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Abstract: In this study, PMMA/SiO2 composites were fabricated with monodispersed SiO2 and
PMMA using four distinct methods—physical blending, in situ polymerization, random copoly-
merization, and block copolymerization—to investigate the composites’ thermal, mechanical, and
optical properties. In the physical blending approach, SiO2 nanoparticles were dispersed in a PMMA
solution, while during in situ polymerization, silica nanoparticles were incorporated during the
synthesis of PMMA/SiO2 composites. 3-methacryloxypropyltrimethoxysilane (MPS) was modified
on the SiO2 surface to introduce the reactive double bonds. The MPS@SiO2 was either random- or
block-copolymerized with PMMA through RAFT polymerization. The PMMA/SiO2 composites
prepared via these different methods were characterized using FTIR, TGA, and DSC to determine
their chemical structures, thermal degradation temperatures, and glass transition temperatures,
respectively. Scanning electron microscopy (SEM) was employed to observe the microstructures
and dispersion of the composites. This comprehensive analysis revealed that the PMMA/SiO2

composites prepared via block copolymerization exhibited thermal stability at temperatures between
200 and 300 ◦C. Additionally, they demonstrated excellent transparency (86%) and scratch resistance
(≥6H) while maintaining mechanical strength, suggesting their potential application in thermal
insulation materials.

Keywords: RAFT polymerization; SiO2; PMMA; organic/inorganic composites

1. Introduction

Composite materials are formed by combining two or more materials through physical
or chemical methods [1], typically involving a matrix material and one or more fillers [2].
Fillers play an important role in many fields, including thermal, electrical, tribological, and
mechanical properties [2,3]. Among these properties, mechanical property enhancement
received attention for polymeric composites since polymers are considered to lack mechan-
ical tolerance. For example, carbon fiber fillers can effectively increase the strength and
stiffness of composite materials [4] while also improving heat and corrosion resistance [5–7].
Glass fibers also offer high strength and stiffness, though they are more brittle and prone to
fracture compared to carbon fibers [8,9]. Ceramics have extremely high hardness and wear
resistance but are easily broken and not resistant to vibrations and thermal cycling [10,11].
The size and mixing method of the filler also influences the properties of composites [12–15].
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Small particles possess a large surface energy, resulting in severe self-aggregation. There-
fore, the dispersion of nanoparticles in the polymer matrix is difficult [16]. Excessive or
uneven particle sizes can lead to anisotropy in the composite, impacting its mechanical
properties. Thus, particles influence the strength of polymer composites in two distinct
ways. One is the weakening effect caused by stress concentration, while the other is the
strengthening effect, as these particles may act as barriers to crack propagation within the
composites [17]. When the weakening effect predominates, the mechanical strength of the
composite will be inferior to that of the matrix. Conversely, when the strengthening effect is
more pronounced, the strength of composites is enhanced. Among the hard particles, silica
particles have many advantages as filler candidates, including cost-effectiveness, good
dispersibility, and mechanical strength [18–21]. In terms of thermal properties, silica also
performs excellently as a reinforcing material, improving the thermal stability of composites
and maintaining good stability in high-temperature environments. For example, Far et al.
mixed the binary carbonate, Li2CO3-K2CO3, with SiO2 nanoparticles, and this was shown
to increase the heat capacity by 19% [22].

The advantage of thermoplastics polymers lies in their malleability, enabling the cre-
ation of intricate shapes through processes such as thermoforming, injection molding, and
3D printing [23,24]. However, their heat and chemical resistance are generally inferior. The
curing process of thermosetting materials is an irreversible chemical reaction, during which
chemical bonds form between polymer molecules to create a 3D network structure [25].
This network structure gives thermosetting polymers excellent heat, chemical, and wear re-
sistance. Thermoplastic materials, on the other hand, have reversible thermal deformation
characteristics, allowing them to be reshaped multiple times through heating and cooling
to produce complex shapes. However, their heat and chemical resistance are generally
poor, necessitating the addition of fillers to enhance their properties [26]. Among the many
thermoplastic materials, polymethyl methacrylate (PMMA) has high transparency and
good optical transmittance, meaning it is commonly used to manufacture transparent
products such as optical lenses and display panels. PMMA is also frequently used in the
medical field, such as in dental materials and bone cements [27–29].

Therefore, the present study attempts to primarily use SiO2 nanoparticles and PMMA as
the main materials to assess the preparation and properties of organic/inorganic composites.
The Stöber method was first used to synthesize SiO2. 3-methacryloxypropyltrimethoxysilane
(MPS) was then used to modify the surface with reactive unsaturated double bonds
(MPS@SiO2), allowing it to copolymerize with methyl methacrylate monomers [30]. Four
different methods—the physical blending of SiO2 and PMMA, the in situ polymeriza-
tion of SiO2 with MMA, and the random and block copolymerization of MPS@SiO2 with
MMA—were utilized to prepare blended PMMA/SiO2, in situ PMMA/SiO2, PMMA-co-
SiO2, and PMMA-b-SiO2. FTIR, TGA, DSC, mechanical studies, scratch resistance, and
transparency methods were adapted for analyzing the properties of PMMA/SiO2 com-
posites. To the best of our knowledge, this is the first study that compares four different
methods for preparing PMMA/SiO2 composites. It is believed that this study can benefit
the synthesis of not only PMMA/SiO2 but also various other composites.

2. Experimental
2.1. Materials

Tetraethyl orthosilicate (TEOS) was purchased from Thermo Scientific. 3-methacry-
loxypropyl trimethoxysilane (MPS), methyl methacrylate (MMA), 2,2-Azobis(2-methylprop-
ionitrile) (AIBN), and ammonium peroxydisulfate (APS) were purchased from Alfa, Linkou,
Taiwan. The 35% Ammonia solution was purchased from Fisher, while the CTA, 4-
cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPDB) was purchased from Sigma
Aldrich, Linkou, Taiwan. All chemical reagents are used directly as received without
further purification.
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2.2. Synthesis of the SiO2 and MPS@SiO2 Nanoparticles

In this experiment, 63.32 mL ethanol, 1.82 mL ammonia, 0.4 g deionized water, and
8.5 mL TEOS were stirred together and reacted at 40 ◦C for 50 min. The solution was then
dried using a rotary evaporator to obtain solid particles as monodispersed SiO2. MPS@SiO2
was synthesized similarly to SiO2 with MPS added during the reaction.

2.3. Synthesis of Pristine PMMA, PMMA/SiO2 Composites with Different Methods

PMMA: In this step, 60 mL deionized water, 40 mL acetone, 8.6 mL MMA monomer,
and 0.2 g APS initiator were added to a three-neck flask. The reaction was carried out at
75 ◦C for 24 h. The sample was purified using a rotary evaporator for later use.

The PMMA/SiO2 composite was synthesized using four different methods. The
feeding amount of SiO2 to PMMA was set as 5 wt. % for the four methods.

Blending: The purified PMMA was dissolved in acetone. Then, 17.2 mL SiO2 solution
was added and mixed uniformly, and it was dried overnight at 50 ◦C to obtain blended
PMMA/SiO2 powder.

In situ polymerization: In this step, 60 mL deionized water, 40 mL acetone, 8.6 mL
MMA monomer, and 17.2 mL SiO2 solution were added to a three-neck flask, and 0.2 g
APS initiator was added. The reaction was carried out at 75 ◦C for 24 h. The sample was
purified using a rotary evaporator to obtain in situ PMMA/SiO2 powder.

RAFT copolymerization: In this step, 100 mL ethanol, 0.48 g CPDB, 0.06 g AIBN,
17.2 mL MMA, and 32.4 mL MPS@SiO2 solution were added to a three-neck flask and
mixed uniformly. The reaction was carried out at 70 ◦C under nitrogen for 40 h. The sample
was purified using a rotary evaporator to obtain PMMA-co-SiO2.

RAFT block copolymerization: In this step, 100 mL ethanol, 0.48 g CPDB, 0.06 g AIBN
and 17.2 mL MMA were added together and reacted at 70 ◦C under nitrogen for 24 h. Then,
32.4 mL MPS@SiO2 solution was added, and the reaction continued for 16 h under nitrogen.
The sample was purified using a rotary evaporator to obtain PMMA-b-SiO2.

2.4. Structural Characterization of the PMMA/SiO2 Composites

A thermogravimetric analysis (TGA, Pyris 1 TGA) was used to determine the thermal
decomposition of PMMA/SiO2 composites. The samples were heated from 50 ◦C to 700 ◦C
with a heating rate of 20 ◦C/min, and the N2 flow rate was maintained at 20 mL/min.
The glass transition temperatures (Tgs) of as-synthesized PMMA/SiO2 composites were
determined using a differential scanning calorimeter (DSC, NETZSCH DSC 200F3) at
a heating rate of 20 ◦C/min. The Tgs were then determined using the second heating
curves. Fourier transform infrared spectroscopy (FTIR, HORIBA v FT-IR Spectrometer)
absorption spectra were measured at frequencies ranging from 4000 to 400 cm−1 with a
4 cm−1 resolution. The samples were mixed with KBr and prepared as pellets.

2.5. Mechanical and Morphology of PMMA/SiO2 Composites

To analyze the mechanical properties, PMMA/SiO2 composites were first dispersed in
acetone and then poured into a Teflon mold (ISO-37 dumbbell-shaped type 3). A universal
material testing machine (YM-H3501-A02) was used to determine the Young’s modulus,
yield strength, fracture strength, and maximum elongation of PMMA/SiO2 composites.
The surface and structural morphologies of PMMA/SiO2 composites were studied using
SEM (JEOL JSM-7610F) images. The scratch resistance (pencil hardness) of PMMA/SiO2
composite films was analyzed using a commercial pencil hardness tester (scratch hardness
tester model 291, ERICHSEN test equipment). This test conforms to ASTM standard
D3363, and involves different hardness grades (9B–9H) to evaluate the scratch resistance
of PMMA/SiO2 composite films. The transparency of PMMA/SiO2 composite films was
determined via a UV/Vis transmittance analysis in the range of 400–750 nm.
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3. Results and Discussion
3.1. Characterization of SiO2 and MPS@SiO2 Nanoparticles

The functional groups and particle sizes on the SiO2 surface before and after MPS
modification were determined via FTIR and DLS. The absorption peaks at 466 cm−1 and
802 cm−1 correspond to the bending and symmetric stretching vibrations of the Si–O–Si
bonds, as shown in Figure 1A. The peak at 1095 cm−1 represents the asymmetric stretching
vibration of the Si–O–Si bond. A broad characteristic peak at 3463 cm−1 is attributed to
the stretching vibration of hydroxyl groups on the SiO2 surface, which is responsible for
reacting with the vinyl groups of the silane coupling agent MPS. After surface modifi-
cation, new peaks appear at 1635, 1299, and 937 cm−1 for MPS@SiO2, representing the
C=C stretching vibrations, C–O stretching vibrations, and Si–O–C stretching vibrations of
MPS, respectively. Furthermore, the original hydroxyl peak at 3463 cm−1 was reduced,
confirming the successful grafting of MPS onto the SiO2 surface, replacing the surface
hydroxyl groups. Figure 1B,C depict the particle size distribution of SiO2 and MPS@SiO2.
The results show that the average particle size of SiO2 is 60.75 nm, with a polydispersity
index (PDI) of 0.095, indicating a uniform distribution. After modifying the SiO2 surface
with MPS, the average particle size increased from 65 nm to 85 nm, and the polydispersity
index slightly increased to 0.33.
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3.2. Characterization of the PMMA/SiO2 Composites

The results of FTIR analyses of PMMA, SiO2, and PMMA/SiO2 composites are shown
in Figure 2A, which allows us to determine the interaction between the PMMA and SiO2
nanoparticles. The peak at 1731 cm−1 corresponds to the stretching of the carbonyl groups
in PMMA. The peaks at 1454 cm−1 and 1392 cm−1 are attributed to the -CH stretching
of PMMA, with 1454 cm−1 corresponding to the methyl group (-CH3) and 1392 cm−1

to the methylene group (-CH2-). After introducing SiO2 nanoparticles, all PMMA/SiO2
composites exhibit a characteristic peak at 1110 cm−1, belonging to the Si–O–Si bond,
indicating the successful incorporation of SiO2. Additionally, the characteristic peak at
1643 cm−1 of PMMA-co-SiO2 and PMMA-b-SiO2 confirms the introduction of MPS@SiO2.
On the other hand, blend PMMA/SiO2 leads to a stronger intensity in the characteristic
spectral peaks than in situ PMMA/SiO2, PMMA-co-SiO2, and PMMA-b-SiO2. This indicates
a sufficient SiO2 content in blend PMMA/SiO2 than in other PMMA/SiO2 composites. The
glass transition temperatures (Tgs) of PMMA, blend PMMA/SiO2, in situ PMMA/SiO2,
PMMA-co-SiO2, and PMMA-b-SiO2 are 101 ◦C, 102 ◦C, 109 ◦C, 131 ◦C, and 126 ◦C, as shown
in the DSC analysis (Figure 2B). The physical introduction of SiO2 does not significantly
affect the Tgs of PMMA/SiO2 composites due to the absence of chemical bonding. However,
SiO2 is integrated into the polymer backbone through polymerization, effectively enhancing
the Tgs of PMMA/SiO2 composites. Figure 2C shows a comparison of the thermal weight
losses of PMMA and PMMA/SiO2 composites at different temperatures. It is obvious
that there are three distinct thermal decomposition stages for PMMA (Figure 2C). The first
stage is observed between 165 ◦C and 250 ◦C with 6.38 wt. % weight loss attributed to the
depolymerization initiated from head-to-head linkage within the polymer chain [31,32].
The second stage occurs between 250 ◦C and 300 ◦C with 26.41 wt. % weight loss resulting
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from the thermal decomposition of the unsaturated chain ends. Above 300 ◦C, breaking
and decomposition among the PMMA backbone occurs, leading to the most significant
weight loss. The thermal decomposition of blende PMMA/SiO2 is relatively lower in
the range of 200 ◦C to 300 ◦C (Figure 2D), indicating that the unsaturated chain ends do
not affect the weight loss resulting from the SiO2 protection layer, thereby enhancing the
thermal stability [33]. The in situ PMMA/SiO2 followed the same trend as PMMA, but
the two thermal decomposition peaks were delayed from 250 ◦C and 300 ◦C to 280 ◦C
and 330 ◦C, respectively (based on the differential spectrum, unshown). This delay can be
attributed to the spatial barrier formed by PMMA-encapsulated SiO2, which acts against
the heat transfer path and slows heat transfer [34,35]. A 3 wt. % mass residue can be
observed at temperatures above 500 ◦C, confirming the presence of SiO2 in the blend and in
situ PMMA/SiO2 composites. However, from the thermal decomposition (Figure 2C) and
differential plots of PMMA-co-SiO2 and PMMA-b-SiO2, it can be found that the weight loss
that originally occurred before the main chain decomposition was not present (165–250 ◦C).
At the same time, the weight loss caused by the thermal decomposition of the unsaturated
chain ends was significantly reduced from 28.6 wt. % to below 5 wt. %. This reduction is due
to the controlled nature of RAFT polymerization, in which the stable intermediate prevents
the termination and avoids the formation of unsaturated chain ends. Thus, the maximum
weight loss in PMMA-co-SiO2 and PMMA-b-SiO2 occurred above 335 ◦C. Meanwhile, the
remaining weights of PMMA-co-SiO2 and PMMA-b-SiO2 were 7.69% and 12.61% higher
than the feeding ratio (5 wt. %) due to the introduction of SiO2 by RAFT polymerization.
In short, we can conclude that the thermal stability improves between 200 ◦C and 300 ◦C
regardless of the method of SiO2 introduction by comparing the relationship between
mass loss and temperature, as shown in Figure 2D. The thermal degradation of the PMMA
main chain results in a significant weight loss for PMMA, blend PMMA/SiO2, and in situ
PMMA/SiO2 beyond 300 ◦C. However, RAFT polymerization effectively maintains the
thermal stability of PMMA/SiO2 composites until 350 ◦C owing to the better dispersion
and chemical bonding, which shows the potential in thermal insulation applications.
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Figure 2. Characterization of PMMA and PMMA/SiO2 composites: (A) FTIR spectrum, (B) DSC
analysis, (C) TGA analysis, and (D) weight loss within specific temperature regions of PMMA, and
PMMA/SiO2 composites.
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3.3. Mechanical Properties of the PMMA/SiO2 Composites

Effective stress transfer is the most crucial factor in strengthening two-phase compos-
ites. Different blend methods lead to different dispersions of silica in the PMMA/SiO2
composites, therefore influencing the results of universal testing. For poorly bonded parti-
cles, stress transfer at the particle/polymer interface is inefficient. However, in composites
containing well-bonded particles, the incorporation of particles into the polymer results
in increased strength. Figure 3 illustrates the stress–strain relationship of PMMA/SiO2
composites, in which the blend PMMA/SiO2 and in situ PMMA/SiO2 are shown to en-
hance the Young’s modulus and yield strength of PMMA/SiO2 composites, while the
PMMA-co-SiO2 and PMMA-b-SiO2 exhibit less pronounced improvements in their strength,
as shown in Table 1. It is expected that the introduction of SiO2 nanoparticles can improve
the mechanical properties of PMMA/SiO2 composites because of the bridging effect. The
preparation of PMMA/SiO2 composites via RAFT copolymerization was expected to effec-
tively bond SiO2 to PMMA and enhance mechanical strength. However, the opposite was
observed, as PMMA/SiO2 composites prepared by physical methods, i.e., blend and in situ
PMMA/SiO2, exhibited higher strength. It is speculated that the RAFT copolymerization
process may have introduced the agglomeration of SiO2 nanoparticles or disrupted the
orderly long-chain structure of PMMA, weakening the overall mechanical properties [36].
It is noted that PMMA-b-SiO2 shows more strain than other PMMA/SiO2 composites.
Since PMMA is inherently a brittle acrylic-based polymer, the combination of a tolerance of
higher strain and lower stiffness may also result from the decreased molecular weight of
the PMMA matrix.
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Table 1. The mechanical properties of the PMMA/SiO2 composites.

Sample Young’s Modulus
(GPa)

Yield Strength
(MPa)

Fracture Strength
(MPa)

Maximum Elongation
(%)

PMMA 0.26 ± 0.18 7.02 ± 4.34 1.92 ± 1.05 3.64 ± 0.01
Blend PMMA/SiO2 0.36 ± 0.02 11.08 ± 2.14 6.11 ± 4.72 4.56 ± 2.05
In situ PMMA/SiO2 0.43 ± 0.06 10.64 ± 3.81 6.81 ± 2.53 3.86 ± 1.71

PMMA-co-SiO2 0.25 ± 0.05 4.08 ± 1.98 2.55 ± 0.30 2.89 ± 0.16
PMMA-b-SiO2 0.19 ± 0.06 5.33 ± 0.94 1.91 ± 0.61 4.78 ± 0.16

3.4. Morphology of the PMMA/SiO2 Composites

To investigate the relationship between the mechanical properties and morphology
of PMMA/SiO2 composites prepared by different methods, thin films of PMMA/SiO2
were fabricated using the solution casting method, and we analyzed the surface and cross-
section morphology using SEM images. From the SEM images of PMMA (Figure 4A,F),
it can be observed that the PMMA surface was very smooth, while the surface and cross-
section structure became uneven with particle aggregation after introducing SiO2 via
physical blending or in situ polymerization (Figure 4B,C,G,H). The surface structures of
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PMMA-co-SiO2 and PMMA-b-SiO2 showed slight aggregation but remained relatively
smooth (Figure 4D,E). Meanwhile, the cross-section images of PMMA-co-SiO2 and PMMA-
b-SiO2 exhibit a uniform layered structure without aggregation, which suggests that RAFT
polymerization provides better thermal stability and more effective dispersion to the
PMMA/SiO2 composites compared to physical blending and in situ polymerization.
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PMMA/SiO2, (C) in situ PMMA/SiO2, (D) PMMA-co-SiO2, and (E) PMMA-b-SiO2. Cross-section
area view: (F) PMMA, (G) blend PMMA/SiO2, (H) in situ PMMA/SiO2, (I) PMMA-co-SiO2, and
(J) PMMA-b-SiO2.

The scratch resistance of PMMA/SiO2 composites was measured using a pencil hard-
ness tester, and the results are shown in Table 2. It has been found that pristine PMMA has
a scratch resistance of 2H under a 500 g load. Both in situ PMMA/SiO2 and PMMA-co-SiO2
showed only minor improvements in scratch resistance, increasing by just one grade to 3H.
However, the scratch resistance of blend PMMA/SiO2 was significantly enhanced, reaching
a grade of 5H, clearly due to the influence of SiO2. PMMA-b-SiO2 demonstrated moderate
scratch resistance at 4H, which may be attributed to the RAFT-polymerized composite
maintaining structural uniformity. This uniformity, while improving thermal stability, also
helps preserve scratch resistance.
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Table 2. The scratch resistance of PMMA/SiO2 composites.

Sample
Hardness

2H 3H 4H 5H 6H

PMMA O X X X X
Blend PMMA/SiO2 O O O O X
In situ PMMA/SiO2 O O X X X

PMMA-co-SiO2 O O X X X
PMMA-b-SiO2 O O O X X

PMMA is a polymer with high hardness and transparency; the purpose of our research
is to improve its thermal stability but maintain these intrinsic properties after introducing
SiO2 nanoparticles. Figure 5 shows the transmittance of different PMMA/SiO2 composite
films prepared via the solution casting method at visible light wavelengths. The maxi-
mum transmittance of PMMA is 85.6%, while blend PMMA/SiO2, in situ PMMA/SiO2,
PMMA-co-SiO2, and PMMA-b-SiO2 have maximum transmittances of 71.4%, 66.6%, 65.8%,
and 86.5%, respectively. It is obvious that after introducing SiO2 nanoparticles, the trans-
mittance of the blend PMMA/SiO2, in situ PMMA/SiO2, and PMMA-co-SiO2 composites
significantly decreased to lower than 70%. Notably, PMMA-b-SiO2 had a minimal impact
on the transmittance of PMMA because of the block copolymer structure. The block confor-
mation tends to create the PMMA-rich domain and silica domain. The PMMA-rich domain
is dominant, which is similar to pure PMMA, so the transmittance remains.
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4. Conclusions

We prepared organic/inorganic composite materials (PMMA/SiO2 composites) by
incorporating SiO2 nanoparticles as fillers into PMMA through various blending meth-
ods and conducted a series of investigations into their thermal, mechanical, and optical
properties. A TGA analysis showed that each blending method effectively improved the
thermal properties of PMMA. Physical blending (blend PMMA/SiO2) retained the polymer
molecular weight, while in situ PMMA/SiO2 delayed the thermal decomposition tem-
perature by 30 ◦C due to the steric hindrance provided by SiO2 nanoparticles. Random
(PMMA-co-SiO2) and block copolymerization (PMMA-b-SiO2) reduced the unsaturated
chain segments of PMMA, resulting in better thermal stability than physical blending. A
DSC analysis confirmed the glass transition temperatures (Tgs) of different samples, veri-
fying that incorporating SiO2 through copolymerization effectively delayed the Tgs. The
results from the universal testing indicate that all blending methods effectively improved
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the mechanical properties of PMMA/SiO2 composites. The results of UV/Vis scanning
and scratching tests reveal that PMMA-b-SiO2 provides moderate scratch resistance (4H)
and transmittance (85.6%) compared to PMMA. In conclusion, the block copolymerization
method for preparing PMMA-b-SiO2 preserved the high hardness and transmittance of
the original PMMA while maintaining its mechanical strength and improving its thermal
stability with only a slight sacrifice in maximum tensile strength. We believe this simple
and controllable method can provide a new perspective regarding various polymers and
fillers, making it suitable for applications in thermal insulation materials.
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