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Abstract: Layered molybdenum disulfide (MoS2), a transition metal dichalcogenide, shows distinct
optical, electrical, and physical properties at a few-layer thickness. MoS2 nanosheets (NSs) widely
explored for energy and environmental applications but have limitations with respect to their electrical
conductivity and charge transfer characteristics due to their low surface area. These limitations can
be overcome by combining MoS2 NSs with carbon-based materials like graphene, carbon nanotubes,
and biochar, which can enhance the properties in a synergistic way. In this study, biochar (BC),
a carbon-rich material prepared from vegetable biomass through low-temperature pyrolysis has
been combined with bulk MoS2 in various ratios using an aqueous phase exfoliation method to
form MoS2 NSs–biochar nanocomposites. The spectroscopic, structural, and morphological studies
confirmed the synergistic interaction between MoS2 and BC, which is well reflected in the facile
exfoliation process and the formation of few layered MoS2 NSs on the surface of the BC without any
agglomeration. The electrochemical studies prove that incorporating biochar into MoS2 enhances the
capacitive behavior and reduces the charge transfer resistance compared to pristine MoS2 NSs and
pristine biochar. This study provides ample scope for the composite to be explored for energy storage
applications, especially towards the development of electrode materials due to the synergistic effect
between MoS2 NSs and biochar.

Keywords: MoS2 nanosheets; biochar; nanocomposites; xsupercapacitors; exfoliation; energy storage

1. Introduction

Transition metal dichalcogenides (TMDs) are a class of layered two-dimensional
materials such as MoS2, MoSe2, WS2, WSe2, TaS2, TiS2, and NbS2, which have received
greater attention due to their unique properties like a high surface area, electron mobility,
strong light–matter interactions, and thermal conductivity [1]. In particular, layered MoS2
nanosheets (NSs), which contain S–Mo–S layers with weak interlayer van der Waals inter-
action and strong intralayer covalent bonds, possess high mechanical strength, and tunable
electronic, optical, and electrochemical properties. In addition, MoS2 NSs can also act as
electrode materials in energy storage devices because of their variable oxidation states
ranging from +2 to +6 [2]. However, pristine MoS2 NSs face challenges such as aggregation
and restacking of layers that decrease the surface area, which hampers efficient electron
transfer and results in limited electrical conductivity in energy storage applications [3].
To overcome these limitations, MoS2 can be combined with suitable counter materials
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such as carbon-based materials, polymers, biopolymers, metal oxides, and sulfides [4]
to enhance the surface area and electrical conductivity of MoS2, thereby enhancing its
electrochemical performance.

Among the various counter materials that are added to MoS2, carbon-based materials
such as graphene, reduced graphene oxides, carbon nanotubes, and carbon nanofibers,
are considered to be ideal as these materials exhibit distinct properties such as a porous
structure and large surface area, which improves the electrochemical properties of pris-
tine MoS2 [5]. There are several reports on MoS2/carbon-based composites such as
MoS2/carbon, MoS2/graphene, MoS2/graphene oxide, MoS2/reduced graphene oxide,
MoS2/carbon nanotubes, MoS2/carbon nanofibres, and MoS2/graphitic carbon nitrides
for various applications like photocatalytic degradation, biosensors, energy conversion,
and storage applications [6–9]. In the recent past, combining carbon materials derived from
biosources with MoS2 has gained interest due to its eco-friendly approach to converting
biowaste to a value-added product for suitable applications. The incorporation of carbon-
based materials such as nanocomposites into MoS2 can be considered an environmentally
sustainable method compared to conventional carbon-based materials like graphene or
carbon nanotubes [10] which involve hazardous chemicals, high cost, complex synthesis
procedures, and limited scalability.

The carbon derived from different biosources such as agricultural waste, forestry
residues, animal wastes, municipal solid waste and industrial waste is referred to as biocar-
bon, activated carbon, or biochar depending on the method of preparation. Biochar (BC) is
a highly porous and carbon-rich material with large surface area and high electrical conduc-
tivity, derived from different biomass through pyrolysis under low oxygen atmosphere [11].
It has been identified as a suitable material to combine with MoS2 to offset its limitation.
Upon combining MoS2 with BC, the properties of the resulting nanocomposite (NC), such
as material stability, surface area, electrical conductivity, and specific capacitance, are found
to increase, enabling the composite material to be suitable for electrochemical applica-
tions, especially in the field of energy storage. Zhao et al. [12] successfully synthesized
MoS2/carbon using corn stalks as a biocarbon source, which resulted in the formation of
NCs with large surface area, high specific capacitance, and good stability when used as
an anode material in supercapacitors. Sangeetha and Selvakumar [13] utilized biomass
from Tendu leaves and polyethylene terephthalate bottles to produce activated carbon,
which was then used to prepare an MoS2/activated carbon composite for supercapacitor
applications. The sponge-like activated carbon network, with a thin layer of molybde-
num disulfide–carbon, demonstrated a high power density. Khandare and their group
synthesized an MoS2 nanobelt–carbon composite using a hydrothermal method in which
carbon was derived from a lemongrass (LG) plant through impregnation with KOH and
pyrolysis. Their findings indicate that the MoS2 nanobelts improved the electrochemical
properties of LG carbon by enhancing the interaction between the electrolytes and the
active electrode material [14]. Mahajan et al. [15] synthesized biocarbon–MoS2 nanospheres
using hydrothermal techniques; the biocarbon was produced from date peels and seeds
via pyrolysis, which resulted in improved specific capacitance of the NCs. Wang et al. [16]
developed MoS2 nanoflowers on nanoflakes of biomass-derived carbon and used this as
an electrode material which exhibited a low impedance, high specific surface area, and
specific capacitance.

Apart from energy storage applications, MoS2/BC NCs were also synthesized for
different applications such as adsorption, photocatalytic degradation of organic pollutants,
and water remediation [17–21]. All the reported methods for the preparation of MoS2/BC
NC so far demand a complex bottom-up method for the synthesis of the MoS2 nanomaterial
and high temperature for the activation of biocarbon, thus they are very time consuming.
In this paper, we have demonstrated a facile, time-efficient, sustainable, and eco-friendly
top-down method for the preparation of a MoS2/BC NC for the first time through an
aqueous phase exfoliation of MoS2 and BC derived from household vegetable waste. The
prepared NC was found to exhibit interesting and superior properties in a synergistic way
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compared to pristine MoS2 NSs and pristine BC, and the findings of the study are presented
in the following sections.

2. Materials and Methods
2.1. Materials

The MoS2 powder was bought from ThermoFisher Scientific Pvt. Ltd., Mumbai, India.
Sulphuric acid (H2SO4) was purchased from Rankem Pvt. Ltd., Maharastra, India. All the
experiments were conducted using deionized water. All the chemicals were of analytical
grade and used without additional purification.

2.2. Preparation of BC

Vegetable biomass was collected from household vegetable waste for the BC prepa-
ration. The collected biomass was washed thoroughly with deionized water in order to
remove impurities and dried in a hot air oven at 100 ◦C for 5 h before pyrolysis. The
quality of BC depends on the pyrolysis temperature and the oxygen atmosphere. Generally,
low-temperature (<300 ◦C) pyrolysis produces a low carbon content with less stable BC,
while high-temperature (350–750 ◦C) pyrolysis decreases the pore volume and surface area
with the increase in ash content [10,11]. Therefore, it is crucial to optimize the temperature
for the proper pyrolysis of waste to generate high quality BC. Pyrolysis at low oxygen or
no oxygen conditions prevents complete combustion, which allows the organic material to
break down to solid char rather than ashes. In our study, the dried samples were subjected
to nitrogen (N2) purging for nearly 30 min to maintain a low oxygen atmosphere, then
placed in a muffle furnace and heated to an optimized temperature of 300 ◦C gradually
at a ramp rate of 4 ◦C per minute. After pyrolysis, the sample was allowed to cool down
to room temperature (30 ◦C) and removed from the furnace. The black-colored solid was
crushed to a fine powder using a mortar and pestle, then sieved in a mechanical sieve with
a pore size of 75 µm to obtain a uniformly sized BC powder. The finely sieved black powder
was then dialyzed using a cellulose ester dialysis membrane of 10 kDa for 24 h in water to
remove unwanted ions, and the purified BC was collected and stored for further analysis.

2.3. Preparation of MoS2/BC NCs

The MoS2–BC NCs were synthesized via a simple, top-down approach by exfoliating
a mixture of bulk MoS2 and BC powders in different ratios in aqueous solution using an
ultrasonication method. Initially, bulk MoS2 with different amounts of BC in ratios of 10:1,
10:2, and 10:3 (w/w) was taken and dispersed in 10 mL of water. Then, the dispersion was
ultrasonicated for 2 h using an ultrasonicator (power of 120 W) at an ambient temperature.
After the ultrasonication process, the dispersion was transferred into a centrifuge tube and
centrifuged at 6000 rpm for 60 min. The clear supernatant liquid was carefully transferred
to a centrifuge tube using a micropipette, then further centrifuged to ensure the complete
removal of the larger particles in the samples, and stored for further studies. For the
comparative studies, bulk MoS2 and BC were also exfoliated separately for 2 h by adopting
the same procedure. The prepared NCs (3 samples) and exfoliated bulk samples (MoS2 and
BC) were labeled as MoS2/BC1, MoS2/BC2, MoS2/BC3, pristine MoS2 NSs, and pristine
BC, respectively, and are indicated using the same labels in the following sections.

2.4. Characterization Techniques

The ultraviolet-visible (UV-Vis) absorption spectra were recorded on a JASCO V-630
UV-Visible spectrophotometer (JASCO International Co., LTD, Tokyo, Japan) using a quartz
cell with 1 cm thickness and scanned within a range of 200–800 nm at room temperature.
The Raman spectra of the prepared samples were recorded on a modular 1064 Raman
system, Bay Spec, CA, USA, in the spectral range of 400–3000 cm−1 using a 1064 nm near
infra-red laser with a power of 149 mW. The photoluminescence (PL) spectra of the samples
were analyzed using a JASCO (FP 8500) spectrofluorometer (JASCO International Co.,
LTD., Tokyo, Japan) with excitation wavelengths. AFM images were obtained using FEG
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Quanta-250 and Nanosurf Easy scans 2 (Nanosurf AG, Switzerland) instruments. For AFM
analysis, the as-prepared samples were attached on an AFM stub and images were recorded
in static force mode using a ContA1-G probe cantilever, applying a scan rate of 2 Hz. The
field emission scanning electron microscopy (FESEM) images and the energy dispersive
X-ray (EDX) spectra were obtained using Carl ZEISS EVO 18 and ZEISS smartEDX, (ZEISS,
Oberkochen, Germany) respectively. The sample preparation for FESEM and EDX involved
drying a droplet of a suspension of the sample on aluminium foil. Afterward, the samples
were coated with a thin layer of gold using a sputtering technique, then secured onto the
sample stage with conductive double-sided tape. The X-ray diffractometer (XRD) analysis
of the samples was obtained with a BRUKER ECO D8 ADVANCE (Bruker Pvt. LTD.,
Ettlingen, Germany), using Cu Kα radiation as an X-ray source (λ = 1.5406 Å) at room
temperature under an operating voltage of 40 kV and a current of 30 mA.

2.5. Electrochemical Studies Using a Modified Glassy Carbon Electrode (GCE)

The GCE surface was 3 mm diameter and was cleaned using 0.3 µm and 0.05 µm of
micro polish alumina, rinsed with double distilled water, then ultrasonicated in acetone for
one minute. After ultrasonication, the electrode was allowed to dry at room temperature.
Then, 5 µL of the prepared samples were drop cast onto the pre-cleaned GCE surface
and dried at room temperature. The electrochemical measurements of the samples were
performed using a CHI model 660C (Austin, TX, USA) electrochemical workstation in
1 M H2SO4. The experiments were performed using a three-electrode cell set up with a
platinum wire as the counter, Ag/AgCl as the reference, and modified glassy carbon as the
working electrodes. Cyclic voltammetry (CV) studies were carried out in the range of a
10–100 mV/s scan rate and electrochemical impedance spectroscopic (EIS) studies were in
the range of 100 kHz–0.1 Hz at the open circuit potential, with an AC amplitude of 5 mV. The
surface areas of the modified electrodes were calculated using the Randles–Ševčík equation,
Ipa = 2.69 × 105 n3/2 ACoD1/2ν1/2; where Ipa represents the peak current, n is the number
of electrons transferred, A is the surface area of the electrode, Co is the concentration of
the electroactive species, D is the diffusion coefficient (6.69 × 10−6 cm2 s−1), and ν is the
scan rate. The specific capacitance (Cs) of the prepared material was calculated from the
CV curve using the following equation:

Cs =
∫ v2

v1

I dv
2mν∆v

where
∫ v2

v1 I dv represents the area of the CV curve, m is the mass of the active material in
the electrode, ν is the scan rate, and ∆v is the operating potential window [22].

3. Results and Discussion

The method of preparing the NCs adopted in our study eliminates the use of haz-
ardous chemicals or solvents and involves a facile exfoliation of the materials in the
aqueous phase within a short duration of 2 h (Figure 1). The ultrasonication leverages
high-frequency sound waves to create shear forces that exfoliate bulk materials into indi-
vidual nanosheets [23]. After exfoliation, NCs comprising a few layers of MoS2 and BC
particles were obtained, as revealed by the various characterization studies presented in
the following sections.

3.1. UV-Vis Spectroscopic Analysis

The UV-Vis spectrum was recorded for MoS2/BC1, MoS2/BC2, MoS2/BC3 NCs,
pristine MoS2 NSs, and pristine BC. Generally, the absorption spectrum of bulk MoS2 has
four excitonic peaks in the region of 600–700 nm and 400–500 nm, which are designated
as A and B and C and D peaks, respectively [24]. As it reduces to few-layered NSs upon
exfoliation, the reduction in thickness is indicated by a blue shift of all four peaks and the
C and D peaks become resolved. In the exfoliation methods reported earlier, this kind of
shift and resolution in the peaks happened after long hours of sonication (8 h) [25]. In
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the present study, the formation of few-layered NSs occurred within 2 h, as indicated by
the shift and resolution of peaks in the UV-Visible spectrum (Figure 2a) when bulk MoS2
was exfoliated along with BC. The excitonic peaks of the three NCs (Table 1) exhibited
a gradual blue shift of the A and B peaks with peak-to-peak separation of ~62 nm, and
well-resolved C and D peaks upon the addition of BC compared to the pristine MoS2 NSs.
An increase in the amount of BC beyond 10:3 in the NCs showed no significant shift in
the excitonic peaks; hence, the optimum ratio of MoS2: BC for the effective exfoliation
of MoS2 was fixed at 10:3. Also, the bulk BC did not show any characteristic peaks in
the UV-visible region [26]. Upon exfoliation for 2 h, the absorption peak of pristine BC
appeared at 213 nm (Figure 2b), which was ascribed to the presence of aromatic carbon
structures [27] in the exfoliated BC. The drastic reduction in the exfoliation time for the
formation of NSs clearly indicates that added BC plays a vital role in the formation of
NSs. Once the layers of MoS2 become separated from the bulk by ultrasonication, they
are slowly adsorbed on the surface of the BC present in the medium, which prevents
the restacking and agglomeration of the formed NSs. Thus, the gradual addition of BC
facilitates a facile exfoliation of MoS2 and enhances the formation of few-layered MoS2 NSs
within a short duration, especially in MoS2-BC3 NC. Also, the stability of the prepared NC
(MoS2-BC3) was monitored using UV-Vis spectroscopy and the spectrum was recorded
over a period of 3 months (Figure 2c). The characteristic peaks of MoS2 (A, B, C, and D)
remained unaltered for one month and exhibited a gradual shift in the peaks thereafter,
indicating the agglomeration of the nanosheets.
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Table 1. UV-Vis excitonic peaks for the bulk MoS2, pristine MoS2 NSs, and the prepared NCs.

Samples
Excitonic Peaks (nm)

A B C D

Bulk MoS2 690 632 507
(Unresolved single broad peak)

Pristine MoS2 NSs 681 620 468 405
MoS2/BC1 679 619 466 403
MoS2/BC2 679 619 457 402
MoS2/BC3 674 612 453 393
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3.2. Raman Spectroscopic Analysis

Raman spectroscopy was employed to analyze the structural changes and interaction
between BC and MoS2 (Figure 3). The two signature peaks of bulk BC which appear at
1326.9 and 1440.12 cm−1 are recognized as the D band and G bands. The D (defective) band
is associated with the breathing mode of carbon, which is an indication of the disordered
structure of carbon, and the G band corresponds to the in-plane vibrational mode of the
sp2 hybridized carbon atoms in the BC [28]. Similarly, MoS2 NSs show two signature peaks
at 370.6 and 402.7 cm−1, which correspond to the E1

2g (in-plane opposing vibrations of
Mo and sulfur atoms) and A1g (out-of-plane vibration mode of sulfur atoms) vibrational
modes, respectively, confirming the layered structure of MoS2 [29]. The as-prepared NCs
show the presence of the signature peaks of both BC and MoS2 NSs, with a frequency shift
and intensity change in the D and G bands due to the incorporation of MoS2 into BC. The
decrease or increase in the intensity ratio of (ID/IG) is a measure of the order or disorder
state of the sp2 carbon network in the BC. In the prepared NCs, the ID/IG ratio increases
from MoS2/BC1 to MoS2/BC3 compared to pristine BC, which reveals the presence of more
disorder in the carbon network due to the adsorption of MoS2 on the surface of the BC [14].
The observed ID/IG ratios for pristine BC, MoS2/BC1, MoS2/BC2, and MoS2/BC3 are 0.23,
0.55, 0.57, and 0.60, respectively. Thus, in MoS2/BC3 NC, the high ID/IG value indicates an
effective interaction between the MoS2 and BC, which helps to tune the properties of the
NCs synergistically compared to pristine materials.

3.3. PL Spectroscopic Analysis

The PL spectroscopy was employed to study the quantum confinement effects and
the defects present in the prepared samples (Figure 4). The PL spectra for all the samples
were recorded at excitation wavelengths corresponding to their ultraviolet absorption
peaks. Bulk and pristine MoS2 NSs did not show any PL emission peaks as reported
by [30], whereas bulk and pristine BC with an excitation wavelength of 200 nm exhibited
broad emission peaks at 527 and 460 nm due to the presence of structural defects in the
extended conjugation of the carbon network. A large redshift with enhanced PL intensity
was observed in all the three NCs, MoS2/BC1, MoS2/BC2, and MoS2/BC3, at 432, 453, and
445 nm, respectively, at their corresponding excitation wavelengths of 233, 245, and 254 nm.
Hence, with the increase in the amount of BC in the NCs, the PL property also increases,
and the increase in the PL intensity indicates the presence of more defect states in the NCs
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due to the strain created at the interface of the carbon surface and the MoS2 NSs [31]. Thus,
the luminescence property of pristine BC is very much enhanced in the presence of MoS2
NSs in the NCs, thus implying the good synergy between BC and MoS2.
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The spectroscopic analysis clearly revealed that out of the three NCs prepared, MoS2/
BC3 exhibits superior properties; hence, detailed structural and morphological studies
were carried out with the MoS2/BC3 NC, then compared to pristine BC and pristine MoS2
NSs in the following sections.
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3.4. XRD Analysis

The XRD spectrum was recorded for MoS2-BC3 NC, pristine BC, and pristine MoS2
NSs (Figure 5). The XRD diffraction patterns of pristine MoS2 NSs show peaks at 14.38◦,
29.01◦, 32.54◦, 33.63◦, 35.78◦, 39.59◦, 44.21◦, 49.90◦, and 60.21◦, which were assigned to
the lattice planes of (002), (004), (101), (103), (006), (105), and (008), respectively [32].
These diffraction peaks are indexed and match well with the hexagonal MoS2 (JCPDS
No. 37-1492). The pristine BC showed two broad peaks at 25.3◦ and 43.2◦ due to the
presence of an amorphous structure arising from disordered carbon atoms [33], while in
MoS2/BC3 NC, these peaks shifted to 28.01◦ and 40.69◦ (Figure 5b) due to the presence of
MoS2 on the surface of the BC. In addition to this, the XRD pattern of the MoS2/BC3 NC
shows the peaks of pristine MoS2 NSs with a significantly reduced intensity peak of a (002)
plane at a lower 2θ value (13.84◦) due to the formation of few-layered NSs in the NC. Thus,
the amorphous nature of the BC present, along with crystalline MoS2 NSs, enhances the
overall surface area of the prepared NC.
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3.5. AFM Analysis

The AFM images of the MoS2-BC-3 NC, pristine BC, and pristine MoS2 NSs at two
different magnifications are shown in Figure 6a–f. The height profiles (Figure 6g–i) and
thickness histograms (Figure 6j–l) clearly show that the layer thickness of the MoS2-BC-3
NC is significantly reduced compared to pristine MoS2 NSs and pristine BC, which had
bigger and more agglomerated particles after the same 2 h of exfoliation. Hence, the
presence of BC is crucial in bringing about the thickness and size reduction in bulk MoS2
within 2 h.
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3.6. FESEM and EDX Analysis

The FESEM images reveal the morphological features and the EDX spectra provide the
composition of the materials (Figure 7). FESEM images recorded at various magnifications
showcase the micro- and nano-scale surface morphology of the MoS2/BC3 NC, pristine
MoS2 NSs, and pristine BC. FESEM images of the pristine MoS2 NSs show bundles of lay-
ered structures (Figure 7a–c) and the images of the pristine BC (Figure 7d–f) revealed thick
sheet-like morphology with porosity. The FESEM images of the as-prepared MoS2/BC3
NC with different magnifications (Figure 7g–i) show a scattered sheet-like morphology
with MoS2 (bright tiny spots) on the surface of the BC (dark regions).

The EDX spectra of pristine MoS2 NSs show the presence of molybdenum and sulfur,
whereas the pristine BC shows carbon, oxygen, calcium, and potassium. The as-prepared
MoS2/BC3 NC shows the presence of molybdenum, sulfur, carbon, oxygen, and aluminum
(due to aluminum foil coating). The results provided proof of the incorporation of BC into
the as-prepared MoS2/BC3 NC (Figure 8a–c).

Thus, the spectroscopic, structural, and morphological studies confirm the syner-
gistic interaction between MoS2 and BC, which is well reflected in the facile exfoliation
process, and the formation of few-layered MoS2 NSs on the surface of the BC without
any agglomeration.
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Figure 8. EDX spectra of (a) pristine MoS2 NSs, (b) pristine BC, and (c) MoS2-BC3 NC.

3.7. Electrochemical Analysis
3.7.1. EIS Analysis

The EIS technique was used to analyze the interfacial properties of the electrode mate-
rial while it was in contact with the electrolyte solution. The EIS data are represented by
Nyquist plots with real and imaginary parts of impedance at low- and high-frequency re-
gions of the electrochemical system. At a higher frequency, the appearance of the semicircle
region in the plots represents a high charge transfer resistance, which leads to poor electrical
conductivity, and at a lower frequency, a diagonal line represents Warburg impedance due
to the diffusion of ions. The electrical conductivity of MoS2/BC1, MoS2/BC2, MoS2/BC3
NCs, pristine BC, pristine MoS2 NSs, bulk BC, and bulk MoS2 was examined using the
charge transfer resistance (Rct) and solution resistance (Rs) at an amplitude of 50 mV in the
frequency range of 100 kHz to 0.1 Hz in 1 M H2SO4 (Figure 9). The Rs value was deter-
mined by the intercept of the real axis at a higher frequency and the Rct value was obtained
by measuring the distance from the high frequency intercept (Rs) to the low frequency
intercept of the semicircle in the real axis of the Nyquist plots. The lower Rct and Rs value
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represents higher electrical conductivity, which facilitates the rapid movement of electrons
for quick charge transfer reactions at the electrode and the electrolyte interface. The Rct and
Rs values of the prepared samples are represented in Table 2. The bulk MoS2 and BC had
higher charge transfer and solution resistance, which leads to poor electrical conductivity.
However, upon exfoliating the bulk MoS2 and BC, the formed pristine MoS2 NSs and
pristine BC exhibited comparatively low Rct and Rs values. The prepared MoS2/BC1,
MoS2/BC2, and MoS2/BC3 NCs still exhibited lower Rct and Rs values than the pristine
counterparts. Among the three NCs, MoS2/BC3 had a low charge transfer and solution
resistance of 0.85 and 8.06 Ω, respectively; hence, it had higher electrical conductivity. Thus,
the limitation of pristine MoS2 in electrical conductivity due to its high charge transfer
resistance is overcome by the gradual addition of BC into the NCs, which increases the
number of active sites and the carbon network, thereby improving the charge transfer
kinetics at the MoS2–BC interface, leading to the low impedance value of the NC compared
to pristine materials.
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Figure 9. Nyquist plots of EIS for bulk MoS2, pristine MoS2 NSs, bulk BC, pristine BC, MoS2/BC1,
MoS2/BC2, and MoS2/BC3 NCs.

Table 2. Rct and Rs value of the prepared samples from the Nyquist plot.

Samples Rct (Ω) Rs (Ω)

Bulk MoS2 2.05 14.03
Pristine MoS2 NSs 1.80 13.95

Bulk BC 1.54 11.65
Pristine BC 1.30 11.59
MoS2/BC1 1.19 11.48
MoS2/BC2 1.01 10.71
MoS2/BC3 0.7 8.06

3.7.2. CV Analysis

The CV technique was used to study the electrochemical properties and redox behav-
ior of the modified electrode surfaces. Since MoS2/BC3 NC shows low charge transfer
resistance and solution resistance, the CV profile of the GCE-modified electrode with
MoS2/BC3 was recorded and compared with the pristine BC and pristine MoS2 NSs in
0.1 M KCl containing 5 mM of Fe(CN)6

3−/4− at different scan rates (20, 40, 60, 80, and
100 mVs−1) (Figure 10a–c). The current response of CV enhances when increasing the scan
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rate due to rapid diffusion of the analytes at a faster scan rate. A linear relationship between
the anodic and cathodic peak currents at different scan rates indicates a diffusion-controlled
reaction of the prepared electrode material. The surface area of the modified electrodes was
calculated using the peak current from the redox reactions of Fe(CN)6

3−/4− at a scan rate
of 50 mV/s using the diffusion coefficient values in the Randles–Ševčík equation. The cal-
culated electrochemical surface areas for the MoS2/BC3 NC, pristine BC, and pristine MoS2
NSs are 0.074, 0.07, and 0.069 cm2, respectively. The result shows that the incorporation of
highly porous and amorphous BC prevents restacking of the layered MoS2 NSs, thereby
increasing the surface area which in turn increases the peak current of the MoS2/BC3 NCs
by providing more active sites for electrochemical reactions.

The capacitive behavior of the prepared materials was analyzed by recording the CV
profiles of the modified electrodes with MoS2/BC3 NC, pristine BC, and pristine MoS2 NSs
in the potential window of 0–0.5 V at different scan rates (20, 40, 60, 80, and 100 mVs−1) in
1 M H2SO4. The MoS2/BC3 and pristine BC-modified electrodes display quasi rectangular
CV curves due to the presence of both the electric double layer and the pseudo capacitive
behavior of the modified electrodes. The CV curve of pristine MoS2 NSs shows a pair of
faradaic redox peaks due to the electron transfer across the electrode–electrolyte interface,
representing the pseudocapacitive nature of pristine MoS2 NSs (Figure 11a–c). The dual
structural property of highly porous pristine BC and the layered structure of MoS2 NSs
in the MoS2/BC3 NC increased the overall area of the curve, which in turn increased the
specific capacitance. The specific capacitance values calculated from the CV curve for the
modified electrodes at different scan rates are listed in Table 3. The MoS2/BC3 NC had
a higher specific capacitance value of 34 F/g than pristine MoS2 NSs and pristine BC at
a scan rate of 20 mVs−1. At lower scan rates, the specific capacitance increased due to
the diffusion of a large number of electrolytic ions into the pores of the electrode material
over an extended period. The electrochemical studies reiterate the synergy between MoS2
and BC in terms of the improved overall surface areas, electrical conductivity, capacitive
behavior, and specific capacitance values. While BC offers electric double-layer capacitance,
MoS2 NSs exhibit faradaic pseudocapacitance and when present together, the NC is more
suitable for the development of an electrode material for hybrid capacitors.
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Table 3. Specific capacitance of the pristine MoS2 NSs, pristine BC, and MoS2/BC3 NC from the CV
curve at different scan rates.

Scan Rate (mVs−1)
Specific Capacitance (F/g)

Pristine MoS2 NSs Pristine BC MoS2/BC3 NC

100 14.89 21.56 22.8

80 15.83 20.83 23.5

60 17.03 21.85 25.5

40 19.44 25.0 28.5

20 25.56 31.11 34

4. Conclusions

In conclusion, we have successfully investigated and revealed the synergistic effect of
an MoS2 NSs/BC nanocomposite through spectroscopic, structural, and electrochemical
studies, and have proven the ability of the NC to be used for energy storage applications.
The presence of BC prevents the agglomeration of MoS2 NSs, resulting in the formation of
few-layered NSs through adsorption of the formed NSs onto the surface of the BC. Also,
the amorphous and porous nature of BC helps to improve the surface area of the NC, which
in turn enhances electrochemical properties like the electrical conductivity and specific
capacitance of the NC-modified electrode on the GC surface. Interestingly, PL studies
reveal a substantial increase in the luminescence characteristics of NC compared to the
less luminescent bulk BC and non-luminescent bulk MoS2. Thus, the prepared MoS2/BC
NCs offer ample scope for further improvement and development for energy storage and
photoluminescence applications.
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