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Abstract: To meet the increasing demand for resilient infrastructure in seismic and high-
impact areas, accurate prediction and reliability analysis of the performance of composite
structures under impact loads is essential. Conventional techniques, including experi-
mental testing and high-quality finite element simulation, require considerable time and
resources. To address these issues, this study investigated individual and hybrid mod-
els including support vector regression (SVR), Gaussian process regression (GPR), and
improved eliminate particle swamp optimization hybridized artificial neural network
(IEPANN) models for predicting the failure strength of composite concrete developed
by combining normal concrete (NC) with ultra-high performance concrete (UHPC) and
polyurethane-based polymer concrete (PUC), considering different surface treatments and
subjected to various static and impact loads. An experimental dataset was utilized to train
the ML models and perform the reliability analysis on the impact dataset. Key param-
eters included compressive strength (Cfc), flexural load of the U-shaped specimens (P),
density (ρ), first crack strength (N1), and splitting tensile strength (f t). Results revealed
that all the developed models had high prediction accuracy, achieving NSE values above
acceptable thresholds greater than 90% across all the datasets. Statistical errors such as
RMSE, MAE, and PBIAS were calculated to fall within acceptable limits. Hybrid IEPANN
appeared to be the most effective model, demonstrating the highest NSE value of 0.999
and the lowest RMSE, PBIAS, and MAE values of 0.0013, 0.0018, and 0.001, respectively.
The reliability analysis revealed that impact times (N1 and N2) reduced as the survival
probability increased.

Keywords: composite concrete; machine learning; reliability analysis; impact load; UHPC

1. Introduction
Concrete structures experience a variety of structural and durability concerns during

their serviceability [1,2]. For instance, bridge columns are eroded by seawater, heat stress
or impact loads can damage railway base joints, and concrete elements can be damaged
by falling objects. Therefore, effective repair is required to prolong their service life [1,3].
During concrete restoration, the interface between the concrete and repair materials is
weak [4]. The interfacial strength primarily depends entirely on the concrete being properly
repaired. The impairment of the repair materials is attributed to two factors: firstly,
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chemical bonding at the composite interface (old concrete and the repair materials) [5];
and second, interfacial friction in the composite [5], which depends on the first factor. The
bond capacity between the old and new materials has the most influence on the first phase,
while the repair material’s effectiveness has the greatest impact on the second [5]. As a
result, effective repair requires appropriate repair materials as well as adequate bonding
qualities at the repair interface. Widely used repair and retrofitting approaches include
steel and concrete jackets [6,7], fiber-reinforced polymer confinement [8,9], and PU grouting
substances [10,11]. However, some techniques are difficult to implement and costly.

The impact properties of plain and steel-fiber-reinforced concrete (SFRC) sub-
jected to repeated drop-weight impact have previously been statistically evaluated [12].
Song et al. [13] studied the synergic influence of steel and steel–polypropylene fibers on the
impact resistance and performed reliability analysis of FRC using a drop-weight impact
testing method. Alavi et al. [14] compared the drop-weight impact results of plain concrete
and FRC specimens with finite element analysis based on an ACI committee 544 testing
procedure. The authors reported that both the numerical and experimental results revealed
that impact resistance of the concrete specimens increased with increases in fiber volume
fraction. AlAhmed et al. [15] evaluated the properties of sandwich panels through investi-
gating different design features and main geometries. Using FE and regression analysis
performed on 27 numerical experiments, the results indicated that a tubular sandwich
element demonstrated least deformation and minimal destruction while influencing the
maximum kinetic energy propagation. Recently, Al-shawafi et al. [16] evaluated the impact
strength of UHPC retrofitted with different polyurethane grouting material thickness under
impact loads. The authors utilized the two-parameter Weibull distribution function to ana-
lyze the impact test results. The results indicated that the polyurethane grouting material
cast U-shaped UHPC had remarkably enhanced impact strength, which increased with
increases in the thickness of the overlaid polyurethane grouting. Su et al. [17] developed
extensive Karagozian & Case Concrete (KCC) and a reliable parameter generation method
for estimating the impact properties of UHPC elements under impact loads. The authors
comprehensively calibrated the failure surface, damage evolution, and other important
parameters from the available experimental and analytical data for UHPC. Generally, the
statistical technique is most commonly used method for investigating the impact strength
of cement-based materials under multiple drop-weight impact testing, as found in the
literature [12–14,18–20].

However, numerous research studies have been undertaken utilizing machine learn-
ing models to solve engineering problems, proving promising. Particular models have
been applied in certain situations, but, no superior model has been reported to suit all
cases [21–27]. As a result, adopting ensemble methods produces more accurate predictions.
Yazici et al. [28] developed a radial basis function network (RBFN) model for predicting the
impact strength of concrete incorporated with basalt, limestone, and natural aggregate as
the main aggregate materials and subjected the concrete specimens to repeated drop-weight
impact testing. The results indicated that the RBFN model was effective in predicting the
impact strength of the concrete. Moein et al. [29] used the Weibull distribution function to
perform reliability analysis on the impact test results of concrete incorporated with poly-
ofein fiber under multiple impact loads. The result revealed that the Weibull distribution
function successfully predicted the impact failure strength of the concrete. Mane et al. [30]
developed an ANN model for estimating the impact resistance of concrete that included
industrial waste and artificial sand; the ANN model provided high prediction accuracy.
Another study [31] reported some limitations of linear regression models in predicting the
shear modulus and damping coefficient of polymer concrete when associated with shear
deformation of no more than 10−2%. Li et al. [32] developed a deep neural network (DNN)
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to predict the mechanical properties of polymer concrete panels. The results showed that
neural networks with fewer neurons in a layer demonstrated lower convergence rates than
neural networks with high numbers of neurons in a layer. Conversely, the IEPANN model
is trained according to initial weight and bias, and the MSE between the experimental and
estimated values is then calculated. Optimization is carried out based on this method until
the stopping requirements are met, and smaller MSE value or peak iterations can be the
stopping criteria. The performance of the developed IEPANN relies mainly on the selection
of neurons and hidden layers. Some studies [33,34] have recommended that one (1) hidden
layer is efficient for various regression models.

Ensemble approaches have been used in many engineering fields [35–40]. Liang et al. [36]
developed an interpretable ensemble ML technique to estimate concrete creep properties,
which included random forest (RF), extreme (XGBoost), and light gradient boosting and
(LGBM). The authors reported that the ensemble models demonstrate higher prediction ac-
curacy compared with the equation established by the fib Model Code 2010. Zhang et al. [38]
predicted the flexural capacity of reinforced concrete (RC) beam-wrapped fiber-reinforced
polymer (FRP) using ensemble ML, namely, gradient boosting decision tree, RF, XGBoost,
and adaptive boosting. The ensemble ML performance was compared with empirical
models, and the results showed the significant superiority of the ensemble ML model.
Similarly, the maximum bond behavior between UHPC and reinforcement was predicted
by Farouk et al., using an ensemble ML model [41]. You et al. [42] established novel hybrid
ML models to forecast the maximum bond capacity between UHPC and reinforcement.
The results revealed that the embedded depth remarkably influenced the bond strength of
UHPC. Kan et al. [43] developed a deep learning algorithm for discovering cracks on a rail-
way sleeper using the U-Net model. The authors proposed an improved U-net architecture
for sectioning the cracks. Anas et al. [20] estimated the behavior of concrete slabs wrapped
with different fiber types under impact stress, utilizing a 3-D finite element (FE) model for
the estimation. The results indicated that the strengthening approach improved the RC
slab’s impact strength with regard to displacement and damage severity. Cui et al. [44]
developed a novel model for estimating the dynamic shear stress and ultimate deflection of
beams under impact load. Bakhshi et al. [45] proposed logarithmic-scale models to forecast
the failure properties of concrete containing different fibers under multiple impact stress.
The novel model forecasted and determined the effect of steel fibers on the post-cracking
performance of FRC. The proposed model improved the estimation of the measured results
obtained from impact testing conducted in previous studies for a different volume of steel
fiber. Similarly, the failure strength of concrete modified with polyurethane binder was
predicted by Lagsum et al. [46], using SVR and ANN models. Through advanced ML
models, it is feasible to incorporate variables that possibly affect the composite structures.

The main aim of this study was to accurately model and predict the failure strength of
composite structures under multiple impact loads. Furthermore, reliability analysis through
Weibull distribution was performed on the test results to evaluate the design impact strength
and impact resistance of composite U-shaped specimens subjected to repeated impact loads.
This study employed hybrid IEPSO with an ANN model to form an ensemble IEPANN
for prediction of the failure strength of composite U-shaped concrete. The predictive
performance of IEPANN was compared with classical regression models including GPR
and SVR. This study contributes to the field by providing a deeper understanding of
the impact behavior of composite concrete structures and advancing ML applications in
predicting and explaining material performance, as this research involves both static and
impact variables for estimating the failure strength of composite concrete. The research can
reduce the need for high-cost experimental programs and save time.
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2. Development of Database
The impact strength data was obtained through the U-shaped repeated impact

test (USDWIT), a unique testing approach adopted to determine concrete impact
strength [11,47–49]. The technique utilizes a U-shape sample to determine the concrete’s
impact behavior through multiple drop-weight impacts (see Figure 1). The dataset used
for developing the ML algorithms and the reliability analysis was obtained from these
experiments [50,51]. Five (5) variables were used as input parameters, including compres-
sive strength (Cfc), flexural stress of the U-shaped specimen (P), the density (ρ), first crack
strength (N1), and splitting tensile strength (f t). The failure strength (N2) was computed as
the output parameter.
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Figure 1. Experimental setup: (a) splitting tensile, (b) flexural, and (c) impact tests.

2.1. Description of Dataset Distribution

The data distribution was used to evaluate the datasets and characterize their nature,
comprising six (6) variables obtained from the static and drop-weight impact testing. The
variation and distribution plot of each input variable and output parameter is shown in
Figure 2, showing that some of the input variables nearly followed normal distribution,
including first crack strength (N1) and failure strength (N2), while input variable density
(ρ) was normally distributed. On the other hand, parameters including splitting tensile
(f t) and compressive strength of the composite (Cfc), and flexural strength of the U-shaped
specimen under static load barely followed normal distribution.
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2.2. Selection of Optimal Input Variables

Table 1 shows the statistical analysis of the experimental dataset used for the modeling
task. The analysis indicated the statistical parameters of the dataset to be suitable for de-
veloping an AI-based model. The selection of input variables when developing the model
is essential for attaining the expected accurate prediction skills. As a result, introducing
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unfitting factors in the modeling decreases the prediction accuracy [52]. However, insuffi-
cient input variables can result from low prediction skills. In this investigation, Pearson
correlation was utilized to obtain the most relevant input features when evaluating the N2
values of the composite U-shaped concrete samples. The Pearson correlation between the
observed and predicted parameters is depicted in Figure 3. All the observed parameters
exhibited reasonable correlation with the predicted parameter values. However, initial
crack strength (N1) showed the highest correlation with target parameter.

Table 1. Statistical parameters of the experimental data.

f t (MPa) Cfc (MPa) P (kN) ρ (kg/m3) N1 (Blow) N2 (Blow)

Min 0.00 22.30 1.31 1946.11 2.00 5.00
Max 4.30 66.50 6.78 2385.03 198.00 216.00
mean 2.93 42.61 3.57 2063.12 39.61 47.31
SD 1.41 15.49 1.68 63.20 42.93 45.95
Kurtosis −0.02 −1.19 −0.42 3.95 2.42 2.12
Skewness −1.15 0.41 0.75 1.21 1.78 1.68
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3. Machine Learning Algorithm
3.1. Gaussian Process Regression (GPR)

GPR is a robust non-linear prediction model that improves the accuracy of aligning
measured and predicted values of engineering properties [53]. The adoption of this model
is substantiated by its efficiency in previous studies [53,54]. The GPR model was simulated
using the exponential kernel function, which applied Bayesian inference of the dataset
(Equation (1)), where xi and yi are input and output parameters, respectively). The GPR
architecture is shown in Figure 4.

Q = {(xi, yi), i = 1, 2, 3, 4, . . . . . . , N} (1)
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Subsequently, the GPR underwent processing focusing on the Bayesian distribution
function, given in Equation (2):

p( f |Q) =
p(j)p(q| f )

p(Q)
(2)

Thus, z(x, x’) expressed in Equation (3) is the covariance function of the model:

z(x, x′) = ∂2
f exp

{ xi − xj

2k2

}
(3)

The hidden function in the equation can be expressed as Equation (4):

y = f (x) + e (4)

where f (x) is the hidden function and e is the Gaussian noise. In GPR computing, the
hidden function is represented as a random variable, while the divergence between x
and x’ approaches zero, indicating that the function reaches the true function z(x). Thus,
Equation (4) is modified to Equation (5) through noise values:

q(x, x′) = ∂2
f exp

{ xi − xj

2k2

}
+ ∂2

nα(x, x′) (5)

where ∂2
f is the variance, and α(x, x′) is the alpha function. Accordingly, the predicted

function is given in Equation (6):

y = f (x) + N(0, ∂2
n) (6)

Finally, the covariance function z(x, x’) is expressed by matrix ‘Z’:

Z =

 q(x1, x1) q(x1, x2) . . . ..q(x1, xn)

·· ·· ··
q(xn, x2) q(x1, x2) q(xn, xn)

 (7)

3.2. SVR Model

SVR is an adaptation of the SVM model originally designed for classification tasks, now
tailored for regression analysis. It constructs a plane or hyperplane, aiming at minimizing
the sample’s overall deviation from the hyperplane. Its primary goal is to reduce the
error by developing a regression function that maximizes the fit between data points and
a curve [55]. Figure 5 presents the architecture of SVR. The process is explained as a
constrained optimization issue, as expressed [56]:

min

(
1
2
∥ w ∥2 +C

n

∑
i=1

(ξ∗i + ξi)

)
(8)
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subject to :

{
yi− < w, xi > −b ≤ ε + ξ∗i
< w, xi > +b − yi ≤ ε + ξ∗i

}
(9)

where xi is the i th input variable, yi is the target, and w is the weight vector. ξi is defined
as the distance between the boundaries, and C is the penalty coefficient. Therefore, the
regression function of the SVR model is given in Equation (10):

f (x) = wϕ(x) + b (10)

where ϕ(x) defines the nonlinear mapping relation, w and b are the weight vector and
bias, respectively.
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3.3. IEPSO

IEPSO was developed by Lv et al. [57] to enhance personal–global information analysis
and global optimization efficiency. It is an extension of PSO. Equation (11) defines each
particle’s updated position and velocity in the solution space:

Vk+1
ij = wVk

ijc1r1(pk
bestij − Xk

ij) + c2r2(Gk
bestij − Xk

ij)︸ ︷︷ ︸
Standard PSO

+ c3r3

∣∣∣Gk
bestij − pk

ij

∣∣∣︸ ︷︷ ︸
ϕ3

(11)

The terms in Equation (12) represent the conventional PSO algorithm’s updated
velocity. ϕ3 refers to the extension of PSO. Moreover, IEPSO allows for more than just
one-way information transmission among the global and individual best particles. The
value of c3 is decided using two criteria. If c3 is assumed to be a constant, c3 equals 2.
Equation (12) is used to determine c3:

c3 = k
[(

c3i − c3j
)
× t

tmax

]
(12)

where k is the controlling factor with a value of −1 and +1, C3i is the first value of c3, c3j is
the last value of c3, t is the number of iterations, and tmax is the highest iteration time.
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3.4. IEPANN

IEPANN is an ensemble technique developed using the optimization of ANNs and
IEPSO to predict the performance of composite U-shaped specimens at the training and
verification phases. The learning approach of the IEPANN is expressed in Equations (11)
and (12) and schematically depicted in Figure 6. This approach is utilized to train the
artificial neural network through IEPSO. The process starts with the generation of random
particles, with their positions representative of the ANN’s weight and bias. The hybrid
technique involves training according to primary weight and bias and then determining
the mean square error (MSE) between the experimental and target variables. The model’s
performance was improved by gradually altering the particles’ positions and lowering the
MSE at every iteration. Pbest and Gbest were selected to evaluate and update new velocities
at every iteration. Optimization is performed based on this protocol until the termination
criteria are obtained. Stopping could be based on a lower MSE or ultimate iteration count.
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3.5. Model Performance Matrix

Table 2 presents the evaluation matrix for checking the performance of the developed
model, including commonly used matrix parameters for physical dimensionless quantities.
These dimensionless quantities are sometimes expressed in percentages, degrees, etc. [58].
The matrix includes Nash–Sutcliffe efficiency (NSE), mean absolute error (MAE), root mean
square error (RMSE), and percentage bias (PBIAS). The dataset was normalized to improve
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its integrity and eliminate inconsistencies between datasets. Equation (13) was used to
normalize the datasets:

ynorm =
y − ymin

ymax − ymin
(13)

where ynorm represents the normalized data, and y, ymin, and ymax are the observed, maxi-
mum, and minimum data, respectively.

Table 2. Evaluation matrix.

Matric Formula Description

NSE
1 −

n
∑

i=1
(Nobsi − Nprei)

2

n
∑

i=1
(Nobsi − Nobsi)2

The NSE defines the fitness of the model. It has values between −∞
and 1. NSE = 1 indicates the highest prediction accuracy and vice
versa.

MAE MAE =
1
2

n
∑

i=1
|mi − pi|

MAE has a value between 0 < MAE < ∞, indicating the MAE value
between the measured and target values.

RMSE
√

1
n ∑n

i=1 (qi − pi)
2

Describing the difference between the experimental and target
values, a lower RMSE value indicates good performance.

PBIAS
[

∑n
i=1 (yi − oi)

∑n
i=1 oi

]
× 100

The PBIAS is used to calculate the average tendency of the
computed values, bigger or smaller than the experimental results.

4. Results and Discussion
ML Model Results

After the sensitivity analysis where the parameters’ relevance was evaluated, the
dataset was grouped into 70% and 30% for training and verification. The data were also
normalized between 0 and 1 to prevent data with greater values from overriding those
with lower values, as recommended [59]. MATLAB 2021 was used in this study to train the
three machine learning models (IEPANN, SVR, and GPR). IEPANN is a hybrid model that
was formed by employing IEPSO to optimize ANN models. Training the IEPANN model
involved two stages (see Figure 6). The first stage involved developing an ANN model, and
in the second stage, IEPSO was used to optimize the ANN technique’s weights and bias.
Correct model structure is essential for developing any machine learning technique like an
ANN model. For developing the ANN model, several model structures were developed,
and the structure with five input parameters, seven hidden neurons, and a single output
layer trained with the Levenberg–Marquardt algorithm was found to be the optimum
model structure with the least mean square error and lowest R2 value. The optimum result
was obtained using Sigmoid and Purlin functions, respectively, in the hidden and output
layers of the ANN model. After obtaining the optimum ANN structure, the model was
used to optimize the weight and bias of the ANN models during the iteration process. The
population size, inertia weight, and the stopping criteria for the IEPSO were enhanced
in the ANN. The IEPSO parameters optimized include swamp size, inertia weight, and
termination criteria. The inertia weight was ω = 0.729, and its damping ratio was 1, while
the lower and upper bound velocities were −5 and 5, respectively, obtained using Equation
(14) [60]. A trial-and-error procedure was employed with a population size of 50–500 with
an increment of 50. The model concert increases by changing the positions of the particle
while the MSE reduces a little at each iteration:

V1 = λϕ1, V2 = λϕ2, λ =
2

φ − 2
√

ϕ2 − 4ϕ
, ϕ = ϕ1 + ϕ2 (14)

Similarly, for the classical single models, Bayesian search optimization algorithms
were used to train several SVR and GPR models using different hyperparameters (kernel
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functions, kernel scale, basis function, sigma values, learning rate, and epsilon value), and
only optimum models are reported in this study. The MSE metric was used for selecting
the optimum value. Several models were developed using different parameters and the
model structure with least MSE value was selected as the optimum structure. Two single
ML models (SVR and GPR) were developed to validate the performance accuracy of the
hybrid model (IEPANN). All three models were evaluated using RMSE, MAE, Nash NSE,
and PBIAS. A model is considered excellent when the R2 value > 0.75 [61] and error metrics
are close to zero. A PBIAS value close to zero indicates high accuracy and stability. The
best SVR model was obtained using a Gaussian kernel and kernel scale of 8.9, while the
best GPR model was obtained with the isotropic exponential kernel. The modeling results
for the IEPANN, SVR, and GPR models are summarized in Table 3.

Table 3. Performance of single models.

Model Training Verification

NSE RMSE MAE PBIAS NSE RMSE MAE PBIAS

SVR 0.9983 0.0177 0.0139 0.0248 0.9934 0.0101 0.0065 0.0705
GPR 0.9983 0.0174 0.0135 0.0242 0.9961 0.0078 0.0050 0.0536
IEPANN 0.9999 0.0031 0.0010 0.0018 0.9996 0.0025 0.0009 0.0095

From the results, it can be noted that all the models predicted the failure strength with
excellent results, with NSE > 0.75, PBIAS, and normalized error metrics (MAE and RMSE)
close to zero. The IEPANN outperformed the classical models, with an NSE value of 99.99%
in the training and 99.96% in the verification phase. The IEPANN similarly indicated its
superiority over SVR and GPR in terms of MAE, RMSE, and PBIAS values. The IEPANN
modelled the failure strength with RMSE, MAE, and PBIAS values of 0.0025, 0.0009, and
0.0095 respectively, in the verification stage. The normalized RMSE, MAE and PBIAS values
of the IEPANN model were (0.0076, 0.0056, and 0.0610) and (0.0053, 0.0041, 0.0041) lower
compared with the SVR and GPR models, respectively. The IEPANN also demonstrated
better stability, with as little as 0.03% difference between the NSE values in the training
and verification stages. Several studies have reported improved ANN performance when
PSO was used to optimize ANN parameters [62]. The IEPANN derives its superiority by
analytically optimizing the ANN parameters (bias and weights) using the IEPSO algorithm
by updating the particles’ position. Scatter plots (Figure 7) showing the models’ goodness
of fit were also used to compare the performance of the IEPANN model with the single
classical models (SVR and GPR). It can be seen that the data are more compacted along the
chart bisector in Figure 7c, indicating better agreement between the observed and predicted
failure strength for the IEPANN technique. All the models were also compared using
a violin plot (Figure 8) including boxplots, interquartile ranges, and distribution plots.
All the models mimicked the experimental data well, indicating the models’ suitability
for predicting failure strength. The findings for the developed models were compared
with results found in the literature for small datasets utilized with AI-based models, as
summarized in Table 4; those models predicted the concrete’s properties with high R2

values [63–66].
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Table 4. Comparison of results with existing developed AI models from the literature.

Reference AI-Based Model Material Input Variables Datasets R2

Boga et al. [66] ANN and ANFIS concrete 4 162 0.98
Alfuhaid [64] ANN, ANFIS, SVM, and ELM concrete 8 105 0.959
Pirachatprecha et al. [65] ANN HPC 8 86 0.98
Hoang et al. [63] ANN and ANFIS concrete 4 162 0.982
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The RMSE, standard deviation, and correlation coefficients of the experimental data
and the three developed machine learning models are compared graphically in Figure 9,
using Taylor plots. All the models had correlation coefficients > 0.99. The standard
deviations of the models were almost similar to that of the data, eliminating the overfitting
issues in the models [67]. The RMSE values were also less than 0.05 (normalized), indicating
a high level of accuracy for the models in predicting failure strength.
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5. Statistical Analysis
5.1. Weibull Distribution

Weibull distribution analysis is a statistical technique commonly used for solving
scientific problems, which was firstly established by Wallodi Weibull. The method involves
shape and scale factors for reliability investigation. Fatigue and dynamic properties can
be evaluated using two-parameter Weibull distribution, as reported [11,68]. The Weibull
distribution function is characterized by rises or falls in concrete properties [69]. The
two-parameter distribution function was applied to determine the variations in impact
strength data obtained in this study. The probability function f (P) to evaluate the impact
strength data is given Equation (15) [70]:

f (p) =
τ

z − xo

[
n − x0

z − xo

]τ−1
∗ Exp

{
−
[

x − xo

z − xo

]τ}
z ≤ x ≤ ∞ (15)

Integrating Equation (15) to obtain the random variable distribution function f (Pr):

f (Pr) = p(x ≤ xr) = 1 − Exp
{
−
[

x − xo

z − xo

]τ}
(16)

where x is the value of the random variable P, (τ, z); z is the shape parameter, τ is the scale
factor, and xo is the location parameter: x ≥ xo, τ > 0, and z ≥ xo.

Let x0 be the minimum life span of a composite U-shaped specimen under multiple-
impact load testing. Equation (17) translates the survival probability function f (Nr):

f (Nr) = 1 − Exp
{
−
[

x − xo

z − xo

]τ}
(17)

Computing the log of Equation (17) twice gives:

Ln
{

Ln
[

1
F(Xr)

]}
= τLn(x)− τLn(z) (18)

Therefore, Equation (18) was applied to check the suitability of the data for the compos-
ite U-shaped specimens and their agreement with the two-parameter function, analyzing
Equation (18) as a linear function relating to a straight-line equation (y = bx + c) to obtain τ,
τLn(z), and R2. The survival function f (Nr) is stated in Equation (19) [71,72]:

f (Nr) = Pj = 1 − Y
J + 1

(19)

where Y represents the impact times in rising order and J is the total number of test samples
in a particular group.

The impact data are assumed to follow the two-parameter function when the linear
function between Ln(1/Pj) and Ln(x) is established [71,72]. Figure 10 depicts the data
distribution for all groups, presented in Weibull charts. The shape parameter, scale factor,
and R2 for (N1) and (N2) are presented in Table 4. As observed in Table 5, the R2 values
for both N1 and N2 of all the test specimens under the two scenarios were greater than 0.9,
except for NCSS-UHPC, which was attributed to the poor interfacial bond capacity; all the
specimens in this group failed with few drops. Thus, according to the results obtained, the
two-parameter method can be utilized to evaluate the impact data of composite U-shaped
test specimens. The results are presented in Table 4.
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Table 5. Results of Weibull distribution analysis.

Specimen ID Impact Strength τ τLn(z) (z) R2

NC reference N1 3.6 11.835 27 0.9838
N2 4.596 16.134 34 0.9775

NCNB-UHPC N1 3.664 11.645 24 0.9775
N2 4.515 15.203 29 0.9727

NCGB-UHPC N1 3.499 8.685 12 0.9805
N2 4.809 13.731 17 0.9831

NCNB-PUPC N1 5.194 25.851 144 0.9708
N2 5.528 28.01 157 0.9705

NCGB-UUPC N1 3.227 12.847 54 0.9895
N2 3.959 16.524 65 0.9791

NCSM-PUPC N1 3.374 12.429 39 0.9174
N2 4.161 16.368 52 0.9052

5.2. Reliability Analysis

According to the findings in Section 3.1, the impact times and different survival
probabilities were evaluated, referred to as the “reliability analysis”. The failure probability
(P’) for the various impact times achieved for each test specimen was determined using
Equation (20) [70,72]:

N = z
{

Ln
(
1 − P′)

} 1
τ (20)

where N is the total number of impacts, P′ is the failure probability, and z and τ are the
scale and shape factors, respectively. The design survival probability (λ) was determine
using Equation (21):

λ = 1 − P′ (21)

Table 6 summarizes the number of impact blows on the composite U-shaped specimens
computed for different survival probabilities (SPs), as also presented in Figure 10. The
design impact strength of the composite U-shaped specimens was measured only at a low
probability value that cracks failure would happen. Figure 11 shows that the number of
impacts (N1 and N2) reduced as the survival probability increased. For instance, in reference
NC specimen at 80% SP, reflecting 20% failure probability, the impact times at the N1 and
N2 stages were 18 blows and 24 blows, respectively, which appeared to be lower than the
mean number of impacts in the group. This showed that approximately 80% of the reference
specimens were able to sustain these drops without fracture. Similarly, at 80%SP, NCNF-
UHPC and NCNF-PUPC were able to withstand 16 and 107 drops prior to the occurrence of
the initial crack, and 21 and 117 blows before ultimate failure, respectively. This finding
agrees with the findings in previous studies [50]. However, some test specimens showed
an initial crack strength less than the design strength achieved in the reliability analysis.

Overall, the design impact strength of the composite U-shaped specimens increased
with lower survival probability (Figure 11a–f). Greater design impact strength can be
obtained at low survival probability. Thus, this analysis result is near to the findings from
experimental testing.
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Table 6. Impact strength of test samples at different survival probabilities.

Specimen ID
Impact Strength Survival Probability

λ = 0.01 Λ = 0.2 λ = 0.6 λ = 0.8 λ = 0.9 λ = 0.99

NC reference N1 41 30 22 18 14 7
N2 47 37 29 24 21 12

NCNF-UHPC N1 36 27 20 16 13 7
N2 41 32 25 21 18 7

NCGS-UHP N1 19 14 10 8 6 3
N2 23 19 15 12 11 6

NCNF-PUPC N1 195 158 126 107 91 57
N2 212 172 138 117 101 63

NCGS -PUPC N1 85 61 43 33 26 13
N2 94 73 55 45 38 22

NCSS-PUPC N1 62 45 32 25 20 10
N2 75 58 44 36 30 17

6. Conclusions
This study demonstrated the efficacy of machine learning models in forecasting the

ultimate strength of composite concrete retrofitted with PU grout under impact load. This
research involved the use of classical and hybrid techniques, including GPR, SVR, and
IEPANN models. The analysis was performed through calibration and verification phases,
providing a comprehensive assessment of the models’ performance and generalization
capabilities. Moreover, reliability analysis was performed on the impact data to evaluate
the design impact strength of the composite U-shaped specimens. The findings of this
study can be summarized as follows:

• All models revealed high prediction accuracy, achieving NSE values above acceptable
thresholds, with NSE greater than 90% across the dataset. Performance indicators
such as RMSE (ranging from 0.0013 to 0.017), PBIAS (from 0.0018 to 0.0248), and
MAE (from 0.001 to 0.0139) were all within permissible limits at the testing stage.
Additionally, similar results were obtained at the verification stage. Across the entire
dataset, the ratio of observed and predicted strength values was nearly equal to 1 for
all the developed models.

• Among the developed models, the hybrid IEPANN appeared to be the most effective
model, demonstrating the highest NSE value of 0.999 and the lowest RMSE, PBIAS,
and MAE values of 0.0013, 0.0018, and 0.001, respectively, compared with the nonlinear
techniques. However, other individual models demonstrated high prediction skills.

• The initial cracking strength and flexural stress of the U-shaped samples were the
leading factors contributing to the prediction of the output parameter, with correlation
values of +1 and 0.88, respectively, based on the Pearson correlation matrix. This high
correlation with failure strength shows the significant influence of these parameters
on the model’s estimation.

• The statistical analysis of the dataset of composite U-shaped specimens under two
scenarios followed the two-parameter Weibull distribution function; hence, reliability
analysis revealed that the number of impacts (N1 and N2) reduced as the survival
probability increased. At 80% survival probability, NCNF-UHPC and NCNF-PUPC
specimens were able to withstand 16 and 107 blows before the first crack, and 21 and
117 blows before complete failure, respectively, which agreed with the experimental re-
sults.
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In conclusion, this research offers important new information about the suitability
of ML methods for forecasting the failure strength and determining the design impact
strength of composite samples under multiple impact loads. This research can avert the
need for high-cost experiment programs and save time. The findings can illuminate future
research and serve as a guide for engineering practice. Future studies could also employ
the applicability of other machine learning techniques, such as XGB and DNN models.
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