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Abstract: The aim of this paper is to describe a methodology for determining the elastic
constants and thickness of the interphase between matrix and fiber in fiberglass plastic
composites from macro- and micromechanical testing. Macromechanical testing is tension
of unidirectional fiberglass plastics along and across the fiber direction. Micromechanical
testing is tension of glass fibers and instrumented microindentation into the matrix and
the fiberglass. The interphase thickness is determined by dynamic force microscopy on
thin sections without a height difference. The measured interphase thickness is 621 nm.
Based on the interphase thickness, a mesomechanical finite element model of a fiberglass
monolayer is constructed. As a result, it is found that the elastic modulus and Poisson’s
ratio are 12.7 GPa, 0.07. It is established that the elastic properties of the interphase differ
significantly from those of the matrix. The paper also explores the possibility of determining
the interphase thickness through computational experiments. It turns out that by knowing
the actual elastic properties of the matrix and the fiber, as well as the fiberglass monolayer, it
is feasible to calculate the interphase and its elastic properties with acceptable engineering
accuracy. The deviation of the calculated interphase thickness from the experimentally
measured one is 6%.

Keywords: polymer composite; interphase; mesomechanical model; microindentation;
dynamic force microscopy; mechanical properties

1. Introduction
Reducing the weight of structures by using materials with high specific strength is

a current research trend aimed at improving the energy efficiency of vehicles. Therefore,
polymer composites reinforced with high-strength fibers have become widespread in the
aerospace industry. As a rule, fibers made of glass, carbon, ceramics, aramid, and natural
materials are used as reinforcing fibers [1–3]. The most widespread composites are polymer
composites reinforced with glass and carbon fibers. The composite matrix is a very im-
portant part of polymer matrix composites since it transfers loads to fibers and distributes
stresses among them. It also protects the fibers from environmental influences and has
an effect on fiber location [4–6]. An interphase appears between the matrix and the fibers
during matrix polymerization [7–11]. This zone generally differs significantly in compo-
sition from the matrix phase since it incorporates the finishing agent, the lubricant, and
other low-molecular-weight inclusions of the binder and the filler surface. The structural
differences resulting from the influence of the filler appear as a change in the degree of cure
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in some cases and as a change in the degree of grain formation in the adjacent polymer in
others. The interphase transfers stresses from the matrix to the fiber and, therefore, it makes
an important contribution to the transfer of stresses among the fibers themselves, and it has
a significant effect on the mechanical properties of composites. A strong bond between the
fiber and the matrix causes high stiffness and strength, while a relatively weak interphase
bond usually improves the energy-absorption characteristics under impact conditions.
Thus, the ability to determine the properties of the interphase allows us to investigate the
effect of polymerization conditions, the matrix composition, and the finishing agent on the
mechanical properties of the interphase. This means that it becomes possible to design a
composite product with tailored mechanical properties of the interphase and, as a result, to
control the mechanical properties of the composite product. In addition to affecting the
mechanical properties (elastic modulus, Poisson’s ratio), the interphase has a significant
effect on the ultimate strength of a polymer matrix composite material and on the initiation
and evolution of cracks in it [12–16]. This necessitates taking into account explicitly the
interphase in calculations aimed at determining conditions for the formation and evolution
of cracks at the meso level. Finite element models are often used for this purpose. They
describe the elastic or elastic–plastic behavior of structurally inhomogeneous materials
at the micro or meso level, in which the elastic constants and shapes of the phases are
explicitly set [9,17,18].

Phase shapes can be determined by FIB–SEM tomography [19–22], dynamic mechani-
cal mapping [10,23,24], and computed tomography [22,25–27], whereas it is a nontrivial
problem to determine the elastic properties of the phases (Poisson’s ratio and the normal
elastic modulus) at the meso level. The most common method for determining mechanical
properties at the meso level is the method of instrumented indentation and scratching,
which allows us to determine the hardness of phases and the reduced elastic modulus and
to reconstruct hardening curves [28–32]. The main disadvantage of the indentation method
as applied to determining the elastic modulus is the necessity to know the Poisson’s ratio
of the material, which is often unknown for the phase under study. In terms of the elastic
modulus of the interphase between the fiber and the polymer matrix in the composite,
another disadvantage of the instrumented indentation method appears. It is associated
with the requirement imposed on the phase environment. The imprint size after indentation
into a phase should be significantly smaller than the phase size in all directions. In this
case, there is almost no influence of the environment on the determined reduced elastic
modulus of the phase.

Another problem in determining the shape and mechanical properties of the inter-
phase in composites with matrices based on epoxy resins is the inability to observe it in
the optically visible range of the wave spectrum, and this prevents indentation into the
interphase. The above problems lead to the fact that the mechanical properties of the
interphase in a polymer composite are calculated rather than experimentally determined.
The calculations are made analytically [33,34] or by means of finite element [9,34–36] and
molecular dynamic models [8,37,38]. With this approach, the calculated values of the
mechanical properties of the interphase largely depend on the accuracy and correctness
of determining the mechanical properties of the matrix and the reinforcing fibers. Since
the fiber diameter in state-of-the-art polymer composites is within 10 µm, it is necessary to
use micromechanical tests for the accurate determination of the mechanical properties of
the fiber. The purpose of this study is, proceeding from micromechanical and macrome-
chanical testing, to develop a methodical approach to determining the elastic constants and
thickness of the interphase in fiberglass plastics.
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2. Materials and Methods
A prepreg with unidirectional glass fibers and the ASM 102 epoxy binder was used

as a starting material for the manufacture of fiberglass plastic. The curing of the binder
included prepreg package heating to 125 ◦C between flat plates under a pressure of 0.6 MPa.
The heating rate was 2 ◦C/min, and it was followed by holding at this temperature for 3 h.
Then, the prepreg was cooled to room temperature at a rate of at most 3 ◦C/min. After
curing, the volume content of the glass fibers in a monolayer, the size of the glass fibers, and
glass fiber laying were determined. These measurements were based on optical microscopy
data. Figure 1 shows fiber laying in the monolayer, the variation of fiber diameters, and
stacking of layers in 14-layer cross-reinforced fiberglass plastic.
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additional external influences on the specimen surface. 

Figure 1. Fiber laying in a monolayer (a), fiber diameter variation (b), and laying of layers in a
14-layer fiberglass plastic (c).

According to the prepreg technology, two types of 14-layer fiberglass plastic panels
were produced: with unidirectional laying and cross-reinforced. Tensile specimens were
cut out from these panels, namely five specimens from cross-reinforced fiberglass plastic,
five unidirectional specimens cut along the direction of laying, and five unidirectional
specimens cut across the direction of laying. All the specimens had a length of 230 mm and
a width of 25 mm. The tensile tests on a macro level were performed in an Instron 8801
(Illinois Tool Works Inc., Hopkinton, MA, USA) servo-hydraulic experimental testing
machine. Deformations were measured directly on the specimen in two directions by
means of an Instron AVE noncontact video extensometer, which ensured the absence of
additional external influences on the specimen surface.



J. Compos. Sci. 2025, 9, 54 4 of 18

Indentation experiments were performed in a Hysitron TI950 (Bruker Corporation,
Billerica, MA, USA) nanomechanical testing system using a Berkovich indenter. The Oliver–
Pharr method underlying the ISO 14577 standard [39] for measuring hardness was used
to determine the normal elastic modulus of the composite constituents. Indentation was
performed on plane-parallel planes obtained by ion etching, which allows the properties
of the structural constituents of the composite to be determined without introducing
fragments and deformations into the surface during mechanical preparation. Ion etching
was performed by means of SemPrep2 (Technoorg Linda, Budapest, Hungary) for 30 min
at an accelerating voltage of 10 kV with the angle of specimen inclination to the ion beam
equal to 7◦. Before the start of ion etching, the polymer was cooled in an ion etching
chamber to +1 ◦C.

Experiments on micromechanical tension of the single fiber were performed in the
device shown in Figure 2. The elastic elongation of the loaded fiber was measured by means
of a measuring microscope with a linear displacement measurement accuracy of 1 µm over a
length of 1 mm. The base for measuring fiber elongation was about 10 mm. The microscope
was used to measure the distance between the reference points on the fiber (base) at various
axial load values. Graphite particles were the reference points (see Figure 2). They were
placed on the fiber with a brush. The use of liquid colorants for painting the reference points
on the fiber was not suitable due to the presence of surface tension in the colorant, which
caused an underestimation of the elastic modulus and decreased the ultimate strength of
the fiber. In order to determine the diameter of each fiber under test, the free end of the fiber
was cut off, which was not in the grips of the tensile device. Then, each fiber was filled with
epoxy resin separately from the others. Prior to this process, the fiber was arranged such
that it passed through the resin in a direction perpendicular to the future cross-sectional
plane. Subsequently, the thin section was made in the transverse direction of the fiber. The
diameter of the fiber was then measured using an optical microscope.
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Figure 2. A device for tension of single micron-diameter fiber.

The size of the interphase was determined based on data obtained using an NT-206
(Microtestmachines, Gomel, Belarus) atomic force microscope in dynamic force microscopy
mode. To prevent the influence of the surface relief on the oscillation amplitude and
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resonant frequencies of an atomic force microscope cantilever, we performed analysis on
a cross section made at an angle of 30◦ by burning the material with an ion beam. The
burning was carried out on a SemPrep2 (Technoorg Linda, Budapest, Hungary) ion etching
system. The process scheme of cutting the sample is shown in Figure 3a. As can be seen
from Figure 3b, the fibers have an elliptical shape. In order to avoid the influence of the
shape (stretching) of the fiber on the measured size of the interphase, we measured only
along the line of the minor axis of the ellipse.
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3. The Procedure of Determining the Elastic Constants and Thickness of
the Interphase in the Fiberglass Plastic

In this paper, the composite material under study is considered in terms of hierarchi-
cally organized systems [40–43], which are characterized by an interconnected reaction
between adjacent scale levels as a result of external thermal deformation effects. The
mesoscale level includes separate geometrically irregular structures, such as a matrix,
an interphase, and reinforcing fibers with different laying directions, sizes, and spatial
distributions. Based on the structure of the material under study, the macroscale level is
considered as a multilayer material with uniform (averaged) properties in each monolayer,
determined at the mesoscale level.

In this study, two problems were set. The first task was to calculate the elastic coef-
ficients of the interphase. In order to do this, we needed to know its average thickness.
This thickness was determined using atomic force microscopy. The second problem was to
calculate the elastic coefficients and the interphase thickness. The purpose of this problem
was to determine whether the interphase thickness can be reliably calculated based on the
elastic properties of the fiber, matrix, and monolayers of the composite at the macro level.

In this study, the elastic constants of the interphase are determined indirectly, by
calculating them from the solution of boundary value problems for tensing unidirectional
fiberglass layers with regard to the experimentally determined properties of the matrix
and fibers. Since the fibers are misoriented relative to the laying axis, the analytical
model for determining the interphase should take into account fiber misorientation. This
is a rather nontrivial problem. Therefore, in this study, the interphase parameters are
determined by minimizing the deviation of the experimentally determined elastic constants
of unidirectional fiberglass from the parameters calculated by the computational model
describing the monolayer behavior at the meso level. In this case, the initial approximation
of the properties and dimensions of the interphase for the computational model are the
values obtained by the analytical model.
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This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. The Analytical Model for Determining the Initial Elastic Interphase Parameters

In the statement of the composite deformation problem at the macroscale, it is assumed
that the properties of the monolayer are described by the linear elastic orthotropic model [44–47].
The linear elastic isotropic model describes the mechanical properties of the structural
constituents of the composite—the glass fiber, the polymer matrix, and the interphase. The
generalized Hooke’s law can be written for an orthotropic body as follows:
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, (1)

where εx, εy, εz, εyz, εzx, and εxy are the components of the strain vector [ε];
σx,σy, σz, σyz, σzx, and σxy are the components of the stress vector [σ]; Ex, Ey, and Ez

are elastic moduli in the x, y, and z directions (the orientation of the axes is shown in
Figure 4); Gxy, Gyz, and Gxz are the shear moduli in the xy, yz, and xz planes, respectively;
and µxy, µxz, µyx, µyz, µzx, and µzy are Poisson’s ratios.
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Figure 4 shows coordinate system orientation relative to the laying axis. When construct-
ing equations for determining the elastic modulus and the volume fraction of the interphase
from tensile experiments, we assume that the phase structure is uniformly distributed along
the x-axis. In this case, using the mixture rule [48–50] for uniaxial tension of the monolayer
along the x-axis (along the fiber laying direction), we can write the following equation:

Ex = E f · ν f + Em · νm + Ein · νin, (2)

and for uniaxial tension along the y-axis (across the fiber laying direction), the following
equation can be written:

εy = ε
f
y · ν f + εm

y · νm + εin
y · νin, (3)

where Ex and εy are the elastic modulus and the strain of the monolayer in Hooke’s law
(1), respectively; E f , Em, and Ein are the elastic moduli of the fiber, the matrix, and the
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interphase, respectively; ν f , νm, and νin are the volume fraction of the fiber, the matrix,
and the interphase, respectively; and ε

f
y , εm

y , and εin
y are the strain of the fiber, the matrix,

and the interphase along the y-direction during uniaxial tension of the monolayer along
the y-axis. The volume fraction ν f , νm, and νin must correspond to the following equality:

ν f + νm + νin = 1. (4)

For uniaxial tension of the monolayer along the y-axis, the relationship of εy, σy, and
Ey is εy =

σy
Ey

. Similar equalities can be written for the matrix, the interphase, and the fiber.
Also, in the case of uniaxial tension of the monolayer along the y-axis, the following

equalities are true: σy = σ
f
y = σm

y = σin
y , where σy is the monolayer stress along the

y-axis in Hooke’s law (1); and σ
f
y , σm

y , and σin
y are the stresses of the fiber, the matrix, and

the interphase along the y-axis in Hooke’s law, respectively. Using the above equalities,
Equation (3) can be written as

σy

Ey
=

σy

E f · ν f +
σy

Em · νm +
σy

Ein · νin. (5)

The fiber volume fraction and all the elastic constants of the monolayer, the glass
fiber, and the matrix can be determined from tests at the macroscopic and microscopic
scales. As a result, in the equation system consisting of Equations (2), (4), and (5), it is only
the elastic modulus of the interphase Ein and its volume fraction νin that are unknown.
To determine these two parameters, it is sufficient to perform macromechanical tests on
uniaxial tension of the monolayer in the direction of the x and y axes.

Basing ourselves on macro- and micromechanical tests, we can determine the elastic
modulus of the interphase Ein and its volume fraction νin from Equations (2), (4), and (5)
using the following formulas:

Ein =
E f · Ey ·

((
1 − ν f

)
· Em + ν f · E f − Ex

)
((
ν f − 1

)
· E f − ν f · Em

)
· Ey + Em · E f , (6)

νin =
ν f · E f +

(
1 − ν f

)
· Em − Ex

Em − Ein . (7)

It follows from experiments of uniaxial tension of the monolayer along the x-axis and the
mixture rule that µxy = µ f · ν f + µm · νm + µin · νin, where µxy is Poisson’s ratio for the
monolayer in Hooke’s law (1); and µ f , µm, and µin are Poisson’s ratios for the fiber, the
matrix, and the interphase, respectively. A detailed derivation of an equation similar to
this one can be found in the work [48]. From this equality, one can determine the Poisson’s
ratio of the interphase µin by the following formula:

µin =
1
νin

(
µxy − µ f · ν f − µm · νm

)
. (8)

If the volume fraction of the interphase has been measured experimentally, its mechanical
properties can then be calculated using Equations (6) and (8).

3.2. The Computational Model of the Monolayer with the Interphase

The fibers in the fiberglass monolayer are misoriented relative to the laying axis;
therefore, to determine the misorientation of the fibers, the monolayers were separately
polymerized and analyzed from images obtained by optical microscopy. Figure 5 shows a
longitudinal image of one layer of the polymerized prepreg (monolayer) in transmitted
light. The analysis of 100 fibers has shown that the angle of deviation from the laying axis
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(misorientation angle) can be up to 3◦. In this connection, the computational mesomechan-
ical model of the monolayer is constructed from the possibility of random distribution
and misorientation of fibers (see Figure 6). To do this, the location of each fiber and the
deviation of the fibers from the laying axis within 3◦ are randomly set. The fiber diameter
is set according to the distribution law shown in Figure 1b. The fraction of fibers is 0.49.
This value corresponds to the experimentally determined average value obtained from
50 images of the monolayer cross section (see Figure 1a). The image size for calculating the
fiber volume fraction in the monolayer is 100 × 100 µm.
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In the construction of the computational model, it is assumed that the interphase connects
each fiber with the matrix uniformly along its entire length (see Figure 6). The interphases
of adjacent fibers may intersect, thus forming an interphase common to these fibers. It is
assumed that there is a perfect adhesive bond at the interphase–matrix and interphase–fiber
contacts. The interphase thickness is set constant for all the fibers regardless of the fiber
diameter. The unknown parameters of the interphase are determined by minimizing the
deviation of the coefficients Ex, Ey, and µxy calculated by the computational model from those
experimentally determined for the monolayer. These coefficients are calculated for uniaxial
tension along and across the fiber laying, i.e., along the x and y axes (see Figure 6), respectively.

3.3. Determination of Monolayer Mechanical Properties

After determining the elastic modulus Ein, Poisson’s ratio µin, and the interphase
thickness h in the representative volume of the monolayer, it is possible to calculate all
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the unknown elastic constants in Hooke’s law (1) for the monolayer. Since the com-
pliance matrix in (1) is symmetric, it is necessary to determine 10 elastic constants:
Ex, Ey, Ey, Ez, Gxy, Gyz, Gxz, µxy, µxz, and µyz. The values of these quantities are de-
termined from the results of numerical calculations simulating the mechanical loading of
the monolayer at the mesoscale.

Deformation is simulated for six cases, such as uniaxial tension along the x, y, and z axes,
as well as shear in the xy, xz, and yz planes (see Figure 7). The calculations are made in a quasi-
static formulation in ANSYS. The boundary conditions are specified in terms of displacements
Uk

j along the k-th face of the monolayer computational model (k = 1, . . . , 6) in the direction of
the j coordinate axis (j = x, y, z). The limiting value of the load in displacements is set from the
condition of ensuring the equivalent macrostrain ε̃ to be equal to 0.01. To determine the elastic
modulus and Poisson’s ratio, tension is simulated along the x, y, and z axes. Faces 2, 3, and 4
coinciding with the coordinate planes (see Figure 7) have zero displacements in the direction
of the y, x, and z axes, respectively. To determine the shear moduli, the following boundary
conditions are used:

(1) for Gxy: U6
y = 1.7 µm, U3

x = U3
y = U3

z = U4
x = U4

z = 0;

(2) for Gyz: U1
z = 1.7 µm, U2

x = U2
y = U2

z = U1
x = U1

y = 0;

(3) for Gxz: U6
z = 1.7 µm, U3

x = U3
y = U3

z = U4
x = U4

y = 0.
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3.4. The Computational Model of a Specimen Made from 14-Layer Transversely Reinforced
Fiberglass Plastic

The monolayer coefficients in Hooke’s law (1) are verified by comparison of experi-
mental and calculated data on the tension of the 14-layer transversely reinforced fiberglass
plastic (see Figure 1). In the statement of the tension problem for the cross-reinforced
fiberglass plastic at the macroscale, it is considered that there is a perfect adhesive bond
between the monolayers of the material. Fourteen layers are identified in the finite element
model. They correspond to 14 monolayers of actual fiberglass plastic.

In the statement of the computational problem, zero displacements are set in the
direction of the x, y, and z axes to faces 1 to 5 (see Figure 8). For faces 6 to 10, zero
displacements are set along the y and z axes, and the limiting displacement is set along the
x-axis from the condition of ensuring the equivalent macrostrain ε̃′ to be equal to 0.01.

Figure 8 shows the numbers of specimen faces to which boundary conditions are
applied. Faces 1 to 10 in this figure correspond to the areas of the specimen clamped in
the grips of the device. The monolayer parameters in Hooke’s law (1) are indicated for
each layer depending on the location of the glass fiber relative to the tension axis. The
boundary conditions are specified in terms of displacements Ũl

j along the l-th face of the
computational model (l = 1, . . . , 10) in the direction of the j coordinate axis (j = x, y, z).
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4. Results and Discussion
4.1. Experimental Data on the Mechanical Properties of the Fiber, the Matrix, and the
Interphase Thickness

The elastic modulus and Poisson’s ratio of the glass fiber and the matrix are determined
from micromechanical tests. The reduced elastic modulus E∗ of the glass fiber and the
matrix is determined from the results of instrumented microindentation. The polymer and
the fibers were indented with a Berkovich indenter at loads of 5 and 50 mN, respectively
(see Figure 9). Table 1 shows the values of the reduced elastic modulus E∗ obtained from
20 measurements.
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and on the polymer matrix (b) at a load of 5 mN; typical curves of loading by the Berkovich indenter
for the fiberglass (c) and the polymer matrix (d).

To determine the elastic modulus or Poisson’s ratio for the material of the required
phase from the microindentation results, the following formula is used [39]:

E =
1 − (µs)

2

1
E∗ −

1−(µi)
2

Ei

, (9)
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where µs is the Poisson’s ratio of the test specimen; µi is the Poisson’s ratio of the indenter,
equal to 0.07 for diamond [39]; E∗ is the reduced elastic modulus for the test specimen; and
Ei is the elastic modulus for the indenter, equal to 1.14 · 106 N/mm2 for diamond [39].

Table 1. Mechanical properties of the polymer matrix and the fiberglass.

Material E*,
GPa µs

E,
GPa

Ultimate Strength,
MPa

Ex,
GPa

Ey,
GPa Mxy

Fiberglass 92.6 ± 7.1 0.20 1 89.0 ±
6.8 2 2135 ± 25 - - -

Matrix 4.5 ± 0.3 0.33 [51] 4.0 ± 0.3 - - - -
Unidirectional

fiberglass plastic - - - - 48.7 ± 3.1 14.1 ± 0.4 0.22 ± 0.02

1 The µs value is calculated using the average of the E* and E values. The formula for determining µs is deduced
from Equation (9). 2 The elastic modulus of the fiberglass is determined by micromechanical tensile testing.

The elastic modulus E f of the fiberglass is determined directly from 10 tensile tests
for single fiber (see Section 2). The Poisson’s ratio µ f of the fiber is evaluated from (9) and
calculated for the experimental values of the reduced elastic modulus of the fiber and its
elastic modulus (Table 1).

The experimental thickness of the interphase, h, was measured using dynamic force
microscopy (DFM) images based on the frequency of the cantilever oscillation (frequency mode).
Figure 10a shows a DFM image of a fiber, matrix, and interphase at an angle of 30◦ to the
composite surface (see Figure 3). Figure 10b shows a linear profile along the minor axis of
the ellipse that describes the fiber shape in Figure 10a. After 20 measurements of different
fibers, the interphase thickness was found to be 621 ± 53 nm. The average thickness of the
interphase was used in the finite element model.
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4.2. Determination of the Mechanical Properties of the Interphase

To determine the interphase parameters, a computational model with the fiber volume
fraction equal to 0.49 is used (see Section 3.2). Two problems were considered. The first
problem had two unknowns: the elastic modulus of the interphase Ein and Poisson’s ratio
µin. The second problem had three unknowns: the elastic modulus Ein of the interphase,
Poisson’s ratio µin, and interphase thickness h. These parameters were determined by
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varying them using the simplex method, so that the average relative deviation δc calculated
by Formula (10) becomes less than 5%,

δc =
1
3

 |Es
x − Ex|

Ex +

∣∣∣Es
y − Ey

∣∣∣
Ey +

∣∣∣µs
xy − µxy

∣∣∣
µxy

 · 100%, (10)

where Ex, Ey, and µxy are the coefficients in Hooke’s law (1) determined from five natural
experiments on the tension of unidirectional fiberglass plastic along and across the fiber
laying (see Figure 4); Es

x, Es
y, and µs

xy are the coefficients in Hooke’s law (1) obtained from
the simulation results. The experimental values of Ex, Ey, and µxy determined in natural
experiments are given in Table 1.

To calculate the initial set of values for searching for unknown parameters in the
interphase, we used data from Table 1. For the first problem, with known experimental
thickness of the interphase, the elastic modulus Ein and Poisson’s ratio µin were calcu-
lated using Equations (6) and (8). This resulted in an initial set of values of {12.3, 0.02},
where the first number corresponds to Ein and the second corresponds to µin. For the
second problem, where the experimental thickness is unknown, we determined the initial
set Ein, µin, and νin using Formulas (6)–(8). As a result, the initial set of values has the
following form: {12.3; 0.20; 0.37}, where the first number corresponds to Ein, the second
corresponds to µin, and the third corresponds to νin. The volume fraction of the interphase
equal to 0.37 corresponds to the interphase thickness h equal to 1.7 µm, which differs
significantly from the experimentally determined value. This indicates that Equations (6)
and (7), derived from the mixture model without considering fiber misorientation, are not
suitable for determining the average thickness of the interphase. In the initial parameter
sets for the first and second problems, the Poisson coefficients for the interphase µin differed
by an order of magnitude, which can be explained by the absence of consideration for fiber
misorientation in the calculations.

Table 2 below shows the enumeration of the unknown interphase parameters for two
problems using a mesomechanical model. As can be seen from Table 2, the values of the
elastic parameters of the interphase are similar when solving the first and second problems.
Additionally, the average values of the interphase thickness obtained through simulations
and experiments are also similar (with a deviation of 6%). However, the quantity of iterations,
consequently determining the duration necessary to ascertain the elastic properties and
interphase thickness, is nearly tripled in instances where the thickness is undetermined. So,
it took nine iterations to determine the Poisson’s ratio µin and the elastic modulus Ein of the
interphase when the average thickness of the interphase was experimentally determined.
However, it was necessary to use 30 iterations to solve the problem and determine the
elastic properties and interphase thickness based only on the elastic properties of structural
components and mechanical properties at the macro level. Additionally, solving the second
problem required time-consuming changes to the geometric dimensions of the interphase,
the creation of contacts, the generation of a new mesh, and other steps, which significantly
increased the complexity of solving the second problem.

Table 2. Interphase parameters resulting from the application of the computational model.

The Experimental Value of
the Interphase Thickness

Ein,
GPa µin h,

nm δc, %

Known (first problem) 12.7 0.07 621 1 4.1
Unknown (second problem) 12.5 0.09 660 4.9

1 The average thickness of the interphase was determined experimentally using the dynamic force microscopy data.
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4.3. Verification of the Mechanical Properties of the Interphase

Since the average thickness of the interface is 621 nanometers, it is not a trivial task to
experimentally determine and verify the calculated mechanical properties of the interphase.
In this work, we verified the values of the elastic coefficients of the interphase by comparing
experimental and calculated data obtained during the tension of the specimen. The scheme
of laying the specimen layers was different from the one used to determine the mechanical
properties of the interphase. To verify the results, we initially calculated nine elastic constants
for the monolayer in Hooke’s law, as described in Section 3.3. Table 3 shows the elastic
coefficients of the monolayer obtained from simulating five generated computational models.
The values of the elastic modulus, Poisson’s ratio, and the interphase thickness are provided in
Table 2, for the first model in which the size of the interphase was determined experimentally.
Further, all results will be presented only for the interphase parameters obtained from solving
this first problem. Table 3 also shows the average relative deviation δ of the calculated elastic
coefficient of the monolayer from the experimentally determined one.

Table 3. Compliance matrix coefficients in (1) obtained from simulation of five computational models.

δ, %

Ex, GPa 46.97 ± 0.01 3.6
Ey, GPa 14.88 ± 0.23 5.5
Ez, GPa 15.07 ± 0.30 6.9

Gxy, GPa 6.59 ± 0.05 -
Gyz, GPa 6.03 ± 0.15 -
Gxz, GPa 6.70 ± 0.33 -

µxy 0.213 ± 0.001 3.2
µxz 0.213 ± 0.001 3.2
µyz 0.276 ± 0.015 -

To verify the obtained elastic coefficients of the monolayer, tension of the 14-layer
cross-reinforced fiberglass plastic is simulated (see Section 3.4). The elastic coefficients
obtained from the simulation are then compared with the results obtained from natural
experiments. Table 4 shows the elastic modulus E′

x and Poisson’s ratio µ′
xy of the 14-layer

fiberglass plastic. It can be seen from Table 4 that the average relative deviation of the
experimental data from the calculated ones does not exceed 10%. This indicates that
the interphase parameters for the first problem (see Table 2) are determined with good
engineering accuracy, sufficient to predict the elastic properties of composites made from
prepreg monolayers of the fiberglass plastic under study.

Table 4. Experimental and calculated values of the elastic modulus of the 14-layer fiberglass plastic.

Natural Test Simulation δ, %

E′
x, GPa 29 ± 2 31 ± 1 7
µ′

xy 0.10 ± 0.02 0.11 ± 0.01 10

Figure 11 shows an image of the solid model of the fiberglass plastic monolayer
containing the interphase, whose parameters were determined from the results of computa-
tional experiments at solving the first problem (see Table 2). It is obvious from this figure
that, since the interphase is thin, only 621 nm, it is a nontrivial task to perform correct
microindentation into it. Figure 12 shows three groups of curves I–III corresponding to
different distances to the fiber boundary. Curve group I is located at a distance of 15 µm
from the fiber boundary, and it corresponds to the matrix loading curves (see Figure 9d)
obtained from microindentation into the fiber-free matrix of the composite. Curve group II
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is located at a distance of 5 µm, and it corresponds to the average reduced elastic modulus
equal to 11 GPa. Curve group III is located at a distance of 1 to 2 µm, and it corresponds
to the average reduced elastic modulus equal to 65 GPa. These data show that the correct
determination of the elastic modulus of the interphase by indentation is a nontrivial task
due to a too small thickness of the zone [52].
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Figure 12. Berkovich indenter loading curves of the polymer matrix in the monolayer of the fiberglass
plastic. The group of curves I corresponds to the distance from the indent to the fiberglass boundary
equal to 15 µm; II group is 5 µm; III group is between 1 and 2 µm.

Figures 13 and 14 show von Mises stress distribution in the representative volume
of the fiberglass plastic monolayer when it is stretched along and across the fiber at the
moment of specimen failure. Figure 13b shows that, when tension is along the fibers, the
level of the stress state in the interphase significantly exceeds that in the matrix. When
tension is across the fibers, the opposite pattern is observed, i.e., the level of the stress state
in the matrix significantly exceeds that in the interphase (see Figure 14b). This effect of the
direction of tensile force application to the composite along the direction of fiber laying
leads to the fact that crack initiation should occur at the boundary between the interphase
and the fiber. When the composite is tensioned across the fibers, crack initiation should
occur at the interphase–matrix boundary or inside the polymer matrix itself. The results
are indirectly confirmed by the fractographic analysis of the images after fracture.

Figure 15 shows the fracture surfaces of the specimens when they are tensioned along
and across the fiber laying. Comparing the fracture surfaces shown in Figure 15a,b, one
can see qualitatively different fracture patterns. Thus, the fracture surface resulting from
composite tension along the fiber laying abounds with fibers free from the matrix. When
the composite is tensioned across the fiber laying, free fibers are almost absent.
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Figure 13. Von Mises stress distribution in the fibers (a) and in the interphase (b) at the moment of
specimen fracture when the specimen is tensioned along the fiber-laying axis.
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specimen fracture when the specimen is tensioned across the fiber-laying axis.

The results of tensioning the representative volume of the monolayer along the fiber
direction (see Figure 13) show that, at the moment of specimen fracture, the average von
Mises stress over all the fibers is about 2000 MPa. This agrees well with the experimental
results of tensioning a single fiber (see Table 1) and indicates that the composite matrix
effectively transfers the load to the glass fibers during fiberglass plastic deformation. The
obtained results of simulating the representative volume indicate the need to take into
account the interphase when considering the mechanical properties and conditions of
polymer composite fracture. In particular, this concerns the simulation of adhesive and
cohesive failure at the micro and meso levels. Thus, the absence of the explicit introduction
of the interphase into computational models of a polymer composite may cause significant
errors in simulating the initiation and evolution of cracks in the composite.
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5. Conclusions
In this study, the mechanical properties and dimensions of the interphase have been

determined based on dynamic force microscopy, macro- and micromechanical tests using a
computational model of the monolayer of unidirectional fiberglass plastic. In particular,
the following results have been obtained:

1. From micromechanical tension and indentation testing of a single fiber, their elastic mod-
ulus and Poisson’s ratio have been determined. They are 89 GPa and 0.2, respectively.

2. It has been shown that the elastic modulus of the interphase is 12.7 GPa. This signifi-
cantly exceeds the elastic modulus of the composite matrix, which is 4.0 GPa.

3. The Poisson’s ratio of the interphase is 0.07, and this is significantly lower than the
Poisson’s ratio of the matrix, which is taken equal to 0.33 from reference data.

4. The interphase thickness has been determined using dynamic force microscopy, and
it is equal to 621 ± 53 nm.

5. The use of the mesomechanical model allowed us to calculate the interphase thickness
equal to 660 nm. This value corresponds to the acceptable engineering accuracy of
determining the parameter, since the deviation is less than 10%. The calculation of the
interphase thickness has taken 30 iterations when solving the finite element problem,
leading to significant time spent on determining this parameter.

6. On the basis of a computational model of the representative volume of the fiberglass
plastic monolayer, its elastic coefficients have been determined. This has made it
possible to predict the elastic properties of 14-layer transversely reinforced fiberglass
plastic with relative average deviation not exceeding 10%.
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