at so-called cut-off wavelengths of 225, 245, 436,
and 563 nm for the MC, MC-7, MC-15, and MC-25 samples, respectively. The absorption
edge shows a red shift as the weight percentage of magnetite nanoparticles increases in
the samples. Such a red shift is an indication of narrowing the band gap due to the incor-
poration of magnetite into the MC network. Accordingly, the optical band gap (Eg) was
determined to be 5.51, 5.05, 2.84, and 2.20 eV for the MC, MC-7, MC-15, and MC-25 samples,
respectively, as tabulated in Table 1. This demonstrates that the band gap energy lessens
with the addition of nanoparticles. The absorption coefficient (α) vs. photon energy (hν)
curves of the under investigation MC/magnetite nanocomposites are depicted in Figure 9.

Table 1. Energy band gap and opacity values of magnetite/MC nanocomposites.

Sample Name Energy Gap (Eg), eV Opacity, %/cm

MC 5.51 2.7
MC-7 5.05 5.2

MC-15 2.84 29.8
MC-25 2.20 45.3

Similarly, the band gap (Eg) values were derived from the absorption coefficient (α)
and the photon energy (hν). The direct band gap Tauc relation is used (αhν)2 = A

(
hν − Eg

)
,

where A represents the proportionality constant. Accordingly, Figure 10 depicts graphs of
[αhν]2 vs. hν for the investigated samples. The Eg value was calculated for each sample
at the intersection between the extrapolation of the linear component of the curve at
[αhν]2 = 0. The obtained Eg values decreased as the magnetite concentration in the sample
increased. The creation of sub-band defect states may have caused the band gap to narrow.
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Based on the absorbance data (A), the Beer–Lambert law was utilized to determine
the transmittance (T%) of both pure and doped MC samples. The transmittance values
are obtained by converting the absorbance measurements using the following formula:
A [%] = 2 − log T[%] [25]. The transmittance T% of various concentrations of magnetite in
MC nanocomposites is displayed in Figure 11. According to this figure, the pristine MC
sample has great transparency in the visible zone (above 50%), and transparency increases
beyond this region. Nevertheless, when the amount of magnetite NPs in the samples
increased, the transparency dropped. Transparency decreases with increasing magnetite
concentration in the sample, as seen in Figure 11. The decrease in transparency of the
heavily doped films was brought on by a significant scattering effect. This is because
the inclusion of magnetite nanoparticles led to a reduction in transparency. The strong
scattering in magnetite/MC nanocomposites is caused by the embedded additions of
magnetite nanoparticles [26,27].

The opacity of the magnetite/MC nanocomposites was determined from the following
equation [27]: Opacity = A600

t , where A600 is the value of absorbance at 600 nm and t is the
magnetite/MC nanocomposites thickness (cm). The calculated values of opacity using the
above equation are given in Table 1. The opacity values of magnetite/MC nanocomposites
increase in the order 2.7, 5.2, 29.8, and 45.3 for MC, MC-7, MC-15, and MC-25, respectively.
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Figure 11. The transmittance spectra of MC/magnetite nanocomposites.

3.3. Magnetization Analysis

Figure 12 displays the plot depicting the relationship between magnetization and the
applied external magnetic field for the Fe3O4 NPs. The aforementioned data indicate that
the magnetite nanoparticles under investigation have a superparamagnetic characteristic,
characterized by a low retentivity (Mr) value of 2.65 emu/g and minimal hysteresis loss.
The obtained saturation magnetization (Ms) was found to be 18.08 emu/g, which indicates
a rather small value when compared to the typically observed saturation magnetization
values for magnetite NPs. The magnetic properties of magnetite NPs are known to be influ-
enced by the specific synthesis process employed and the corresponding conditions under
which the synthesis takes place. In order to achieve the necessary magnetic characteristics
of magnetite NPs, it is imperative to meticulously select and regulate the synthesis process
and conditions. In a study conducted by Mizukoshi et al., the researchers examined how
different feeding conditions of FeSO4·7H2O solution into the base solution influenced the
magnetic characteristics of magnetite NPs [28]. The study revealed that variables such
as feeding rates and the length of sonication exposure exerted a significant impact on
the characteristics of magnetite NPs. Consistent with these results, it was observed that
magnetite NPs exhibited superparamagnetic characteristics, which was indicated by a
rather moderate saturation magnetization value of approximately 32.8 emu/g. The afore-
mentioned behavior was witnessed after the introduction of a solution of FeSO4·7H2O
into the base solution, with a flow rate of 1 mL/min [28]. The observed low value of Ms
for the magnetite NPs under investigation can be attributed to the gradual addition of
FeSO4·7H2O solution to the NaOH solution. Furthermore, the measured Ms value for the
examined magnetite NPs is low compared to that of bulk magnetite (92 emu/g) as reported
in the referenced study [29]. The decrease in Ms can be ascribed to the presence of disorder
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on the surface of particles and/or the phenomenon of spin canting occurring at the particle
surface [30,31].
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under investigation.

Figure 13 displays the magnetization curves of the MC/magnetite NC samples under
various applied magnetic fields, ranging up to 20,000 Oe, while maintaining room tem-
perature conditions. The pure MC sample did not exhibit hysteresis loop behavior, which
is typically indicative of diamagnetic activity. Nevertheless, the incorporation of Fe3O4
nanoparticles (NPs) into the MC matrix resulted in the formation of a magnetic hysteresis
loop, which exhibited variations depending on the amount of NPs loaded. This phe-
nomenon is visually depicted in Figure 13. The obtained outcome affirms that the weight
percentages of Fe3O4 NPs in the produced nanocomposites were adequate in counteracting
the diamagnetic characteristics of the host magnetic composite matrix [24,32].

Figure 13 displays the magnetic characteristic parameters Ms, Mr, and coercive field
(Hc) variations for the MC/magnetite NCs, as depicted in the zoomed-in region. Figure 14
displays the values of Ms, Mr, and the coercive field (Hc) for both the synthesized magnetite
NPs and the fabricated MC/magnetite NCs. A monotonically increasing trend of Ms
(magnetization saturation) and Mr (retentivity) with respect to the weight percentage of
magnetite NPs was observed. It is evident that there is a significant enhancement in the Ms
and Mr values as the content of magnetite NPs increases. On the other hand, the measured
coercivity (Hc) values of the examined NCs did not exhibit a consistent trend with the rise
in the Fe3O4 concentration. The Hc value of MC-15 was measured to be 88.4 Oe, which is
more than the Hc value of MC-25 (81.47 Oe). The relationship between the Hc value and the
magnetic filler content in NCs was investigated for carbon-cased iron carbide/poly(vinyl
chloride) NCs [16]. In the conducted study, it was shown that an increase in coercivity was
achieved for Nc when the filler content remained below the percolation threshold. This
phenomenon was explained by the influence of dipolar interactions between polymers and
magnetic nanoparticles on the coercivity [16].
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4. Conclusions

Biodegradable MC polymer and magnetite nanoparticles obtained by the reverse
co-perception technique were combined to create MC/magnetite nanocomposites. The
XRD pattern of reverse co-precipitated Fe3O4 nanoparticles was computed using Rietveld
analysis with FullProf software. The diffraction peaks are well indexed, indicating a
distinct crystalline character. The lattice parameters are consistent with standard data.
The Williamson–Hall function was used to compute crystallite size and lattice strain. The
average crystallite size and lattice microstrain were identified as around 46 nm and 0.0015
for Fe3O4 nanoparticles.

Analyzing the optical properties of the nanocomposite films showed that the MC/
nanocomposite with 25% magnetite nanoparticles had a much smaller MC optical band
gap than the other films, going from 5.5 eV to 2.20 eV. The decrease in band gap value is
indicative of a stronger bond between magnetite nanoparticles and the MC polymer matrix.
This, in turn, promotes a more effective transfer of electric charge along the polymer chains
by increasing the number of trap sites located between the valence and conduction bands.
Substantial improvements in both the saturation magnetization (Ms) and the remanent
magnetization (Mr) were seen in the MC/Fe2O3 NCs under research when supermagnetic
magnetite nanoparticles were added. However, when the concentration of Fe2O3 grew, the
coercivity (Hc) values of the investigated nanocomposites (NCs) did not show a consistent
trend, possibly because the concentration was higher than the percolation threshold. All
things considered, the exploration of the novel MC/magnetite NCs yielded the first physical
characterization of these NCs, which might enable the assessment of their possible behavior
in real-world practical applications.
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