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Abstract: In order to explore the vibration mechanism of vibration damping composite 

floor slabs and further enrich the theory of floor slab vibration calculation, the free vibra-

tion characteristics of vibration damped composite floor slabs and the dynamic response 

of vibration damped composite floor slabs under multi-source excitation is analyzed us-

ing first type Chebyshev polynomials to construct the displacement function and derive 

an analytical solution. The three-dimensional laminated theory is employed, considering 

the interlayer interaction. Based on the proposed method, the influences of loading types, 

positions, magnitudes, and frequencies on the vertical vibration of floor slabs are calcu-

lated. The study illustrates that, under the action of multi-source excitation, the displace-

ment and acceleration responses calculated by the method proposed in this paper are al-

ways greater than those calculated by the single-plate theoretical solution. The dynamic 

responses of the vibration damping composite floor slab decrease with the increase of the 

thickness and elastic modulus of the vibration damping layer. Under different thicknesses 

of the vibration damping layer, the peak accelerations of the vibration damping composite 

floor slabs increase linearly with the growth of the load amplitude. In addition, the load 

movement path has a significant effect on the vibration response of the floor slab. When 

the moving load moves along the short side of the floor, the displacement response of the 

floor is generally greater than that along the long side of the floor. 

Keywords: multi-source excitation; vibration damped composite floor slab;  

interlayer interactions; dynamic response; spectral method 

 

1. Introduction 

With the development of technology and industry, the demand for precise instru-

ment plants have increased. Meanwhile, the requirements for equipment accuracy are 

largely improved. As a result, multi-source vibration control has become the most im-

portant topic in plant construction. External excitation sources (highways and rail transit) 

and internal excitation sources (equipment vibration, moving vehicles and personnel 

walking) are usually combined and lead to floor vibration, which seriously interfere the 

normal operation of precision instruments [1]. As an important part of a building, the 
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floor slabs play a major role in the propagation of vertical vibration of the structure. There-

fore, the stiffness and elastic modulus of the floor slabs have a direct impact on the overall 

dynamic mechanical performance of the building structure. 

Researchers have investigated the influence of non-structural layers, such as damp-

ing layers and decorative layers, on the vibration responses of floors through numerical 

simulation or experimental methods. At present, some useful numerical models and sim-

ulation approaches have been established for blank cross-laminated panels, concrete 

slabs, and floors with decorative layers [2–4]. Zhai et al. [5] established an equilibrium 

equation of the damping layer composite plate based on the traditional plate theory, and 

then studied the influence of the thickness of the damping layer on the free vibration of 

the composite plate by numerical simulation methods. Hu et al. [6] proposed the vibration 

governing equations and the general elastic boundary equations of arbitrary rectangular 

composite laminates based on the first-order shear deformation theory. In order to derive 

the dynamic equations of corrugated sandwich panels, their fundamental frequencies un-

der four boundary conditions were calculated and compared using the five-plate theory 

and Hamilton’s principle [7]. The modal characteristics of two full-scale floors with the 

same structure in an actual decorative building were also measured to study the influence 

of non-structural cladding and partition walls on the vertical vibration response of build-

ing floors [8]. 

Excitation sources can also generate different vibration responses on floor slabs. For 

human-induced loads, some scholars developed an equation to evaluate the dynamic per-

formance of large-span floor structures under crowd loads. The four-element plate model 

is used to study the vibration behavior of special-shaped steel bridge deck composite slabs 

under human walking and rhythmic activities [9,10]. For vehicle loads, a binary brittleness 

evaluation model considering both vehicle weight and moving speed is used to investi-

gate the micro-vibration of large-span floors caused by internal moving vehicles or auto-

mated guided vehicles (AGVs) in high-tech manufacturing plants [11]. An equivalent 

model was established to effectively analyze the vibration of the prefabricated structure 

of multi-layer profiled steel sheet–concrete composite floor slabs (PSSCCFs) induced by 

high-speed trains. Additionally, three composite floor slab models with the same dimen-

sions but with different materials were established. The vibration response laws of the 

floor slabs under the action of train excitation were analyzed, and the differences in the 

responses among the three were compared [12,13]. For other loads, Ju et al. [14] estab-

lished a finite element model to simulate the vibration caused by the crane on the floor of 

a high-tech factory. The contact element was introduced, and the vibration response of the 

reinforced concrete composite slab was analyzed by numerical simulation [15–17]. How-

ever, the above-mentioned study fails to consider the superposition effect of various loads. 

Moreover, the impact of these loads on the vertical vibration of the floor slab varies sig-

nificantly with respect to position, magnitude, and frequency, among other factors. 

In summary, previous research has predominantly focused on the vibration response 

of ordinary building floors, such as concrete slabs and reinforced concrete composite 

slabs. For floors with non-structural layers, the current theory usually simulates the influ-

ence of non-structural layers by increasing the slab thickness according to the equivalence 

principle, whereas it ignores the interlayer interactions caused by the different material 

properties of structural and non-structural layers in composite floors. Regarding the the-

oretical derivation of the vibration response of the floor system, the existing research only 

focuses on the free vibration, or the vibration induced by single excitation [18–22]. In the 

real condition, the concrete floors are simultaneously excited by human loads, vehicle 

loads and machine loads. Therefore, it is of great practical significance to consider the 

interaction between layers and solve the dynamic response of damping composite floor 

slabs under multi-source excitation. 
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In this study, a vibration damping composite floor is taken as the research object, and 

its vibration response is studied by the spectral method. The displacement variables of the 

vibration damping composite floor slab are expanded into the first type Chebyshev poly-

nomial and double trigonometric series, based on the three-dimensional laminated theory 

and considering the influence of interlayer interactions. The displacement function is con-

structed using the first type of Chebyshev polynomial. The analytical solution for the free 

vibration characteristics of vibration damped composite floor slabs and the dynamic re-

sponse of the vibration damped composite floor slabs under multi-source excitation is de-

rived. The material of the vibration reduction layer is considered as the flexible vibration 

reduction layer and the rigid vibration reduction layer selected in the actual project. This 

study analyses the impact of various parameters, including the thickness and elastic mod-

ulus of the vibration damping layer, as well as the load position on the dynamic response 

of composite floor slabs caused by multi-source excitation. Numerical examples are used 

to demonstrate the findings, which can be used as a reference for designing floor slabs 

with effective vibration reduction. 

2. Theoretical Derivation of Vibration 

2.1. Analysis Model 

Researchers usually use simplified models to study the vibration responses of vibra-

tion damped composite floor slabs. For example, Lu et al. [23] developed isotropic and 

orthogonal anisotropic equivalent calculation models for composite floor slabs by apply-

ing the principles of displacement and stiffness equivalence. However, they oversimpli-

fied the composite floor slab by treating it as a single-layer slab and ignored the influence 

of interlayer interaction. To address this limitation, this research takes into account the 

inter-layer vibration and the equivalent vibration damping composite floor slab to a three-

dimensional laminated floor slab model. This composite floor slab is composed of multi-

ple single layers with different thicknesses and material properties, and these layers are 

connected in a co-node manner, as illustrated in Figure 1. The model and coordinate sys-

tem for the vibration damped composite floor slab are presented; the dimensions of the 

vibration damped composite floor slab along the x, y, and z directions are denoted as a, b, 

and h for length, width, and thickness, respectively. The Cartesian coordinate system is 

situated on the geometric bottom surface of the structure. The material parameters of the 

composite floor slab are taken according to the actual floor parameters, as follows: a = 7.2 

m and b = 4 m. In the parameter analysis, the thickness of the structural layer varies among 

0.08 m, 0.10 m, and 0.12 m; the thickness of the vibration damped layer ranges from 0 to 

100 mm; and the thickness of the decorative layer is 20 mm. 

 

Figure 1. Analysis model and coordinate system of vibration damped composite floor slab. 
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2.2. Free Vibration Theory 

Based on the three-dimensional lamination theory, when the composite floor slab 

undergoes small deformations, the basic strain–displacement relationship of the k-th layer 

is expressed as follows: 

( )
( )
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where 
( )k

x  , ( )k

y   and 
( )k

z   represent the normal strain component and ( )k

yz  , 

( )k

xz  and ( )k

xy  represent the shear strain component. 

In an orthogonal coordinate system, for linearly elastic bodies and anisotropic mate-

rials, the stress components related to the six strain components are written using the 

three-dimensional constitutive equations as follows: 
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When the above-mentioned material is an isotropic material, the stiffness matrix is 

defined as follows: 
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Among these, the stiffness coefficients can be calculated by the following formulas: 
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where E represents the elastic modulus of the material of a certain layer of the building 

composite floor slab and   represents the Poisson’s ratio of the material of a certain layer 

of the building composite floor slab. 

For the vibration analysis of composite structures based on the energy variational 

method, the construction of the admissible displacement function often determines the 

convergence rate and solution accuracy of the vibration analysis. It has been proved that 

Chebyshev polynomials exhibit excellent stability convergence properties when using 

three-dimensional theory to calculate the behavior of elastic plates. For example, Zhou 

[24] used the first-class Chebyshev polynomial to establish the displacement function and 

analyze the free vibration of elastic plates with different thicknesses. It was found that the 

calculation results converged quickly and that the calculation accuracy was acceptable. 

The first type of Chebyshev polynomial is defined as follows for any integer n > 0: 
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where [n/2] represents the maximum integer not greater than n/2. 

The first kind of Chebyshev polynomials satisfy the following recurrence relation on 

the interval [−1, 1]: 

( ) ( ) ( ) ( ) ( )0 1 1 11, , 2 , 1.n n nT x T x x T x xT x T x n+ −= = = − 
 

(6) 

By introducing the variables ξ = 2z/h − 1, we can redefine the first type of shifted 

Chebyshev polynomial. The first type of Chebyshev polynomial with an action interval of 

[0, h] can then be expressed as: 
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( ) nT   is an orthogonal polynomial with respect to the weight function 
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= −  in the interval [−1, 1], and satisfies the following relationship: 
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According to the spectral method, the displacement function for the k-th layer is ex-

pressed as a product of trigonometric functions and an expansion of the first type Cheby-

shev polynomial. The displacement function can be represented as follows: 
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where, 
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(10) 

The Rayleigh–Ritz method, which is based on the principle of energy, is used in this 

research to solve unknown coefficients. The energy function for constructing a vibration 

damped composite floor slab is determined according to Hamilton’s variational principle 

[25]: 
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(11) 

where Uk represents the strain energy of the k-th layer of the system, Tk represents the 

total kinetic energy of the k-th layer of the system, and Wk represents the work done by 

external excitation on the k-th layer of the plate. 

According to the three-dimensional lamination theory, the strain energy, kinetic en-

ergy and work done by external forces of the k-th layer can be expressed as: 
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where 
k

x  ,
k

y
 ,

k

z  ,
k

xy
 ,

k

xz  ,
k

zy
  represents the stress component of the k-th floor 

slab; 
k

x ,
k

y
,

k

z ,
k

xy
,

k

xz ,
k

zy
 represents the strain component of the k-th floor slab, 

and V1 is the volume of the floor slab. uk, vk and wk represent the displacement components 

along the x, y, and z axes, respectively, at a point on the k-th layer. Their time derivatives 

u
·

k, v
·

k and w
·

k respectively represent the velocity component of a point on the k-th layer 

along the x, y and z axes, ρk is the density of the k-th floor slab. A represents the surface 

area of the floor slab level. 

Substitute Equations (9) and (12) into Equation (11) and expand. Then, set the varia-

tions of the energy functional with respect to all of the expansion coefficients of the dis-

placement function to zero, thus obtaining the characteristic equation of the composite 

floor slab: 

( ) .2
K -ω M q = 0  (13) 

where q represents the generalized displacement of the composite floor slab, M and K 

represent the mass matrix and stiffness matrix of the composite floor slab, respectively, 

and ω represents the natural frequency of the composite floor slab. The expressions of the 

above-mentioned generalized displacement, mass matrix, stiffness matrix and their re-

spective elements are as follows: 

1 2 3 3

110 110 110, , , , , .
T

MNRu u u w =  ，q  (14) 

1 2 3 1 2 3[ , , ] [ , , ].= =diag , diagK K K K M M M M  (15) 
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The detailed expressions of the elements of the above-mentioned mass matrix and 

stiffness matrix are given in Appendix A. 

2.3. Dynamic Response Solution 

This study simplifies machine loads as fixed harmonic loads and mobile transport 

vehicles as moving loads. The vibration damped composite floor slab is assumed to have 

an amplitude of P1 and a frequency of ω1 at point H1 (x1, y1, z1). Simultaneously, a harmonic 

load of 1 with an amplitude of P2 and a moving speed of vx and vy along the x and y direc-

tions, respectively, is applied at point H2 (x2, y2, z2). z1 = z2 = h. The load P(t) is defined as 

follows: 
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where δ is the Dirac function and the expression is 
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The fixed harmonic load and moving load can be expressed by Equation (18) and 

Equation (19), respectively. 
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By substituting Equations (12) and (17) into Equation (11), the motion equation of the 

vibration damped composite floor slab can be obtained: 
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When only fixed harmonic load or moving load exists, the motion equation can be 

expressed by Equations (21) and (22), respectively. 
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Substitute Equations (9) and (10) into Equation (19). Then, set the variation of all ex-

pansion coefficients of the energy functional on the displacement function zero. Finally, 

organize the results to obtain the following formula: 

.Mq+ Kq = F
 (23) 

where q represents the generalized displacement matrix of the composite floor, while M 

and K represent the mass matrix and stiffness matrix of the composite floor, respectively, 

and F represents the generalized force matrix. The following expressions respectively rep-

resent the generalized displacement matrix, mass matrix, stiffness matrix, and generalized 

force matrix: 

1 2 3 3

110 110 110, , , , , ,
T

MNRu u u w =  ，q
 

(24) 

1 2 3 1 2 3 3diag[ , , ] , diag[ , , ] , diag[ , , ],= = =K K K K M M M M F 0 0 F  (25) 

k
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K K K
,

k

 
 
 
 
 

k

uu

k

vv

k

ww

M 0 0

M = 0 M 0

0 0 M
,

( )

3 =

 
 
 
 
 

0

F 0

F t
. 

(26) 

Appendix A presents detailed expressions for each element in the quality matrix and 

stiffness matrix. In this section, we only provide the detailed representation of F(t) in the 

generalized force matrix. 

( )

( )

22 1 1

2 1

2

1

2 1 1

2 1
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( )( )
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=  
 
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F(t)

 

(27) 

When only fixed harmonic load or moving load is considered, the F(t) in the gener-

alized force can be expressed by Equations (28) and (29), respectively. 

( )
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1 1
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1 1
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1
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(28) 
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(29) 

Further simplifying Equation (23) as follows, similar to the motion equation of a sin-

gle degree of freedom system: 

( )
( ).

2
mnr2mnr

mnr2
m n r mnr

F tq
+ω q

Mt

   
=




 
(30) 

Using the Duhamel integral, Equation (30) can be solved to obtain the generalized 

displacement expression for the i-th order, as follows: 
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0
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(31) 

To determine the displacement of the structure, substitute the aforementioned equa-

tion into Equation (9) for the structural displacement function. When calculating the dis-

placement response of the n-order vibration mode of the composite floor slab, it is essen-

tial to compute the generalized displacement of each order of the composite floor slab and 

solve the displacement response separately. The overall displacement response of the 

composite floor slab is obtained by superimposing the displacement response of each or-

der, as follows: 

( ) ( )

( ) ( )

( ) ( )

1

1

1

, , , , , , ,

, , , , , , ,

, , , , , , .

n

i

i

n
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i

n

i

i

u x y z t u x y z t

v x y z t v x y z t

w x y z t w x y z t

=

=

=

=

=

=






 

(32) 

When only the fixed harmonic load is taken into account, Equation (33) represents 

the forced vibration response of the composite floor slab. When the load ceases to act, the 

composite floor slab will transition to free vibration, and its displacement response can be 

expressed as follows: 

( ) ( ) ( )( )
( )

( )( )0

0 0 0

, , ,
, , , , , , cos sin .

q x y z t
q x y z t q x y z t t t t t 


= − + −

 

(33) 

If the moving load is considered as a moving harmonic load, the load is defined as 

follows: 

( ) ( ) ( ) ( ) ( )2 2 2sin .x yP t P x x v t y y v t z h t   = − − − − −
 

(34) 

The expression of the displacement response corresponding to the i-th vibration 

mode of the composite floor slab under the action of the moving load can be directly pre-

sented as follows: 

( ) ( )( ) 2

0

( )
1

F( )sin sin( ) ( ) .

( )

it

i i i

i i

i

u t

q t t d v t
M

w t

     


 
 

= − =
 
  



 

(35) 

2.4. Case Verification 

2.4.1. Free Vibration 

Taking the simplified models of multi-layer composite floor slabs under different pa-

rameters as the research objects, this paper analyzes the vibration characteristics of the 

floor slabs and explores the influence of inter-layer interaction on the vibration character-

istics of the composite floor slabs. To simplify the research, in the subsequent calculations, 

2 2

2/ ( )a E h  =  is adopted to make the frequency of the composite floor slab di-

mensionless, unless otherwise specified. 

Table 1 presents the first five-order dimensionless frequencies of the square compo-

site floor slab with four-side simply supported boundaries obtained by changing the num-

ber of polynomials M × N × R required in the x, y and z directions. The data are compared 
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with those given in [26], and the ANSYS finite element solutions using the solid element 

solid185 are also provided to verify the accuracy of the method proposed in this paper. 

Figure 2 shows the first five-order modal vibration patterns of the corresponding four-

side simply supported composite floor slab. The method in this paper selects the param-

eter values of the examples in [26]. The length and width of the plate are both 1 m, and 

the thickness is 0.05 m. The elastic modulus E1 is 150 GPa and E2 and E3 are both 10 GPa. 

The shear moduli G12 and G13 are both 6 GPa, G23 is 5 GPa. The Poisson’s ratio is 0.25, and 

the material density is 1450 kg/m3. 

   
f1 f2 f3 

  
f4 f5 

Figure 2. Modal vibration modes of the composite floor slab with four-sides simply supported. 

As can be seen from Table 1, with the continuous increase of the truncation times in 

this paper, the frequencies of each order of the composite floor slab gradually converge to 

stable values from the low order to the high order. When M-N-R = 6-6-6, all dimensionless 

frequencies converge. Compared with the results in [26], both methods are based on the 

three-dimensional lamination theory. Therefore, the calculated results of the first five-or-

der dimensionless frequencies of the two methods are highly consistent, with the error of 

the dimensionless frequencies not exceeding 0.104%. When compared with the finite ele-

ment results, the results calculated by the method in this paper are also highly consistent 

with the three-dimensional finite element solutions, with the maximum error not exceed-

ing 0.720%, demonstrating the accuracy of the method in this paper. In addition, the ma-

trix dimension of the spectral method in this paper to reach the convergence value is 648 

× 648, while the matrix dimension in [26] is 1125 × 1125. The computational amount of this 

paper is one-fourth of that in [26], and the computational efficiency is higher. Meanwhile, 

the deviation between the dimensionless frequencies with a computational amount of 6-

6-5 and those with a computational amount of 12-12-6 does not exceed 0.1%. Evidently, 

the method in this paper also has the advantage of a fast convergence rate. 

2.4.2. The Action of Fixed Loads 

To verify the correctness of the analytical solution derived in this paper for the dy-

namic response of a vibration damping composite floor slab under multi-source excita-

tion, the same material and parameters are adopted for each of its layers. According to the 

theoretical derivation in the previous section, the displacement response of the vibration 

damping composite floor slab model is calculated by using the method presented in this 

paper, and is then compared with the existing solutions of the displacement response of 

a single slab under various types of loads. The material parameters of the composite floor 

slab are taken according to the actual floor slab parameters. The size is 7.2 m × 4 m, and 

the structural parameters are shown in Table 2. Figure 3 shows the layout diagrams of the 

fixed load (P1) and the moving load (Path1). 
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Figure 3. Layout diagrams of fixed loads and moving loads. 

Before calculating the dynamic response of the floor slab under harmonic loads, it is 

necessary to determine the frequency and amplitude of the loads. According to the Tech-

nical Standard for Vibration Serviceability of Building Floor Structures [27] (JGJ/T 441-2019), 

the vertical dynamic load of the electric motor can be calculated according to the following 

equations: 

( )

2

0.105 ,

,

sin( ).

p m

m m m p

m m p

n

P m e

P t P t







=

=

=
 

(36) 

where ωp represents the working circular frequency of machinery and equipment (rad/s), 

nm denotes the rotational speed of the machine (r/min), Pm stands for the disturbing force 

of the machine (N), mm indicates the total mass of the rotating components (kg), em repre-

sents the equivalent eccentricity of the total mass of the rotating components with respect 

to the center of rotation (m), and Pm(t) is the vertical dynamic load of the machine (N). 

In this section, the analytical solutions of the composite floor slab under the action of 

harmonic loads are verified based on the parameters of machinery and equipment given 

in [28]. The parameters of the machinery and equipment are shown in Table 3. 

Based on the above-mentioned specification standards and equipment parameters, 

the disturbing force of the machinery and equipment is calculated. The size and structural 

parameters of the floor slab are shown in Table 2. 

According to the steady-state solution of the dynamic response of a simply supported 

plate on four sides under harmonic loads, as given in [29], we find the following: 

( ) 0 0

2 2
1 1

( , )
, , ( , )(sin sin( )).

( )

pmn
mn p mn

m n mn mn p mn

PW x y
w x y t W x y t t

M


 

  

 

= =

= −
−


 

(37) 

where Wmn represents the various vibration modes of the plate, Mmn denotes the general-

ized mass under each vibration mode of the plate, and ωmn stands for the natural frequen-

cies of each order of the plate. 

To simplify the calculations, only the first-order vibration mode function of the floor 

slab will be discussed in this section and subsequent ones. According to the analytical 

solution of the dynamic response provided in this paper, programming calculations are 

carried out using MATLAB. Figure 4 shows the time-based curves of the vertical vibration 

response at the center point of the floor slab under the fixed harmonic load. Table 4 pre-

sents a comparison of the peak values of the vibration response at the center point (P1) of 

the floor slab calculated by the single-plate theory and the method in this paper under the 

harmonic load, and also gives the definition of the error for this section and subsequent 

ones, as follows: 
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(38) 

where δ0z represents the error of the displacement peak value, δ0a represents the error of 

the acceleration peak value, z represents the peak value of the displacement response of 

the plate, and a represents the peak value of the acceleration response of the plate. 
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(a) (b) 

Figure 4. Comparison of the vertical vibration responses at the center point of the floor slab under 

harmonic loads. (a) displacement, (b) acceleration. 

Table 1. The first five-order natural frequencies of the four-side simply supported composite floor 

slabs with different truncation series. 

M × N × R 
Dimensionless Frequency 

f1 f2 f3 f4 f5 

5-5-3 12.083 19.706 35.056 40.451 45.017 

6-6-4 12.019 19.604 34.783 39.692 44.227 

6-6-5 12.019 19.604 34.782 39.691 44.226 

6-6-6 12.018 19.599 34.750 39.688 44.221 

7-7-6 12.018 19.599 34.750 39.688 44.221 

8-8-6 12.018 19.599 34.750 39.688 44.221 

9-9-6 12.018 19.599 34.750 39.688 44.221 

10-10-6 12.018 19.599 34.750 39.688 44.221 

12-12-6 12.018 19.599 34.750 39.688 44.221 

ANSYS 12.018 19.598 34.725 39.700 44.244 

Ref. [29] 12.017 19.592 34.714 39.680 44.211 

Table 2. Floor slab structural parameters. 

Elastic Modulus/GPa Density/kg·m−3 Poisson’s Ratio Thickness/m 

30 2500 0.3 0.13 

Table 3. Design parameters of machinery and equipment. 

Mass 

/kg 

Rotational Speed of the 

Machine/r·min−1 
Equivalent Eccentricity/m Load Amplitude/N Load Amplitude/rad·s−1 

180 500 0.00008 39.69 52.5 
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Table 4. Comparison of peak vibration responses at the center point of the floor slab under fixed 

loads. 

Working Condition 

Peak Displacement 

Response 

(10−3·mm) 

Peak Acceleration Re-

sponse (mm·s−2) 

Peak Displacement 

Error 

Peak Acceleration 

Error 

Theoretical solution pro-

posed in this research 
2.43 15.30 

−9.33% 0.72% 
Single board theoretical 

solution 
2.68 15.19 

As can be seen from the comparison of displacement responses and acceleration re-

sponses in Figure 4 and Table 4, when it is assumed that the materials of each floor of the 

floor slab are the same, under the action of harmonic loads, the results of the displacement 

response and acceleration response at the center point of the building composite floor slab 

calculated by the method in this paper are basically consistent with those calculated by 

the single-plate theory solution. Among them, the displacement error is −9.328%, and the 

acceleration peak error is even smaller, only 0.724%. The errors mainly stem from the fact 

that the equivalent single-layer thin-plate theory is based on the thin-plate vibration the-

ory, overlooking the inter-layer shear and extrusion effects. The theoretical method pro-

posed in this paper takes into account the influence of inter-layer interaction. When the 

composite floor slab vibrates, the inter-layer stresses between each layer of the floor slab 

are considered. Therefore, it can be demonstrated that the theoretical derivation in this 

paper is correct and effective. 

2.4.3. The Action of Moving Loads 

Ref. [29] presents the steady-state solution of the dynamic response of simply sup-

ported plates on four sides under the action of moving loads, as follows: 

( )

0

2 21 1

sin( )

, , ( , )(sin( ) sin( )).

( ( ) )
mn mn

m n
mn mn

n y
P

m v m vbw x y t W x y t t
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M
a


 


 

 

= =

= −

−


 

(39) 

The computational model of the composite floor slab under moving loads is verified 

based on the parameters of the factory transport vehicle given in [30]. The size and struc-

tural parameters of the floor slab are shown in Table 2. The mass of the transport vehicle 

is 200 kg, which moves along the direction of the short side from the one-quarter position 

of the long side at a speed of 2 m·s −1 (Figure 2, Path1). Figure 5 shows the vertical vibration 

response at the center point of the floor slab under moving loads calculated by the single 

board theoretical solution and theoretical solution proposed in this research. Table 5 pre-

sents a comparison of the peak values of the vibration response at the center point (P1) of 

the floor slab, calculated by the single-plate theory and the method in this paper under 

moving loads. 

Table 5. Comparison of peak vibration responses at the center point of the floor slab under moving 

loads. 

Working Condition 

Peak Displacement 

Response 

(10 −3·mm) 

Peak Acceleration  

Response (mm·s−2) 

Peak Displacement 

Error 

Peak Acceleration  

Error 

Theoretical solution pro-

posed in this research 
40.00 7.52 47.06% 23.29% 
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Single board theoretical 

solution 
27.20 6.10 
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(a) Displacement response (b) Acceleration response 

Figure 5. Comparison of the vertical vibration responses at the center point of the floor slab under 

moving loads. 

From the comparison of the displacement responses and acceleration responses in 

Figure 5 and Table 5, it can be found that the displacement responses and acceleration 

responses under moving loads calculated by the method in this paper are always greater 

than the results of the theoretical analytical solutions simplified as single-plate calcula-

tions. Moreover, as the load gradually moves, the displacement difference increases at 

first and then decreases steadily. In addition, the displacements basically coincide at the 

edge of the plate, and the displacement error reaches its maximum at the center of the 

plate, as high as 47.06%. The difference of acceleration response between the two calcula-

tion methods is not obvious, and the acceleration peak error is 23.29%. 

The calculation method proposed in this paper takes into account the influence of 

interlayer interactions. Therefore, the frequency of the floor slab calculated according to 

the method in this paper is lower than the frequency obtained by treating the floor slab as 

a single plate. It can also be seen from Equation (38) that a decrease in frequency will lead 

to an increase in the displacement response. One of the assumptions of the single-plate 

theory is that all layers are assumed to be completely bonded together, with no relative 

sliding, separation, or debonding between layers. This means that, when the composite 

plate is loaded and deformed, the displacements between layers are continuous, and the 

stress transfer between layers is ideal. Thus, the composite plate can be analyzed as a 

whole without considering the complex inter-layer interactions. However, for multi-layer 

composite structures, due to the small shear modulus of the structure, there are significant 

shear deformations. Therefore, the inter-layer interactions of multi-layer composite plates 

cannot be ignored. The error between the calculation results based on the method in this 

paper and the solutions of the single-plate theory reflects the accuracy of the three-dimen-

sional theory in calculating the dynamic response of the floor slab. In summary, the 

method proposed in this paper can be considered more accurate and effective. 

2.4.4. The Action of Multi-Source Excitation 

The steady-state solutions of the dynamic responses of a simply supported rectangu-

lar plate on four sides under the coupled harmonic loads and moving loads can be ex-

pressed by Equation (37) and Equation (39), respectively. The load location arrangement 

is shown in Figure 3. A fixed harmonic load is applied at the center of the slab (Figure 3, 

P1), while a moving load is shifted from one-quarter of the long side towards the short 
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side (Figure 3, Path1). The size and structural parameters of the floor slab are shown in 

Table 2, and the load parameters are taken from the parameters of [11,28]. Table 6 displays 

the calculation parameters for the load. Additionally, Figure 6 illustrates the vertical vi-

bration response curves of the P1 point of the vibration-reducing composite floor slab un-

der multi-source excitation. Table 7 presents a comparison between the peak vibration 

response of the P1 point through the single plate theory and through the method proposed 

in this paper under multi-source excitation. 

Table 6. Calculation parameters of floor slabs under multi-source excitation. 

Parameters Value Parameters Value 

Moving load amplitude/N 2000 Fixed harmonic load amplitude/N 39.69 

Moving load speed/m·s−1 2 Fixed harmonic load frequency/rad·s−1 52.5 

Table 7. Comparison of peak vibration responses at the center point of the floor slab under multi-

source excitation. 

Working Condition 
Peak Displacement  

Response (10−3·mm) 

Peak Acceleration  

Response (mm·s−2) 

Peak Displacement 

Error 

Peak Acceleration  

Error 

Theoretical solution 

proposed in this re-

search 

42.00 22.71 

46.34% 9.55% 

Single board theoretical 

solution 
28.70 20.73 

Figure 6 and Table 7 show that the displacement response calculated by the proposed 

method is consistently greater than the value calculated by single board theoretical solu-

tion, although the overall trend is consistent. The displacement at the edge of the plate 

essentially aligns, while the displacement error at the center of the plate reaches its maxi-

mum, peaking at 46.34%. The peak acceleration error is 9.55%. The reason for the errors 

arises from one of the assumptions in the laminate theory, which postulates that all layers 

are perfectly bonded together with no relative sliding, separation, or debonding between 

them. This implies that, when the composite plate is loaded and deforms, the displace-

ments between layers are continuous, and the stress transfer between layers is ideal. Con-

sequently, the composite plate can be analyzed as a single entity without considering the 

complex interlayer interactions. In contrast, the three-dimensional lamination theory as-

sumes that each layer of the multilayer composite plate satisfies a continuous displace-

ment field and stress field along the thickness direction. The displacement field of the 

structure is continuous in the lamination direction, but the derivatives of the transverse 

coordinate variables are discontinuous at the interlayer interfaces. This results in contin-

uous transverse stresses between layers, necessitating the consideration of interlayer in-

teractions in the analysis of multilayer composite plates. The frequency of the floor slab is 

calculated based on three-dimensional laminated theory, resulting in a lower frequency 

compared with treating the floor slab as a single board. Equations (37) and (39) illustrate 

that a decrease in frequency leads to an increase in displacement response. Furthermore, 

the accuracy of the three-dimensional laminated theory in predicting the dynamic re-

sponse of the floor slab is demonstrated by comparing the calculation results obtained 

from the method described in this article with the theoretical solution results for a single 

board. In conclusion, the method proposed in this article is deemed to be more precise 

and efficient. 
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(a) Displacement response (b) Acceleration response 

Figure 6. Comparison of vertical vibration response at the center point of a vibration damped com-

posite floor slab under multi-source excitation. 

3. Dynamic Response Parametric Analysis 

This research exclusively conducts a parametric analysis on key factors, including the 

thickness of the damping layer, the elastic modulus of the damping layer, and load appli-

cation position, to characterize the dynamic response of floor slabs with interlayer. The 

calculation in this section only considers the first mode of vibration to simplify the pro-

cess, without factoring in the influence of damping. In this research, when studying the 

vibration problem of the floor slab, the vibration direction of the floor slab is always per-

pendicular to the surface of the floor slab. In the following subsections, only a single var-

iable is changed, the load parameters are taken according to Table 6, the material param-

eters of the composite floor are taken according to the actual floor parameters, and the 

parameters of each floor are shown in Table 8. The floor dimensions are chosen as 7.2 m × 

4 m. The moving load position is defined as traversing along the shorter side from one 

quarter of the longer side, and the fixed load position is specified as the central point of 

the plate (Figure 2, Path 1). The thickness of the structural layer is represented as h1. 

Table 8. Calculation parameters of floor slabs in parameter analysis. 

Structural Layer 

Parameters 
Value 

Damping Layer  

Parameters 
Value 

Decorative Layer 

Parameters 
Value 

Elastic modulus 30 GPa Elastic modulus 0.3 GPa Elastic modulus 27 GPa 

Density 2500 kg·m−3 Density 1000 kg·m−3 Density 2500 kg·m−3 

Poisson’s ratio 0.3 Poisson’s ratio 0.2 Poisson’s ratio 0.2 

Thickness 0.10 m Thickness 0.02 m Thickness 0.02 m 

3.1. The Influence of Damping Layer Thickness 

The analysis range for the thickness of the damping layer in engineering is 0 to 100 

mm. Numerical calculations were performed to obtain the vertical acceleration peak of 

the damping composite floor slab with different structural layer thicknesses as a function 

of the damping layer thickness. The results are shown in Figure 7. 

Figure 7 shows that the peak values of the acceleration responses of the vibration 

damping composite floor slabs under different thicknesses of the structural layer all grad-

ually increase with the decrease of the thickness of the vibration damping layer. Moreo-

ver, when the thickness of the structural layer is 0.08 m, the change in the peak acceleration 
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of the vibration damping composite floor slab with damping layer thickness is the most 

obvious. When the thickness of the vibration damped layer increases to 0.06 m, the decline 

rate of the peak acceleration decreases significantly. After the thickness of the vibration 

damping layer reaches 0.10 m, the slight difference in the thickness of the structural layer 

can be ignored, and when the thickness of the damping layer is 0.12 m, there is no obvious 

effect on the acceleration peak of the vibration damping composite floor. In conclusion, 

the damping layer thickness should be carefully designed to minimize acceleration re-

sponse while ensuring that the floor thickness is not excessive. The thickness of the vibra-

tion damping layer is preferably around 0.06 m. 
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Figure 7. Effect of damping layer thickness on dynamic response of composite floor slabs. 

3.2. The Influence of Elastic Modulus of Damping Layer 

Considering that the commonly used materials for the vibration damping layer of 

floor slabs in actual engineering projects are rubber-based vibration damping layers, pol-

yurethane-based vibration damping layers, and spring isolators. Considering the material 

parameters of both flexible and rigid vibration damping layers, the analyzed range of the 

elastic modulus of the vibration damping layer is set to be 0.1 GPa to 100 GPa. Through 

numerical calculations, the curves of the peak vertical acceleration of the vibration damp-

ing composite floor slabs with different elastic modulus of the vibration damping layer 

have been obtained and are shown in Figure 8. 

Figure 8 demonstrates that the variation in peak acceleration response among three 

distinct structural layer thicknesses maintains a relatively constant correlation with alter-

ations in the elastic modulus. Additionally, these responses exhibit a gradual decline of 

approximately 20% as the elastic modulus of the damping layer increases. For example, 

when the structural layer thickness is 0.1 m, and the elastic modulus of the damping layer 

increases from 0.1 GPa to 100 GPa, the peak acceleration response of the vibration damp-

ing composite floor slab gradually decreases by 20.97%. Specifically, if the elastic modulus 

of the damping layer exceeds that of the structural layer (30 GPa), further increasing the 

elastic modulus of the damping layer will not significantly alleviate the acceleration re-

sponse of the floor. However, when the elastic modulus of the damping layer is less than 

that of the structural layer (30 GPa), the greater the difference between the elastic modulus 

and the structural layer, the faster the peak acceleration increases. Therefore, when select-

ing a damping layer, it is crucial to manage and control any disparity in elastic moduli 
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between it and that of the structural layer. For most common building floor slabs, a mod-

ulus of approximately 30 GPa for the vibration damped layer is most appropriate. 
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Figure 8. Effect of elastic modulus of damping layer on the dynamic response of composite floor 

slabs. 

3.3. The Influence of the Load 

In this section, the structural layer thickness of the composite floor slab is set to 0.10 

m. The influence of loading modes on the peak acceleration response of the composite 

floor slab with different thicknesses of the vibration damping layer is analyzed. 

3.3.1. The Influence of Fixed Harmonic Loads 

The fixed harmonic loads are designed based on the centrifuge parameters provided 

in [25]. According to the Technical Standard for Vibration Comfort of Building Floor Structures 

(JGJ/T 441-2019) [24], both the amplitude and frequency of the vertical dynamic loads of 

the electric motor depend mainly on the rotational speed of the machine. In this section, 

the range of the machine’s rotational speed is from 500 r/min to 3000 r/min, and Table 9 

presents the amplitudes and frequencies of the harmonic loads at different rotational 

speeds. Through numerical calculations, the curves of the peak vertical acceleration of the 

composite floor slab vary with the harmonic loads. The dynamic responses of the compo-

site floor slab with different thicknesses of the vibration damping layer are shown in Fig-

ure 9. 

Table 9. Load parameters under different rotational speeds. 

Machine Rotational Speed (r/min) 500 1000 1500 2000 2500 3000 

Load frequency (rad/s) 52.5 105 157.5 210 262.5 315 

Load amplitude (N) 39.69 158.76 357.21 635.04 992.25 1428.84 
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Figure 9. The influence of harmonic loads on the dynamic response of composite floor slabs. 

As can be seen from Figure 8, the peak acceleration of the composite floor slab gen-

erally exhibits an increasing tendency with the increase of the machine’s rotational speed. 

When the machine rotational speed is 1000 r/min, the peak acceleration of the floor slab 

with the vibration damping layer thickness of 0.02 m reaches around 1.73 m/s 2, which is 

higher than other conditions. At this time, the load frequency corresponding to this ma-

chine’s rotational speed is 105 rad/s, which is close to the fundamental frequency (109.01 

rad/s) of the floor slab with the vibration damping layer thickness of 0.02 m. The resonance 

reaction of the floor slab structure is induced by the frequency of the fixed harmonic load 

at this point. As the sampling interval of the machine rotation speed was set at 500 r/min, 

the harmonic load was not sampled near the fundamental frequency of the corresponding 

floor slab. Consequently, the resonant responses of the structure under the other two 

thicknesses of the vibration reduction layer could not be manifested. Additionally, by ob-

serving Figure 8, it can be noted that, when the machine rotational speed is higher than 

1500 r/min, the three-floor slabs show similar peak acceleration. Therefore, when planning 

loads, the load frequency should preferably not be close to the fundamental frequency of 

the floor slab. In practical engineering, when the structural layer of the floor slab cannot 

be modified, the thickness of the vibration damping layer can be rationally designed to 

change the fundamental frequency of the floor slab, thereby avoiding resonance and im-

proving the safety and comfort of the structure. 

3.3.2. The Influence of Moving Loads 

Amplitude of Moving Load 

The amplitude of the moving load, ranging from 500 N to 5000 N, is designed based 

on [30]. Through numerical calculations, it can be observed from Figure 10 that the peak 

vertical acceleration of the composite floor slab increased with load amplitude. 

Generally speaking, the peak acceleration response of the composite floor slab within 

the building exhibits a linear upward trend as the amplitude of the moving load increases. 

Furthermore, the slope of the curves decreases with the vibration damping layer thick-

ness. This means that a floor slab with a thinner vibration damping layer is more sensitive 

to the moving load amplitude. When the thickness of the damping layer is maintained at 

0.02 m and the load amplitude varies from 500 N to 5000 N, the peak acceleration of the 

floor slab escalates from 0.0177 m·s −2 to 0.0355 m·s −2. 
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Figure 10. The influence of the amplitude of moving loads on the dynamic response of composite 

floor slabs in buildings. 

Speed of Moving Load 

Based on the parameters of the transport vehicles in the factory building provided in 

[3], the moving load speed is set to be 0.5 m·s −1 to 5 m·s −1. Through numerical calculation, 

results are shown in Figure 11, and it can be observed that the peak vertical acceleration 

of the composite floor slab increases with the moving load speed. 
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Figure 11. The influence of the load velocity on the peak acceleration responses of composite floor 

slabs. 

It can be seen from Figure 11 that the peak values of the vertical acceleration re-

sponses of the building’s composite floor slabs under different thicknesses of vibration 

reduction layer show a linear growth trend with the increase in the speed of the moving 

load. The variation trend of the peak acceleration in this section is consistent with that in 

the previous section. Meanwhile, it can also be demonstrated that, when the growth of the 

moving speed of the load reaches a certain value, the peak acceleration will also exhibit a 

tendency of peaks and troughs. Moreover, the increase in the thickness of the vibration 
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reduction layer does not slow down the trend of the peak acceleration increasing with the 

increase in the speed of the moving load. Under the action of the moving load at the same 

speed, the greater the thickness of the vibration reduction layer, the smaller the peak ac-

celeration. 

3.3.3. The Influence of Load Position 

Figure 12 illustrates the arrangement of load positions designed in this research. P1 

denotes the location where the fixed harmonic load is applied, and the moving load is 

determined based on four paths. The numerical calculation results presented in Figure 13 

demonstrate the variation of the vertical acceleration at the center of the vibration damped 

composite floor with respect to the load position. 

 

Figure 12. Layout diagram of various loads. 
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Figure 13. Floor displacement response under different load positions. 

Figure 13 illustrates that the displacement response trend of the center point of the 

plate remains consistent when moving loads on the same side. However, the amplitude 

varies due to the different distances between the path and the harmonic load at the center 

point of the plate. For the moving loads traveling along different edges, we know from 

Section 3.3.2 that, due to the inconsistent path lengths, the corresponding frequencies of 

the harmonic loads are also different. Even when the loads on the two paths move to the 

positions where the distances from the center point of the floor slab are the same, the ver-

tical displacement responses of the vibration damping composite floor slab will still be 

different because of the disparity in the corresponding load frequencies. Therefore, when 
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planning the travel routes of moving loads such as transport vehicles, in order to control 

the displacement response of the floor slab and reduce its vibration, the paths of moving 

loads are preferably designed along the long side of the slab. At the same time, the de-

signed paths should not be too close to the positions where fixed loads act, so as to avoid 

excessive dynamic response in certain parts of the floor slab. 

4. Conclusions 

Based on the three-dimensional lamination theory, this paper establishes a computa-

tional model for vibration damping composite floor slabs. Taking into account the influ-

ence of the interlayer interactions, such as those of the decorative layer and the vibration 

damping layer, the displacement function is constructed by using the first kind of Cheby-

shev polynomials and trigonometric functions to theoretically solve the free vibration 

characteristics of vibration damped composite floor slabs and the dynamic response of the 

vibration damping composite floor slabs. By comparing with actual calculation examples, 

the accuracy of the method in this paper is verified. Moreover, the influence laws of dif-

ferent parameters on the vertical vibration of building composite floor slabs are explored, 

and the following conclusions are obtained: 

• Based on the theory proposed in this paper, the free vibration characteristics of the 

vibration damped composite floor slabs with simply supported edges on all four 

sides are calculated. When compared with the results in [26], the error of the dimen-

sionless frequency is no more than 0.104%. When compared with the finite element 

results, the maximum error of the dimensionless frequency is no more than 0.720%. 

Evidently, the accuracy of the method presented in this paper is verified. Meanwhile, 

the matrix dimension required for the spectral method in this paper to reach the con-

vergent value is only one-fourth of that in [26], which demonstrates the high effi-

ciency of the calculation method proposed in this paper. 

• Based on the theory presented in this paper, the dynamic response of the vibration 

damped composite floor slabs with four-side simply supported boundaries is calcu-

lated. Under the action of fixed loads, the results of displacement responses and ac-

celeration responses at the center point of the composite floor slab calculated by the 

method proposed in this paper are basically in line with those obtained from the sin-

gle-plate theoretical solution. Under the action of moving loads or multi-source exci-

tations, the displacement and acceleration responses calculated by the method in this 

paper are consistently greater than those calculated by the single-plate theoretical 

solution. 

• Based on the theory in this paper, a parametric analysis is carried out for the vibration 

damping composite floor slabs with four-side simply supported conditions. The im-

pact of the thickness of the vibration reduction layer on the vertical vibration of the 

vibration reduction type composite floor slab is quite evident. However, after the 

thickness of the vibration reduction layer reaches 0.06 m, the curve of the peak accel-

eration of the composite floor slab declines rather gently. The peak value of the ac-

celeration response of the floor slab exhibits exponential growth as the elastic modu-

lus of the vibration reduction layer decreases. However, when the elastic modulus of 

the vibration reduction layer is greater than that of the structural layer (30 GPa), the 

increase in the elastic modulus has no significant impact on the peak acceleration of 

the building composite floor slab. The peak accelerations of the composite floor slabs 

with different thicknesses of the vibration reduction layer all increase linearly with 

the growth of the load amplitude. When the moving load moves along the short side 

of the floor slab, the displacement response of the floor slab is greater than that when 

the floor slab moves along its long side. Moreover, when the fixed load and the mov-

ing load act together, the closer the moving path of the moving load is to the fixed 
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load, the greater the dynamic response of the floor slab near the position of the fixed 

load. 
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where Kkuu represents the force on the u-node caused by applying a unit displacement to 

the u-node on the k-th layer, and the same applies to other similar cases; k11C  represents 

the coefficient of the stress–strain relationship matrix on the k-th layer, and so on; U2,x 

represents the second-order partial derivative of the strain energy with respect to the x-

coordinate, and so on; Mkuu represents the mass distribution of the structure on the k-th 

layer in the direction of the horizontal displacement degree of freedom, and so on; and ρ 

represents the structural density. 
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