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Abstract: The dentistry industry has been modernized by nanotechnology, as this emerging field
has opened up new doors for dental treatment, restoration, and tissue regeneration. The poten-
tial applications of nanomaterials in dentistry are reviewed in this paper, ranging from advanced
restorative materials to targeted drug delivery systems. Due to their unique characteristics (e.g.,
high surface area-to-volume ratios and tunable physicochemical properties), nanomaterials allow
for the precise control of material behavior at the nanoscale. The ability of nanostructured materials
to promote tissue regeneration offers the prospect of developing new approaches in bone and peri-
odontal regeneration. Therefore, this review thoroughly analyzes nanomaterials’ characteristics and
biomedical applications, highlighting how they can aid in overcoming challenges in dental care and
create possibilities for more individualized and less-invasive dental treatments.

Keywords: nanomaterials; dental applications; drug delivery; nanoparticles; nanocomposites;
nanocoatings

1. Introduction

Over time, dental materials have undergone an impressive transformation caused
by the need for more durable and effective solutions in dentistry. Dental materials have
evolved from primitive substances to sophisticated nanotechnologies, reflecting a constant
search for innovation and advancement in dental care [1]. Dental care involved basic
elements like metals, stones, and plant-based compounds in earlier times. According to
archaeological discoveries, the ancient Egyptians used materials such as gold, silver, and
ivory for dental applications [2]. The use of metallic alloys, particularly gold and silver,
for dental restorations started gaining popularity in the Middle Ages. These metals were
preferred because they were biocompatible, durable, and malleable. Furthermore, the
widespread use of dental amalgam, a mixture of metals including mercury, silver, tin, and
copper, emerged in the 18th and 19th centuries. Throughout a significant portion of the 19th
and 20th centuries, dental amalgam replaced precious metal fillings as the most common
and accessible option [3,4].

Significant developments in synthetic materials in dentistry occurred in the 20th
century, the most important being the introduction of composite resins. When composite
resins were developed, they completely changed restorative dentistry since they were more
robust and more aesthetically pleasing. Composite materials consist of a blend of resin and
filler particles, allowing for customized colors and an improved appearance. Furthermore,
composite resins are biocompatible and can be used in various dental restorations, such
as veneers, fillings, and bonding processes [4,5]. Because porcelain can replicate the color
and translucency of natural teeth so well, it became very popular in the late 20th century.
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Compared to traditional materials, porcelain restorations, such as dental veneers and
crowns, offer better durability and an improved appearance. Thanks to materials science
and manufacturing developments, contemporary ceramics are now essential to restorative
and aesthetic dentistry [4–6].

Modern dental materials with improved qualities and functionalities have been created
due to the application of nanotechnology in dentistry in recent years. Nanomaterials with
potential uses in dentistry include nano-hydroxyapatite, nanocomposites, and nanostruc-
tured surfaces. These materials represent a new approach to customized and regenerative
dental treatments because of their unique properties [1,4].

Nanomaterials are compounds engineered at the nanoscale with sizes typically between 1
and 100 nanometers. When compared to their bulk counterparts, materials frequently display
distinct qualities at the nanometric scale, such as increased surface area, improved conductivity,
and enhanced optical, magnetic, or mechanical properties [7]. When nanotechnology is used
in dentistry, the field is known as nanodentistry. It supposes the utilization of nanomaterials
and nanorobots in dentistry to identify, treat, and prevent dental conditions. Dental care has
been revolutionized by nanodentistry in areas such as cavity treatment, teeth whitening, and
orthodontics. Nanoparticles (NPs) can help remove stains and promote remineralization,
while nanocomposites increase the longevity of restorations. Nanotechnology enhances the
strength and convenience of orthodontic materials. Furthermore, dental treatments made
using nanomaterials are supposed to be biocompatible and long-lasting, requiring fewer
replacements over time. Nanodentistry represents a major breakthrough in dental healthcare
by providing precise, long-lasting, and patient-friendly therapies [8,9].

There are two approaches when creating nanomaterials for dental applications: top–
down and bottom–up. For the top–down approach, larger structures or materials are
progressively reduced to the nanoscale through a few steps. The surface area increases
as the size of its particles decreases, leading to a noticeable improvement in its physical
characteristics [10,11]. On the other hand, bottom–up fabrication involves combining
smaller structures into larger ones via the gradual construction of nanostructures from
atomic or molecular components. This process depends on molecular synthesis and self-
assembly techniques, in which atoms or molecules spontaneously arrange themselves into
appropriate patterns [10,11].

The technique can be chosen by considering the desired structure, properties, and
application of nanomaterials in dentistry. Nanomaterials can be precisely engineered to
possess specific properties [12], and they can be used in different areas of dentistry, as
presented in Figure 1. For example, therapeutic or imaging substances can be functionalized
into NPs to provide targeted drug delivery (TDD) and efficient diagnostics. There are many
benefits of using nanomaterials in dental treatments. These materials allow for less invasive
processes because they can accurately interact with biological tissues at the nanoscale,
reducing tissue trauma and speeding up the healing process [12,13].
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Figure 1. Nanomaterial applications in dentistry. Reprinted from an open-access source [11].
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Examples of nanomaterials for different applications in dentistry, as well as their
mechanisms of action and limitations, are illustrated in Table 1.

Table 1. Examples of nanomaterials, their applications, mechanisms of action, and limitations.

NPs Applications Mechanism of Action Limitations Refs.

Silver NPs (AgNPs)

Composites
Antibacterial coatings
Toothpaste additives

Dental implants

Release silver ions that disrupt
bacterial cell walls

Bacterial growth inhibition
Reduce biofilm formation

Potential toxicity to
human cells [14–18]

Titanium Dioxide
(TiO2) NPs

Implants
Antibacterial coatings

Composites

Photocatalytic activity under UV
light breaks down organic stains
Improves mechanical properties

Potential for UV-induced
damage

Can cause oxidative
stress

[19–22]

Zinc Oxide NPs
(ZnO NPs)

Toothpaste
formulations

Dental varnishes
Antibacterial agents

Disrupts microbial cell membranes
Provides a protective barrier Potential cytotoxic effects [23–26]

Hydroxyapatite NPs
(HAp NPs)

Tooth enamel
remineralization

Dental fillers
Bone regeneration

Similar to natural tooth mineral
structure—it repairs and strengthens

enamel
Promotes bone growth in implants

Poor mechanical
properties [27–30]

Gold NPs (AuNPs)

Mouthwashes
formulations

Toothpaste additives
Implants

Antibacterial properties
Osteoinductive action

High cost
Potential toxicity [31–33]

Silica NPs Dental fillers
Coatings

Improves mechanical properties and
durability of fillers Potential toxicity [34–36]

Copper NPs (CuNPs)
Toothpaste

formulations
Coatings

Prevents biofilm formation
Release copper ions that disrupt
microbial cell membranes and

inhibit bacterial growth

Potential toxicity
Risk of corrosion [37–40]

Polymeric NPs Drug delivery
Adhesives

Controlled release of drugs
Improves adhesiveness Potential toxicity [41–44]

Magnetic NPs TDD
Antibacterial agents

Uses magnetic fields to guide
particles to targeted locations

Antibacterial properties
Biocompatibility issues [45–48]

Graphene oxide Dental implants
Coatings

Enhances mechanical strength and
bioactivity in implants

Antibacterial activity through
oxidative stress and physical

disruption

Potential toxicity [49–52]

In this context, this review paper aims to provide a thorough overview of how nano-
materials improve dental care. This work attempts to provide insight into the prospective
applications of nanomaterials in dentistry, including restorative materials, implantology,
and drug delivery systems, by highlighting current research findings and technological ad-
vancements. This review also emphasizes the benefits, challenges, and potential directions
of applying nanotechnology to dentistry.

2. Nanomaterials in Preventive Dentistry
2.1. Nanoparticles in Oral Hygiene Products

Using nanomaterials in dental care products improves the effectiveness of toothpaste
and other oral hygiene products. TDD, remineralization, and antibacterial activity are just
a few uses for NPs [53].
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Bacteria are important in various dental problems, including tooth decay, gum disease,
and oral infections. Many different types of bacteria in the oral cavity, such as Streptococcus
mutans, Porphyromonas gingivalis, and Streptococcus oralis, are known to play a major role in
developing periodontal and dental caries [54,55]. Because of their unique physio-chemical
characteristics, metallic NPs seem to be promising substitutes to treat various illnesses
caused by bacteria. Their properties and potential applications in oral hygiene products are
presented in Table 2 [56].

Table 2. Properties and potential applications of NPs in oral hygiene products.

NPs Properties Application in Oral Hygiene Refs.

AgNPs Strong antimicrobial activity
Bacterial growth inhibition

Toothpaste—to prevent dental caries
Alcohol-free mouthwashes [57–60]

AuNPs Antimicrobial activity
Effective against S. oralis

AuNP-based mouthwashes
Toothpaste formulations [61–63]

CuNPs Anti-biofilm formation
Antimicrobial activity Toothpaste formulations [63,64]

ZnO
NPs

Anti-inflammatory and
antibacterial activity Toothpaste formulations [26,65]

Several metallic NPs have demonstrated antimicrobial and anti-inflammatory activ-
ity. S. mutans has an impact on caries formation since it creates a biofilm on the surface
of teeth, known as plaque. AgNPs have shown bactericidal effects against S. mutans
through mechanisms such as disrupting bacterial cell membranes and inhibiting enzymatic
processes [60,66]. AgNPs synthesized using lemon peel exhibited higher antibacterial
activity in toothpaste formulations, as evidenced by a larger diameter of the inhibition zone
compared to that of other brands of toothpaste existing on the market [67]. A few studies
demonstrate that the use of AuNPs in toothpaste has antimicrobial effects, although the data
are limited. A specific study tested the antibacterial effect of different toothpastes against
Gram-positive and Gram-negative bacteria [68]. Although the antibacterial effect was not
the most significant among them, AuNPs still showed an effect against Gram-positive
bacteria, which could be further studied for creating novel oral hygiene products.

Another important class of NPs that can be used in oral hygiene is ceramic NPs, espe-
cially HAp NPs, since they are dental enamel’s primary inorganic component [69]. HAp
NPs have exceptional remineralization properties that support tooth structure and aid in
restoring damaged enamel. HAp NPs could promote enamel remineralization in toothpaste
formulations, which may lower the risk of tooth decay and sensitivity [29,69]. Additionally,
studies have shown that HAp NPs can be used for teeth whitening when it is incorpo-
rated into toothpastes and mouthwashes in concentrations up to 10%. It demonstrated
comparable results with other teeth whitening products available on the market [70,71].
Florea et al. [72] developed toothpaste with both enamel remineralization and antibacterial
properties by using nano-HAps (nHAps) and birch extract. They tested eleven different
formulations with variations in birch extract concentrations and types of nHAps. Tooth-
paste formulations containing nHAps demonstrated an excellent level of enamel repair
and normalized the enamel nanostructure within 10 days of treatment. Toothpaste P5,
containing both nHAps and birch extract, showed a good balance of antibacterial activity
and remineralization potential, which makes it a good candidate for dual-purpose oral care.
Another important observation was that nHAps in some formulations seemed to reduce
the immediate antibacterial effect of the birch extract, possibly by delaying the release of
active molecules. Ionescu et al. [73] investigated two commercially available toothpastes
containing n-HAps substituted for metal ions in terms of early bacterial colonization (EC)
and biofilm formation. The toothpastes tested were α (Zn-carbonate substituted n-HAp)
and β (F, Mg, Sr-carbonate substituted n-HAp). The β toothpaste outperformed the α and
control groups in reducing bacteria, likely due to its combination of fluoride and strontium.
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Both kinds of toothpaste left residues on enamel- and resin-based composite surfaces, and
β showed potential to prevent secondary caries. The results suggest that brushing twice
daily with β toothpaste could improve oral health by reducing harmful biofilms. Amaechi
et al. [74] compared the effectiveness of several n-HAp toothpastes with a commercial
desensitizing toothpaste containing calcium sodium phosphosilicate (CSPS) in relieving
dentin hypersensitivity (DHS). The results showed that 15% nano-HAp and 10% n-HAp
with potassium nitrate were as effective as the CSPS toothpaste in reducing DHS. The 10%
n-HAp alone was a bit less effective for thermal sensitivity over time.

Silica NPs have also been investigated in preventive dentistry. Barma et al. [75] studied
the antibacterial properties of mouthwash infused with silica NPs against common oral
pathogens like Streptococcus mutans, Staphylococcus aureus, and Enterococcus faecalis. The
NPs inhibited bacterial growth, particularly at higher concentrations. The mouthwashes
were effective against Gram-positive bacteria but were not tested against Gram-negative
bacteria, suggesting a need for further research. Wang et al. [76] developed a novel type
of NPs, nMS-nAg-Chx, containing mesoporous silica (nMS) with nanosilver (nAg) and
chlorhexidine (Chx), which aimed to prevent and treat dental caries. The NP system
inhibited the growth of cariogenic bacteria and promoted the growth of non-cariogenic
(benign) bacteria, transforming the biofilm into a non-harmful one. These findings indicate
that nMS-nAg-Chx could be used for various dental applications, such as mouthwashes or
toothpaste, to prevent caries and biofilm formation. Silica NPs have also been investigated
for retaining toothpaste on oral surfaces in a study by Aspinall et al. [77]. Silica NPs
with different functional groups, including chitosan, acryloyl, phenylboronic acid, and
others, are incorporated into toothpaste formulations. These toothpastes were tested on
sheep tongue mucosa to see how well they adhered to the oral surfaces. The kinds of
toothpaste containing functionalized silica, particularly those with chitosan, acryloyl, and
phenylboronic acid, had better retention compared to those with unmodified silica. This
happens because the functionalized silica has mucoadhesive properties, and it interacts
more with the mucosal surface. This kind of formulation could improve oral care, since the
active ingredients in the oral care products will be kept in the oral surfaces for longer.

2.2. Nanocoatings

Dental implant nanocoatings are a state-of-the-art method of extending the lifespan
and performance of implants. Through nanotechnological approaches, dental implant
surface modifications can be made more effective and long-lasting. For example, nanocoat-
ings can reduce inflammation, accelerate healing, and improve tissue integration [78,79].
The antibacterial activity, corrosion resistance, and biocompatibility of TiO2 NPs make
them significant in nanocoatings. TiO2 NPs can be added to dental implant surfaces to
improve osseointegration, reduce inflammation, and decrease the chance of bacterial colo-
nization [78]. A study conducted by Memarzadeh et al. [80] proved that TiO2 nanocoatings
on implants have an antimicrobial effect, which makes them beneficial, as it lowers the risk
of infection. It also showed an increased proliferation of osteoblasts. Another study by Li
et al. [81] revealed that dental implants coated with TiO2 NPs facilitated cell adhesion and
proliferation. These findings underscore the significant role of nanocoatings in enhancing
the initial stages of implant healing, ultimately contributing to improved clinical outcomes.
Hammad et al. [82] evaluated the effects of ZnO nanocoating on nickel-titanium (NiTi)
orthodontic wires, focusing on antibacterial properties and frictional resistance. The ZnO
nanocoating was successfully applied, and a uniform layer of NPs was formed. The coated
wires showed better antibacterial activity against Gram-positive bacteria and reduced
frictional resistance by 34% compared to uncoated wires. These findings suggest that
ZnO nanocoating not only improves the antibacterial behavior of NiTi wires but also their
mechanical performance.

The effects of HAp NP nanocoatings include promoting faster and more robust os-
seointegration, reducing the risk of implant failure, and enhancing implant stability [83]. A.
Besinis et al. modified the surface of titanium alloy implants by using silver, TiO2, and HAp
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nanocoatings [84]. The findings showed strong antibacterial properties against S. sanguinis.
The nanocoatings restricted bacterial growth in the surrounding environment and stopped
biofilm formation on the implant surface. Pang et al. [85] investigated a combination of
bone morphogenetic protein-2 (BMP-2) and nHAp to improve the osseointegration of Ti
dental implants. It was found that coating Ti implants with nHAp and BMP-2 promoted
the differentiation of human mesenchymal stem cells (BM-MSCs) into osteoblasts, which
are responsible for bone formation. The in vivo studies showed that there was a strong
expression of early bone formation markers, but no visible bone formation was observed
at 4 weeks post-implantation. They might have potential for long-term bone formation,
but the short observation period may have been insufficient. De Oliviera et al. [86] tested
the effectiveness of nHAp coatings on dental implants by comparing them to traditional
implant surfaces. A gene expression analysis showed that nHAp-coated implants increased
markers related to bone formation, especially in the early stages of healing. This suggests
that nHAp coatings help in boosting bone cell activity. Micro-CT scans showed that nHAp-
coated implants had better bone integration and formation compared to traditional implant
surfaces since they provided higher percentages of bone volume and a higher bone quality
around the implants. These findings highlight the properties of nHAp coatings, the most
significant one being that they can improve bone formation around implants.

The utilization of nanocoatings in dental implants represents a novel approach to
prolonging the life and efficacy of the implants. Through nanotechnology, surface mod-
ifications of dental implants can be optimized for enhanced effectiveness and durability.
Findings demonstrated that coatings offer antibacterial properties, promote osseointegra-
tion, reduce inflammation, and prevent biofilm formation. Through continued research,
nanocoatings can lead the way toward safer, more effective, and longer-lasting implants.

Nanocoatings also have applications in orthodontics. Orthodontic braces may be
more prone to plaque formation during extended wear, which raises the risk of gum
disease and dental damage. Moreover, it can result in more friction building up between
the teeth and the braces. The patient may experience discomfort and irritation due to
this increased friction, which could lengthen the adjustment period and impact treatment
results [87,88]. An innovative way to improve orthodontic braces is with nanocoatings. This
has advantages such as less friction, biocompatibility, and improved aesthetics by adding
NPs to the brace surface. These coatings offer smoother surfaces, which lessen patient
discomfort and may shorten treatment durations. They may also include antibacterial
properties, which promote good dental hygiene [88].

The antibacterial properties and ion release of nanocoated nitinol archwires were
investigated by Ilic et al. [89]. Copper-doped titanium nitride (TiN-Cu) coating was created
to enhance corrosion resistance and achieve antibacterial properties to orthodontic nitinol
(NiTi) archwires. Coatings with uniformly distributed CuNPs were discovered by a physic-
ochemical examination. TiN-Cu nanocoated archwires exhibited substantially reduced Ni
release. The antibacterial activity was demonstrated by the quantities of Streptococcus mitis,
which were significantly lower on the TiN-Cu-coated archwires. According to the study,
TiN-Cu-nanocoated archwires may be good candidates for more clinical research due to
their potential for improved biocompatibility and antibacterial qualities.

In another recent study conducted by Selvaraj et al. [90], the researchers investigated
the synthesis and characterization of clove- and cardamom-reinforced ZrO2 NPs for coating
orthodontic archwires. At a concentration of 50 µL, there was very little cytotoxicity
shown. The NPs demonstrated strong antibacterial action against a range of oral infections.
Furthermore, adding cardamom and clove improved the NPs’ anti-inflammatory effects.
A uniform surface coating was obtained when NiTi and SS archwires were coated with
a digital magnetic stirrer. However, static and kinetic friction assessments revealed no
significant differences between coated and non-coated NiTi and SS wires with ZrO2 in
a study by Golshah et al. [91]. Although ZrO2 has been found in other domains to be
effective in lowering friction, its treatment on TMA wires had no apparent impact on
friction in their investigation. These studies highlight that while ZrO2 NPs coatings may be
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biocompatible and hold an antibacterial effect, they may not have an impact on the static
and kinetic friction.

Polydopamine-graphene oxide (PDA-GO) nanocoatings were added to NiTi archwires
via self-assembly in another study conducted by Chen et al. [92]. The coated archwires
demonstrated uniform characteristics, consequently minimizing Ni dissolution. Its antibac-
terial effectiveness against Streptococcus mutans was established, along with its biocompati-
bility. Additionally, it demonstrated enhanced corrosion resistance in the oral fluid media.
Another study by Gracco et al. [93] examined the effects of coating orthodontic wires with
Ni + MoS2 and Ni + WS2. It found that the coated wires consistently reduced friction when
compared to uncoated and Ni-coated wires, especially in “dry” conditions, and that there
was uniform adherence and effective lubricant incorporation. More research is necessary to
understand their performance in settings that mimic the buccal environment.

Overall, research has shown the potential of different nanocoatings to improve bio-
compatibility corrosion resistance and exhibit antibacterial effects, although their impact
on friction and other properties may vary. Further research is necessary to fully understand
their performance in clinical settings and optimize their benefits for orthodontic patients.

3. Nanomaterials in Restorative Dentistry
3.1. Nanocomposites for Dental Fillings

Dental fillings are essential for repairing tooth structure and preventing further de-
cay. They have traditionally been made of amalgam, composite resins, or glass ionomer
cement-based materials. Nonetheless, developments in nanotechnology have resulted in
nanocomposites made particularly for dental fillings [94,95]. A few examples and their
properties are described in Table 3.

Table 3. Nanocomposites and their properties for dental fillings.

Nanocomposite Properties Refs.

Silica NPs
Improved mechanical properties

Reduced polymerization shrinkage
Enhanced wear resistance

[36,96,97]

TiO2 NPs Increased tensile strength
Improved stiffness and toughness [98,99]

Calcium phosphate (CaP) NPs Increased wear resistance
Stress-bearing capacities [100]

Zirconium Oxide (ZrO2) NPs Enhanced wear resistance and hardness [101]

Graphene Oxide NPs Improved mechanical strength
Crack propagation resistance [102,103]

AgNPs Improved flexural strength
Increased surface microhardness [104,105]

ZnO NPs Improved microhardness
High flexural strength and modulus [106,107]

Carbon nanotubes
Increased elastic modulus

Increased compressive strength
Improved flexural strength

[108,109]

One of the key advantages of nanocomposites is their improved mechanical strength.
The inclusion of NPs, such as silica or zirconia, improves the hardness and wear resistance
of the filling material. Furthermore, nanocomposites have superior bonding to tooth
structures. The NPs can penetrate the micro-structures of dentin and enamel, which makes
a more effective seal and reduces the risk of secondary caries [110,111].

A study by Azmy et al. [112] investigated how the mechanical properties of light-cured
dental composite resins (DRCs) were affected by adding nanoparticles (ZrO2, TiO2, and
SiO2). The concentration of NPs was found to possess a substantial impact on the flexural
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strength (FS). Although the FS of the control DRCs was below ISO requirements, the FS
of the ZrO2 and 3 wt.% of TiO2 and SiO2 increased and were above the ISO’s 80 MPa
threshold. In another study by Nikolaidis et al. [36] to alter silica NPs, the researchers
created novel methacrylated quaternary ammonium silanes, which were then added to
a Bis-GMA/TEGDMA-based matrix for dental nanocomposite resins. The mechanical
properties and dispersion of the altered NPs were improved. All composites experienced
less polymerization shrinkage when silica NPs were added, reducing the amount of stress
applied to the tooth structure. Saridou et al. [113] synthesized dental nanocomposite resins
using organically modified silica and Quaternary ammonium-clay NPs. An increased
clay content lowered the solubility and shrinkage strain without compromising the final
strength or flexural modulus. These results provide significant insights for the development
of novel dental fillings using nanomaterials. Toledano et al. [114] created polymeric Zn-
doped NPs to improve the mechanical properties of dentin. The NPs increased hardness
and elasticity by promoting mineral deposition, which helped prevent cracks and fractures.
In root dentin, Zn-NPs improved the strength and reduced microleakage. The dentin was
more durable, especially in endodontic treatments. Moreover, the Zn-NPs helped preserve
collagen. Alshamrani et al. [115] investigated how adding zirconia and glass Si NPs to
3D-printed dental resin impacts its properties. Adding 10–20% zirconia and 5% glass silica
NPs significantly improved the resin’s flexural strength, and it made it more resistant to
mechanical stress, which is very important for dental restorations. The NPs likely reinforced
the resin by distributing stress more effectively and preventing crack propagation. Aati
et al. [103] studied the effects of ZrO2 NPs on the properties of an acrylate ester-based
resin for dental restoration. Adding ZrO2 NPs improved the resin’s hardness, flexural
strength, and toughness. Optimal properties were observed with 3 wt.% ZrO2, because
the resin had the highest fracture toughness and modulus. Higher filler concentrations
(5 wt.%) led to lower toughness and flexural modulus values due to the agglomeration of
NPs. After 3 months of aging in artificial saliva, the resin showed improved properties such
as the degree of conversion and microhardness. Rudolf et al. [116] created a poly(methyl
methacrylate) PMMA and ZnO composite and studied its properties. The PMMA-ZnO
composite showed an improved compressive strength compared to that of pure PMMA and
had an improved durability. Moreover, the nanocomposite was found to be non-cytotoxic.

From their improved mechanical strength to their superior aesthetic qualities, nanocom-
posites offer a great solution for addressing the challenges associated with traditional dental
materials. Nanocomposites promise to improve dental fillings’ durability, longevity, and
overall performance.

3.2. Nanoadhesives

When it comes to tooth fillings, the adhesive layer plays an important role because
it helps stop microleakage between the filling and the tooth that results from the filling
material shrinking. This layer prolongs the filling’s longevity by sealing off potentially
harmful substances. An ideal adhesive should repel bacteria and prevent biofilm formation.
It also should improve the filling’s adhesive properties. To achieve these characteristics,
nanomaterials can be incorporated into the adhesive [117,118]. Nanoadhesives provide
a better bonding strength. The small size of these NPs allows for the better wetting and
infiltration of the adhesive into the tooth substrate, reduces gaps, and increases bond
strength. They also offer improved resistance to degradation [119,120].

Recent studies have explored the incorporation of various NPs into dental adhesives
to enhance their properties. Abdul et al. [120] synthesized zirconia/silver phosphate NPs
to create experimental dental adhesives. The adhesive demonstrated antibacterial activity
against Gram-positive and Gram-negative bacteria. Additionally, it had an improved bond
strength and long-term color stability. Melo et al. [121] studied the effects of incorporat-
ing AgNPs and amorphous calcium phosphate (ACaP) into novel adhesives on dentin
bond strength and plaque. ACaP delivers calcium and phosphate ions for remineralization,
whereas AgNPs add antimicrobial properties. As a result, there was significant antibacterial
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activity without any decrease in dentin bond strength. Rao et al. [122] aimed to improve the
bond strength of caries-affected dentin (CAD) by remineralizing it using PAMAM-loaded
bioactive glass NPs. The experimental groups had a stronger micro-tensile bond strength
(MTBS) than the control group, indicating better bonding to the teeth. The remineralization
process aided by MBG NPs improved the binding strength of the CAD. Furthermore,
altering the adhesive with PMBG helped distribute PAMAM polymer to collagen fibrils,
facilitating remineralization. Another study by Kreutz et al. [123] investigated how several
NPs, such as BAG-Bi, CAP/MA-POSS, SiO2@Ag, and MA-POSS, affected dental adhesives.
It was discovered that BAG-Bi enhanced water adsorption and the sol fraction, whereas
MA-POSS reduced water adsorption. CAP/MA-POSS enhanced the shear viscosity, but
SiO2@Ag did not affect the material characteristics. All of the NPs caused mineral precip-
itation, but none had an antimicrobial effect. Additional study is required to investigate
their long-term antibacterial effects and optimize NP doses for therapeutic usage.

Another study by Mirhashemi et al. [124] investigated how adding ZnO NPs and
chitosan NPs to orthodontic composite resins affects their shear bond strength (SBS), which
measures how well the composite sticks to teeth and also compared it to the commercially
available Transbond XT. Adding ZnO and chitosan NPs up to 5% did not change the SBS
of the composite resins compared to the standard Transbond XT composite. However,
adding 10% NPs decreased the SBS. This might be due to the disruption of the composite’s
consistency and possible toxicity of the high NP concentration. This study indicates that
adding lower concentrations of NPs is safe and maintains a good bond strength, while
higher concentrations can be harmful. Binhansan et al. [125] studied how adding two
different concentrations of carbon NPs (CNPs) of 2.5% and 5% to a control adhesive (CA)
impacts its properties. The 2.5% CNP adhesive achieved the highest SBS (25.15 MPa),
followed by the 5% CNP adhesive (24.25 MPa), both showing an improved bond strength
compared to the CA. The 5% CNP adhesive displayed thicker resin tags and a more uniform
hybrid layer compared to the 2.5% CNP and CA. The addition of CNPs improved the bond
strength of the adhesive, with the 2.5% sample showing the best performance. However,
both CNP concentrations resulted in a reduced viscosity and degree of conversion. These
findings indicate the need for further research.

The effects of adding NPs to adhesives were also investigated in an ex vivo clinical
trial by Allende et al. [126]. This study involved fifteen participants and a total of 30 third
molars. The researchers investigated how adding 0.2% CuNPs and 5% ZnONPs to a
commercial adhesive affects its performance and the hybrid layer in teeth. When observing
its effects on the microtensile bond strength and degree of conversion, no significant
differences were found between the experimental and control groups (standard adhesive),
indicating that adding NPs did not negatively impact the adhesive’s bonding strength
or polymerization. Moreover, the experimental group showed lower nano leakage and
gelatinolytic activity at the hybrid layer than the control group. This modification could
improve dental restorations’ long-term performance by reducing the adhesive–dentin
interface’s breakdown.

Nanoadhesives show potential for improving antibacterial characteristics and mechan-
ical strength. While recent studies have revealed promising outcomes, additional research
is required to fully understand the long-term consequences and improve NP formulations
for therapeutic usage. With continuing advances in nanotechnology, NP-based dental
adhesives may provide novel options for increasing the longevity and performance of
dental restorations, thereby boosting patient oral health.

4. Nanomaterials in Endodontics
4.1. Nanoparticles in Root Canal Disinfection

Endodontic disorders are the fourth most costly illnesses in industrialized countries.
Endodontics is an area of dentistry that studies, diagnoses, and treats dental pulp and the
tissues surrounding the roots of teeth [127]. Treating these disorders includes cleaning
the canal and using antimicrobial substances. NPs have a promising role in endodontic
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disinfection. Their size enables them to penetrate the challenging root canal architecture,
reaching regions that standard disinfectants may miss. NPs can also be included in root
canal filling materials or utilized as irrigants to increase antibacterial effectiveness [128,129].

Calcium hydroxide, potassium iodine, and chlorhexidine (CHX) are some of the most
often used root canal disinfectants. In a study by Haseeb et al. [130], the researchers
produced CHX-loaded PEG–b–PLA NPs using a biodegradable polymer to promote drug
delivery to dentin tubules. The CHX release lasted up to three weeks, with a brief peak
followed by a controlled release, indicating the benefits of using NPs in root canal treatment.
Parolia et al. [131] examined the effect of propolis NPs (PNPs) against Enterococcus faecalis
when used as a canal irrigant. The study found that PNPs demonstrated significant
antimicrobial effectiveness against E. faecalis, comparable to conventional irrigants like
sodium hypochlorite (NaOCl) and CHX. Elmsmari et al. [132] also explored the use of
calcium hydroxide; more exactly, it was loaded into poly(lactic-co-glycolic acid) (PLGA)
NPs for improving endodontic disinfection procedures. Calcium hydroxide PLGA NPs
showed a minimum inhibitory concentration (MIC) of 10 µg/mL against Porphyromonas
gingivalis and Enterococcus faecalis and 5 µg/mL against Fusobacterium nucleatum, which
demonstrates effective antibacterial activity. Moreover, a significant reduction (40%) in
bacterial metabolic activity was observed with a single dose of calcium hydroxide PLGA
NPs after 28 days of infection. Their ability to reach and act in complex root canal systems
could address the limitations that are present in traditional methods. Further studies
are needed to test their effectiveness against more resistant bacterial biofilms before their
clinical use.

Since silver has antibacterial properties, it is a promising agent in root canal disin-
fection. Marín-Correa et al. [133] compared the effectiveness of a nanosilver gel with the
traditional calcium hydroxide treatment in root canal treatment. The nanosilver gel had
effective antibacterial properties against E. faecalis, comparable to the traditional calcium
hydroxide treatment. Due to their small size, AgNPs can access areas in the root canal that
other treatments might miss. They are also less likely to lead to microbial resistance, offer-
ing a good alternative for root canal treatments. Gholami et al. [134] were also interested
in investigating the potential of silver in root canal treatments. More exactly, they created
and tested a positively charged silver nanocomplex loaded with CHX (CHX@AgNPs+) for
improved antibacterial activity against E. faecalis in endodontic treatments. CHX@AgNPs+
demonstrated a consistent release of CHX. CHX@AgNPs+ showed superior antibacterial
activity against E. faecalis, with MIC and minimum bactericidal concentration (MBC) values
of 50 µg/mL, compared to CHX (100 µg/mL) and AgNPs+ (no MIC determined). This
nanocomplex offers a promising treatment for root canal disinfection. Razumova et al. [135]
studied the effectiveness of a 1% nanosilver solution (Argitos) as a final irrigation agent in
root canal treatment. Seventy single-rooted extracted teeth were divided into two groups:
one where the smear layer was removed and one where it was not. Nanosilver adhered to
the dentinal surface and formed a film in the teeth with the smear layer preserved. In the
teeth with the smear layer removed, nanosilver was present in 73.5% of cases but did not
form as consistent a film. The nanosilver solution shows promise as a final irrigation agent
by forming a protective film on the dentinal surface, which may help manage pulpitis and
apical periodontitis.

Tonini et al. [136] evaluated the bactericidal effect of silver-citrate root canal irrigants
and their ability to remove residues created during root canal treatment. Citric acid and
a new silver-citrate-based irrigant (BioAKT) showed potential for eliminating the smear
layer and increasing sealer penetration. BioAKT had high antibacterial action against E.
faecalis biofilms, similar to NaOCl. However, the use of silver ions and NPs may cause
tooth discoloration and cytotoxicity. More research is needed to investigate their synergistic
antibacterial activities and identify possible downsides in endodontic applications. Ravi
et al. [137] examined the efficacy of NaOCl, AgNPs, and zinc oxide NPs (ZnO-NPs) against
Candida biofilms in root canals. Ag-NPs and ZnO-NPs showed promise in decreasing the
fungal load. However, total eradication was not accomplished, probably due to biofilm
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resistance. These NPs interact with microbial cell targets, breaking cell walls and altering
permeability, resulting in cell death.

From their antimicrobial activity to their ability to penetrate and eradicate biofilms,
NPs offer a promising solution for overcoming the challenges associated with conventional
root canal disinfection methods. However, further research is needed to fully understand
their long-term effects.

4.2. Nano-Based Sealers

In root canal therapy, an endodontic sealer is a substance that fills the gap between the
root canal’s interior walls and the filling material [138]. Conventional endodontic sealers
might not properly cover the root canal, creating tiny gaps where bacteria may enter and
lead to infections. Furthermore, in general, they do not have antimicrobial properties and
have long setting times [139]. Adding NPs to existing endodontic materials can improve
their performance in several ways. Initially, they can aid in improving the root canal’s
sealing, which lowers the possibility that germs will enter and lead to problems. Secondly,
bacteria can also be prevented by NPs since NPs have the ability to enter small gaps and
release antibacterial agents [140].

ZnO NPs can help prevent bacterial growth and increase a sealer’s physical strength
and durability [141,142]. This was demonstrated through a study conducted by Choi
et al. [143]. The researchers investigated how incorporating different weight percentages
of ZnO NPs into a commercially available pit and fissure sealant impacts its properties.
Various concentrations of ZnO NPs (0.5%, 1%, 2%, and 4% by weight) were tested to assess
their impact on the sealant’s antibacterial properties, ion release, and physicochemical and
mechanical properties. Sealants with ZnO NPs showed significant antibacterial effects
against Streptococcus mutans. The 4% ZnO NP sealant showed the strongest antibacterial
activity. Sealants with ZnO NPs had increased water sorption and solubility compared
to the control, potentially affecting long-term durability. However, these properties did
not impact the sealant’s overall performance. The addition of ZnO NPs did not alter the
flexural strength of the sealants, meaning that the mechanical integrity of the sealants was
maintained. Collares et al. [144] also studied the effects of ZnO nanostructures, more specif-
ically, needle-like ZnO nanostructures (ZnO-NN), on methacrylate-based dental sealers.
ZnO-NN with a needle diameter of 40 nm was added to dental sealers at concentrations of
20%, 30%, and 40% by weight. All sealers with ZnO-NN demonstrated antibacterial effects
against Enterococcus faecalis. The antibacterial activity was linked to the generation of ROS
by ZnO-NN, which disrupts bacterial cell membranes and reduces viability. Moreover,
the addition of ZnO-NN increased the film thickness of the sealers and improved their
radiopacity. The authors suggest that there is a need for more research on this subject to
also understand the long-term effects. Zubizarreta-Macho et al. [145] compared two types
of inorganic bactericidal additives, G3T glass-ceramic and ZnO-enriched glass, when incor-
porated into a root canal sealer (AH Plus) in a Beagle dog model. Both G3T glass-ceramic
and ZnO-enriched glass showed good biocompatibility and did not negatively impact
tissue health. They also showed some antimicrobial characteristics. Both maintained the
physical properties of the sealer, but further research is needed to ensure effective contact
and sustained antimicrobial activity in clinical applications.

Other types of nanomaterials have been investigated for their potential in nano-based
sealers. The aim of a recent study was to enhance their handling and sealing ability by
investigating the usage of endodontic sealers based on nano-apatite. Two formulations
using nano-apatite, PEG 1000, and propanediol in one and nano-apatite, glycerin, and PEG
200 in the other were found to be promising. Both formulations successfully sealed dentinal
tubules, while the first exhibited superior acid resistance [146]. In a study by Al-Sabawi
et al. [147], the researchers developed a calcium silicate-based root canal sealer by using
phosphate-buffered saline (PBS) as a liquid precursor and nano-tricalcium silicate-58s
bioactive glass as a precursor. The results showed that adding ZrO2 lowered the level
of solubility and setting time while adhering to ADA regulations. The resulting formula
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showed promising physicochemical characteristics, but further research is needed to learn
more about its potential use in clinical applications.

Raheem et al. [148] created a sealer using propolis-loaded NPs. The nano-sealer they
created showed a sealing performance that was similar to the industry’s “gold standard”
sealer. It demonstrated hydrophobicity and slow deterioration, which contribute to im-
proved sealing, while its nanosized particles enable effective entry into dentinal tubules.
Ibrahim et al. [149] studied the addition of CaP NPs to endodontic sealers. The findings
showed that the sealer held antibacterial capabilities without compromising the biocompat-
ibility. The modified sealer strengthens and remineralizes dentin by releasing calcium and
phosphate ions, increasing the pH level, and successfully neutralizing acidity. Addressing
bacterial development and strengthening tooth root structure can potentially improve
endodontic treatment.

Overall, nano-based sealers represent a promising avenue in endodontic therapy,
offering an enhanced sealing ability and level of biocompatibility. These advancements
hold great promise for improving clinical outcomes in root canal treatment. Further
research is necessary to fully explore the efficacy and safety of nano-based sealers in
practical applications.

5. Nanomaterials in Periodontology
5.1. Nanoformulations for Targeted Drug Delivery in Periodontal Therapy

Periodontitis is a chronic inflammatory condition affecting the gums and supporting
structures of the teeth, which can further lead to tooth loss [150]. Surgical interventions,
systemic antibiotics, scaling and root planing, and other conventional treatments for peri-
odontitis frequently have drawbacks, including a limited ability to reach deep periodontal
compartments, systemic side effects from the drug distribution, and invasiveness [151,152].
Several methods for the application of drug delivery systems to teeth are illustrated in
Figure 2.
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Films provide a convenient and discreet option, adhering to the gingival tissue for
the sustained release of therapeutic agents. Strips offer an ease of application, allowing for
precise placement into periodontal pockets and targeting specific areas of concern. Gels
provide versatility, enabling thorough coverage of the affected area while offering the
flexibility to adjust the dosage as needed. Tablets offer an ease of application and patient
compliance [153,157,158]. Using NPs in periodontal therapy can precisely administer
therapeutic drugs to the diseased periodontal tissues, allowing for TDD. When it comes to
periodontal therapy, NPs have several benefits. First, because of their small size, they can
easily enter periodontal pockets and reach regions that are difficult for traditional therapies.
By increasing the concentration of therapeutic medicines at the infection site, this TDD
maximizes their efficacy while reducing systemic exposure and possible negative effects.
Furthermore, medications can be designed into NPs to be released over a longer period and
in a controlled manner, resulting in sustained therapeutic activity and an overall decrease
in treatment frequency [152,157].

Many studies have investigated different types of NPs for TDD in periodontal therapy.
Steckiewicz et al. [159] evaluated the efficacy of AgNPs as drug delivery vehicles for

metronidazole (MET) and CHX in periodontal treatment. AgNPs showed anti-inflammatory
characteristics, were non-toxic to mammalian cells at low concentrations, and had syn-
ergistic antibacterial actions with the medications. Furthermore, when internalized in
eukaryotic cells, they did not cause any structural alterations. Constantin et al. [160] created
biocomposite PVA/chitosan films with ibuprofen and AgNPs for periodontal therapy. The
system exhibited superior antibacterial action against pathogens, particularly S. aureus, and
demonstrated biocompatibility with human dermal fibroblast cells, making it a promising
alternative for periodontal therapy.

Tong et al. [161] studied the effect of ferromagnetic NPs loaded with minocycline
for eliminating periodontal biofilm in rats. The system effectively delivered antibacterial
drugs to target periodontal biofilms. When paired with a magnetic field, the minocycline-
loaded NPs showed a decrease in inflammatory cell infiltration in the gingival tissue of
treated rats, confirming the efficacy of treatment in a rat periodontitis model. Furthermore,
pro-inflammatory markers showed a significant decrease in mRNA and protein levels,
suggesting that this treatment effectively relieves periodontal inflammation.

Propolis NPs administered subgingivally were assessed in a recent study by Sahu
et al. [162] to treat periodontal pockets. Comparing the results to those from areas treated
with saline, the propolis system had a better outcome when addressing specific parameters,
such as the plaque index, gingival index, or relative attachment loss. The study also showed
that the propolis NP group had substantially better gingival indices at one and three months.
Further research is needed to explore higher concentrations, increased administration, and
mechanisms of action for addressing its safety in human subjects.

A clinical trial study evaluated the effectiveness of AgNP gel periodontitis treatment.
It was compared to commercially available tetracycline gel and scaling and root planing
alone. Three different groups received one of the treatments. Group A (treated with
AgNP gel) showed a considerable decrease from baseline in the probing pocket depth,
clinical attachment level, and plaque and gingival indices. Colony forming units (CFUs)
significantly decreased after microbiological evaluation, indicating the antibacterial activity
of AgNPs. Compared to Group C (root planing), Group A and Group B (tetracycline gel)
showed notable improvements in several clinical indicators. However, it is difficult to
conclude which treatment was better in this trial without data from a direct comparison
between Group A and Group B [163].

Other examples of studies for TDD are summarized in Table 4.
In summary, nanoformulations show great promise for TDD in periodontal therapy.

We can enhance treatment outcomes by using different NPs with significant therapeutic
effects, such as silver and propolis NPs while minimizing side effects. More research in this
area is needed to optimize these innovative approaches and improve periodontal care.
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Table 4. Summary of studies on NPs for TDD in periodontal therapy and their findings.

Nanomaterial Effect Refs.

Chitosan NPs loaded with
atorvastatin (AS) and
doxycycline (DOX)

AS showed a sustained release over 9 days,
while DS had a quicker release, stabilizing

around 5 days
AS/DS chitosan NPs were more effective
against Staphylococcus aureus compared to

Escherichia coli
The system was non-cytotoxic

[164]

Ce-doped mesoporous
calcium silicate nanopowders
loaded with artemisinin (ART)

Hemocompatible and promoted cell
proliferation of human periodontal ligament

fibroblasts (hPDLFs)
Protected cells from oxidative damage by

neutralizing ROS

[165]

Polydopamine
(PDA)-functionalized MS NPs

loaded with minocycline
hydrochloride (MH)

PDA and MH shifted macrophages from a
pro-inflammatory (M1) to an
anti-inflammatory (M2) state

Reduced bone loss
Prevented inflammation

[166]

Nanocomposite hydrogel
(NCHG) loaded with CHX

and metronidazole

The NCHG released metronidazole within 12
h and CHX over more than 7 days, with the

release strongly dependent on pH
Biocompatible

Targeted bacteria in acidic, inflamed
environments

[167]

Protease-loaded CuS NPs

Eliminated bacterial biofilms, particularly
Fusobacterium nucleatum

Biocompatible
Reduced bone resorption and inflammation

[168]

Metformin
hydrochloride-loaded PLGA

NPs

Controlled drug release, sustained
metformin’s plasma concentration for over

72 h, and required a lower dosage
Slower elimination rate, resulting in a more
efficient and long-lasting treatment option

[169]

Cefixime-loaded NPs within
chitosan films

Sustained drug release
Better antimicrobial activity against

periodontal bacteria than conventional
mouthwash

Maintained their drug release profile and
structural integrity over six months

[170]

Human serum albumin
(HSA)-crosslinked

manganese-doped Prussian
blue NPs (HSA-MDSPB NPs)

Antioxidant, anti-inflammatory, and
osteogenic properties

Reduced inflammation, oxidative stress, and
bone loss in periodontal tissues

Promoted macrophage polarization toward
an anti-inflammatory state

[171]

5.2. Nanoparticles in Regenerative Periodontal Treatment

When considering regenerative periodontal treatment, most conventional treatments
rely on allogenic transplants from cadavers or living donors. Yet, they hold various disad-
vantages, such as the potential for disease transmission, the risk of immunological rejection,
the scarcity of donor tissue, and invasive procedures. Furthermore, there is a chance
that these methods will not always produce the best tissue integration and long-term
stability [172,173]. Nanotechnology can improve regenerative periodontal treatment since
biomaterials can be used as an alternative. The mechanical strength, biocompatibility,
and bioactivity of biomaterials used in tissue engineering can be improved by adding
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NPs to them. Additionally, growth factors, medicines, and other bioactive substances can
be transported by NPs, allowing for controlled release and encouraging tissue regenera-
tion [172,174].

Many studies assessed the benefits of using NPs in periodontal regeneration. Takallu
et al. [175] synthesized antibacterial collagen membranes for periodontal regeneration
with different concentrations of AgNP, ranging from 0.5% to 3%. Collagen/Ag 2% and
3% membranes outperformed other formulations in the evaluated samples’ antibacterial
efficacy against Gram-positive and Gram-negative microorganisms. Compared to colla-
gen/Ag 3%, collagen/Ag 2% showed greater cytocompatibility with mammalian cells,
suggesting a lower risk of toxicity. This emphasizes AgNP’s potential as a periodontitis
therapy option that shows promise and has strong antibacterial properties without causing
considerable damage to healthy cells. Ren et al. [176] have investigated the effect of CeO2
NPs on human periodontal ligament stem cells (hPDLSCs). CeO2 NPs exhibited excel-
lent levels of biocompatibility and stimulated cell proliferation. They also improved the
development of hPDLSCs into osteogenesis. Electrospun fibrous membranes containing
CeO2 NPs demonstrated the controlled release of CeO2 NPs. These composite membranes
stimulated the development of new bone in rat models with cranial defects, indicating their
potential for periodontal bone regeneration.

Other studies have demonstrated the potential of nano-hydroxyapatite (nHA) in regen-
erative periodontal therapy since it promotes mineralized tissue development by increasing
osteogenic differentiation. Osteoblasts and periodontal ligament cells are able to adhere
to and proliferate more easily because of the large surface area that their nanostructure
offers them. Additionally, the distribution and effectiveness of bioactive compounds like
growth factors and antibiotics in periodontal therapy can be improved by using nano-
hydroxyapatite particles as carriers. Better treatment outcomes can be achieved by using
this power to release therapeutic substances in a targeted, controlled manner [177–180].
Research has also demonstrated the antibacterial characteristics of nano-hydroxyapatite,
which encourage tissue regeneration and prevent infection by decreasing microbial colo-
nization in periodontal defects [87,181].

Through their unique properties, NPs offer enhanced bone regeneration, controlled
drug delivery, and antibacterial effects, making them valuable assets in periodontal therapy.

6. Safety and Toxicity Considerations

Nanomaterials’ unique characteristics make them extremely promising for use in
dental applications. Nonetheless, concerns about their toxicity continue to exist, which
raises significant questions about their safety in dentistry procedures [182]. The possibility
of NP release and subsequent systemic distribution within the body is one of the main
causes of concern. Although a number of nanomaterials have demonstrated encouraging
outcomes in vitro, very little is known about how they behave in a complex oral envi-
ronment. Research indicates that some NPs may produce cytotoxic effects, which can
further affect human health over time [183]. A few examples of NPs and their toxicity are
presented in Table 5. Studies have shown that NPs (such as AgNPs) can induce cytotoxic
effects on various cell types, including oral epithelial cells and fibroblasts [184,185]. AgNPs’
elevated reactivity is further attributed to their small size and high surface-area-to-volume
ratio, which may cause oxidative stress, DNA damage, and inflammatory responses in oral
tissues [186].

Table 5. Potential toxicity of various NPs.

Nanomaterial Potential Toxic Effect Refs.

AgNPs DNA damage, oxidative stress, inflammatory
response [186,187]

ZnO DNA damage, triggers inflammatory
response, oxidative stress, ROS generation [188,189]
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Table 5. Cont.

Nanomaterial Potential Toxic Effect Refs.

ZrO2
Tissue accumulation, gene alterations,

oxidative stress [190]

TiO2
Tissue accumulation, ROS generation,

oxidative stress, environmental damage [190–192]

SiO2
Genotoxicity, tissue accumulation, ROS
generation, aggregation, oxidative stress [193–195]

The NP’s cytotoxicity may be concentration and time-dependent, with lower concen-
trations being considered safe. Research has demonstrated that higher NP concentrations
can induce oxidative stress and apoptosis in immune system cells, potentially triggering
inflammatory responses [196–198]. A study by Wang et al. [197] demonstrated that high NP
concentrations can cause blood–brain barrier penetration, disrupting the balance and allow-
ing pathogens or other harmful substances to enter the brain. This can lead to inflammation,
neurotoxicity, and the development of serious neurological disorders. Chen et al. [199]
demonstrated that ZnO NPs could have toxic effects on human gingival cells at higher
concentrations. It was observed that the ZnO NPs inhibited cell proliferation, destroyed the
integrity of cell membranes, and induced oxidative stress and apoptosis. Youssef et al. [200]
also demonstrated that the cytotoxicity of NPs in dental applications (in this case, AgNPs)
is dose and size-dependent. Higher doses and smaller NP sizes (<20 nm diameter) led to
cytotoxicity and apoptosis. The authors suggest that these properties need to be carefully
considered before using AgNPs in dental restorative materials. Ullah et al. [201] investi-
gated the potentially harmful effects of calcium NPs on different tissues, including teeth. It
was conducted on albino rats, and the researchers discovered that the NPs caused severe
alterations to the dental pulp, root, and periodontal ligaments. It also caused inflammation.
These findings were mostly found at higher concentrations, while the toxic effects were mild
at lower concentrations. Solanki et al. [202] evaluated the cytotoxicity of AuNP mouthwash
in vitro on brine shrimps. At low concentrations, no toxic effects were observed. However,
at higher concentrations, the toxic effects were from mild to severe, even resulting in death.
This indicates the importance of finding the appropriate concentrations of NPs when used
in dental or other biomedical applications. Khanna et al.’s [203] study also supports this
fact. During this study, the researchers investigated the effects of rosemary- and ginger-
mediated titanium NP dental varnish. They found that the cytotoxicity of titanium NPs
increased as the NPs’ concentration increased. Another factor to consider is the exposure
time since it has been found that longer times of exposure can cause the bioaccumulation
of the NPs in the tissues, which can cause tissue damage and inflammation [196,204]. This
was demonstrated through a study conducted by Kakakhel et al. [204] in vivo on fish. It
was discovered that long-term exposure to AgNPs led to NPs’ accumulation in certain
tissues and caused harmful effects. The highest concentrations caused necrosis and even
mortality, highlighting again the importance of choosing the appropriate concentration
when using NPs in biomedical applications. Mohammadpour et al. [205] also observed
that NPs could accumulate in certain organs (such as the liver and spleen), when a longer
time of exposure was used and higher concentrations were administered.

A study by Bengalli et al. [206] on CuO and ZnO NP-coated textiles sheds light
on the potential toxicity of NPs in dental applications. If these NPs cause harmful skin
reactions, dental products containing them may also be toxic to oral tissues. For example,
the high metal ion release from dental NPs, particularly in acidic oral environments, may
substantially influence the viability of oral epithelial cells, comparable to the effects seen on
keratinocytes. Moreover, the study’s epidermal tissue’s altered cytoskeleton and elevated
inflammatory response may be similar to how NPs affect oral tissues, resulting in tissue
damage and oral inflammation.
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Nanomaterials offer immense potential for dental applications, yet concerns about
their safety persist. There are serious worries over the systemic consequences of NPs due
to their possible release and distribution within the body. Further research is necessary to
completely understand the safety of various nanomaterials since their behavior in the oral
environment is still not understood.

7. Conclusions

In conclusion, applying nanomaterials in dentistry indicates an evolution in dental
regeneration, restoration, and care. These cutting-edge materials have the potential to
completely transform many dental practice areas, including preventative dentistry and
enhanced methods of treatment, due to nanoscale engineering.

The potential of NPs to improve the characteristics of conventional dental materials is
one of their most important contributions. When NPs are added to dental restorative mate-
rials, the resulting nanocomposites have enhanced wear resistance, mechanical strength,
and antibacterial qualities. This results in long-term dental restorations that have a lower
chance of failing or developing secondary caries, eventually improving patient outcomes
and satisfaction. Moreover, TDD systems created specifically for the challenges associated
with oral healthcare were made possible by nanotechnology. Therapeutic substances can
be precisely and continuously released by encapsulating them in NPs, which maximizes
their therapeutic effects while reducing negative effects. This approach may be used to
treat diseases like periodontal disease, dental caries, and oral infections.

Nanomaterials also offer opportunities for tissue engineering and regeneration. These
can help the growth and differentiation of dental tissues, including periodontal ligaments,
pulp, and bone. However, there are obstacles to the broad use of NPs in dentistry, just
like there are with any new technology. The main concerns in NPs’ interactions with oral
tissues and systemic consequences include biocompatibility and safety. Further research on
the nanomaterials used in dentistry should focus on long-term biocompatibility, fabrication
optimization, and environmental impact.
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