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Abstract: Time series classification (TSC) is becoming very important in the area of pattern recognition
with the increased availability of time series data in various natural and real life phenomena. TSC is
a challenging problem because, due to the attributes being ordered, traditional machine learning
algorithms for static data are not quite suitable for processing temporal data. Due to the gradual
increase of computing power, a large number of TSC algorithms have been developed recently.
In addition to traditional feature-based, model-based or distance-based algorithms, ensemble and
deep networks have recently become popular for time series classification. Time series are essentially
huge, and classifying raw data is computationally expensive in terms of both processing and storage.
Representation techniques for data reduction and ease of visualization are needed for accurate
classification. In this work a recurrence plot-based data representation is proposed and time series
classification in conjunction with a deep neural network-based classifier has been studied. A simulation
experiment with 85 benchmark data sets from UCR repository has been undertaken with several state
of the art algorithms for time series classification in addition to our proposed scheme of classification
for comparative study. It was found that, among non-ensemble algorithms, the proposed algorithm
produces the highest classification accuracy for most of the data sets.
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1. Introduction

Time series is an ordered sequence of data points which is abundant in nature as well as in real life.
Due to the increasing use of various sensors, the advancement of ICT (Information and Communication
Technology) and decreased cost of storage, a huge amount of time series data are collected and stored
regularly in various application domains. This high volume of time series data need to be analysed
for meaningful use of the data. Classification of time series is an important task among time series
analysis [1] which has many important applications ranging from biometric authentication such as
on line signature verification [2] to electroencephalogram (EEG), electrocardiogram (ECG) analysis
in medical or health care field [3] or stock price, exchange rate in financial applications [4] to human
activity recognition [5,6].

Traditional time series classification algorithms can be summarized into three categories—
model-based, feature-based and distance-based. The first category of approaches focuses on building
a model for each class from raw time series data by fitting its parameters to that class and the new
data is classified according to the class model that best fits it. Models used in time series classification
are mainly statistical, such as Gaussian, Poisson, Autoregressive [7] Markov and Hidden Markov
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Model (HMM) [8] or based on neural networks. Naive Bayes is the simplest model and it is used in
text classification [9]. Hidden Markov models (HMM) are successfully used for biological sequence
classifications. Some neural network models, such as recurrent neural network (RNN), are suitable for
temporal data classification. Probabilistic distance measures are generally suitable for model-based
classification of the time series.

The second category consists of extracting meaningful features from the time series, transforming
the time series into a feature vector and then classification is done by using traditional machine learning
classifiers. The choice of appropriate features plays an important role in this approach. A number
of techniques has been proposed for feature subset selection by using compact representation of
high dimensional time series into one row to facilitate the application of traditional feature selection
algorithms like recursive feature elimination (RFE), zero norm optimization and so forth [10,11].
Time series shapelets, characteristic subsequences of the original series, are recently proposed as the
features for time series classification [12]. Another group of techniques extract features from the
original time series by using various transformation techniques like Fourier, Wavelet, and so forth.
In Reference [13], a family of techniques has been introduced to perform unsupervised feature selection
on time series data based on common principal component analysis (CPCA), a generalization of PCA
for multivariate data items where all the data items have the same number of dimensions. Any distance
metric is used for classification of the feature-based representation of the time series data.

The third category of approaches is based on developing efficient distance functions to measure the
similarity between two raw time series and a good traditional classifier for clustering or classification.
Similarity or dissimilarity measures are the most important component of this approach. Euclidean
distance is the most widely used measure with a nearest neighbour classifier for time series classification.
Although computationally simple, it requires two series to be of equal length and is sensitive to time
distortion. Elastic similarity measures such as Dynamic Time Warping (DTW) [14] and its variants
overcome the above problems and seem to be the most successful similarity measure for time series
classification in spite of high computational cost. The combination of DTW and k-nearest neighbour
classifiers is known to be a very efficient approach and was considered to be the best one until a few
years ago. A comparative study of different distance measures can be found in Reference [15].

Recently, ensemble-based approaches have been developed in which different classifiers are
combined to achieve a higher degree of accuracy. Different ensemble paradigms integrate various
feature sets or classifiers. Elastic Ensemble (PROP) [16] combines 11 classifiers based on elastic distance
measures with a weighted ensemble scheme. Collective of Transformation ensembles (COTE) [17],
is another ensemble of 35 different classifiers based on different feature subsets from time and frequency
domains. Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE) [18] is
an extended version of COTE. However, the computational times for ensemble classifiers are quite high
compared to a single classifier, even with the increased use of high performance computers. A good
comparative evaluation of recent time series classification algorithms can be found in Reference [19].

Due to increased interest in GPU-based computing, deep learning models are also becoming
popular and have been successfully applied in the time series classification problem. A good review
of the most successful applications of deep neural netwoks (DNN) can be found in Fawaz et al. [20].
Deep learning approaches for TSC can be grouped into two categories generative and discriminative
models. Among various DNN models developed for different tasks, Convolutional Neural Network
(CNN) is the most widely applied architecture for TSC problems, probably due to their robustness
and lesser training time compared to other complex architectures. A review of CNN models can
be found in Reference [21]. Two baseline CNN models are used in Reference [22], one is a fully
convolutional neural network (FCN) and the other is residual network (ResNet). CNN and ResNet are
known to be the most successful and effective among deep neural networks (DNN) so far according
to Reference [20]. Recurrent Neural Networks such as LSTM (Long Short Term Memory) have also
been used for human activity recognition from various one dimensional time series data from different
sensors or for classifying stocks [23].
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For efficient classification, raw time series should be preprocessed to reframe them into a new
representation to feed them to CNN. A raw time series needs to be converted into a set of fixed
length vectors (to be used with 1D CNN) or matrix before feeding to 2D CNN. The most popular
transformation methods are Gramian Angular Fields (GAF) [24,25] and Markov Transtion Field
(MTF) [26] which are used to encode time series signals as images for inputs to 2D CNN. Another way
of transforming one dimensional time series to two dimensional matrix is to use recurrence plot [27].
This paper investigates the performance of recurrence plot-based time series representation with two
models of DNN, namely Full Convolutional Network (FCN) and ResNet in time series classification
problems. A modification of recurrence-based representation has been proposed and the efficiency of
classification of the new representation method has been examined compared to other representative
classification algorithms from the literature by simulation experiments with 85 benchmark data sets
from UCR time series data repository. The next section contains a brief description of time series
representation and classification as the background of present work. Our proposed TSC approach
with modified recurrence plot is presented in Section 3. Section 4 describes the comparative study by
simulation experiments followed by the simulation results and analysis in Section 5. The final section
contains the summary of the work and conclusion.

2. Time Series Representation and Classification

Approaches for time series classification can also roughly be grouped into approaches based on
raw time series data and approaches based on transformed data in which the time series is converted as
a set of feature vectors. Figure 1 represents the grouping of popular time series classification approaches
after preprocessing of the data. The group of approaches on the left consists of representation of time
series as a vector of global static features, selection of the most appropriate features and classification
done by traditional machine learning models such as SVM (support vector machine), KNN (k-nearest
neighbour) or CART (decision tree). The block on the right represents the approaches for classification
with raw time series by KNN using various similarity measures. The middle group represents various
representation schemes (feature extraction) for classification by deep neural networks or other machine
learning classifiers. In this work our approach falls into this category.

Figure 1. Approach of time series data classification.

2.1. Feature-Based Representation

Feature-based approches for classification is generally faster than raw time series-based
approaches. Feature extraction from time series can be done either in time domain or in frequency
domain. Moreover features can also be derived from subsequences of a time series characterizing local
patterns or from the whole time series capable of expressing the global patterns. Features computed
from different subsections of a time series are combined to form a bag of feature framework TSBF for
classification of time series in Baydogan et al. [28].
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Some of the feature-based representations of time series convert time series into a vector of feature
values which are generally average statistical measures of time series over a window (whole time series
is divided into a sequence of fixed length or sliding windows) of ordered sequences like mean, standard
deviation, skewness, kurtosis and their successive increments [29]. Those features are unable to preserve
the dynamic information embedded in the time series. Another class of feature-based representation
consists of various transformations of time series in frequency domain such as DFT (Discrete Fourier
Transformation), SVD (Singular Value Decomposition), DCT (Direct Cosine Transformation), DWT
(Discrete Wavelet Transformation) and so forth. Timmet et al. [30] used a variety of time and frequency
domain features to represent hand tremor time series. Morchen [31] used different features from the
frequency domain for classification of different time series. Wang [32] used 13 features for classification
of univariate and multivariate time series.

In feature-based approaches for TSC, classification accuracy is highly dependent on the extracted
and selected features rather than the classification model. The choice of features to characterize a time
series is subjective and non systematic. The best feature subset is also task dependent and there is no
one particular way of choosing features for all time series classification problems. All the approaches
need to take care of preprocessing data and selecting appropriate features for efficient classification.

2.2. Time Series Classification with Deep Neural Network

Deep neural networks (DNN), known to be capable of automatic feature extraction, are now
becoming very popular and have many successful applications in the field of image processing [33].
In addition to images, sequential text and audio data can also be processed successfully with deep
neural networks. Motivated by their success, recently DNN, especially convolutional neural networks
(CNN), are increasingly used in TSC problems as time series resembles text data and audio in terms of
their sequential nature.

A multi channel CNN (MC-CNN) in which filters are applied to each channel and the features
are flattened across channels to input to a fully connected layer is proposed in Zheng et al. [34].
A multiscale convolutional neural network (MCNN) has been proposed for univariate time series
classification in which three types of representation (down sampling, skip sampling and sliding
window) for preprocessing of raw time series are used to input to the network [35]. Another research
work is based on the similar idea of exploiting simultaneously multiple branches of the same type of
representation for time series classification [36].

Wang [22] suggested two other CNNs for time series classification, the fully convolutional neural
network (FCN) without subsampling layers and ResNet (Residual Network). With the addition of
some learning techniques, these two models produce better performance than MCNN or COTE,
as is demonstrated by simulation with UCR benchmark data sets. An ensemble method of deep
networks is proposed in Reference [37] in which LSTM (Long Short Term Memory) and FCN models
are individually used and their outputs are concatenated and passed though a softmax classifier for
final decision. Although deep neural networks achieve quite good classification accuracy for time
series classification problems, high preprocessing effort and tuning of large set of hyperparameters
make them difficult to use in a real situation.

2.3. Recurrence Plot for Deep Neural Network

There are basically two main approaches for time series classification with convolutional neural
networks. In one approach, traditional CNN is modified to accept 1-dimensional time series as input
and in the other approach, time series is converted into a 2D image to be used with conventional
CNN. There are various methods for transforming time series signals into images using specific
imaging methods like Gramian Angular Fields (GAF) [24,25], Markov Transtion Field (MTF) [26] and
Recurrence Plot (RP), a tool in chaos theory to visualize time series.

Silva et al. [38] used the Campana- Keogh distance measure to estimate image similarity as
a similarity measure (CK-1) between two recurrence plots corresponding to two time series and found
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an improvement of classification accuracy compared to Euclidean distance and dynamic time warping.
Hatami et al. in Reference [39] used RP as an input to CNN for TSC problems. In a subsequent
paper [40], the authors used bag of feature concepts on recurrence plot and generated bag of recurrence
patterns for representation of time series for classification with Support Vector Machine (SVM) classifier.
Michael et al. [41] defined a cross recurrence plot (CRP) as an extension of recurrence plot to visualize
similar recurring patterns in two time series and proposed another similarity measure called the cross
recurrence plot compression distance (CRPCD), which is a modification of the work in Reference [38].
Recurrence quantification analysis (RQA) [42] was developed to quantify differences in recurrence plots
of two dynamical systems. It is used as a similarity measure in time series classification tasks in several
recent works [43–45]. It seems that there is no research considering the modification of recurrence plot
to be used with deep networks for better classification accuracy in a time series classification problem.

Recurrence plot (RP) created by Eckman [27], is a tool to visualize recurrent behaviour such as
periodicity or irregular cyclicity, a typical phenomenon in nonlinear dynamical systems that generates
the time series. It is a 2D plot for encoding 1D time series which provides a way to visualize the
recurrence behaviour of trajectory through a phase space and enables us to investigate certain aspects
of the m-dimensional phase space trajectory through a 2D representation. It can be defined by the
following equation:

Ri,j = Θ(ε− ‖ ~xi −~xj ‖) ~x(·) ∈ <m i, j = 1, · · · , n, (1)

where x is a time series of length n, ~xi and ~xj are the subsequences observed at i and j positions of
the time series, ‖ · ‖ is a norm (e.g., Euclidean norm) between the observations, ε is the recurrence
threshold. It is chosen in such a way that the noises are filtered out but the recurrence structures are
preserved. Θ is the Heaviside function. According to Equation (1), the recurrence of phase state at
time i and j are placed in the square matrix with black and white dots. Recurrence is marked by the
black dots.

CRi,j = Θ(ε− ‖ ~xi −~xj ‖) xi, xj ∈ <m i = 1, · · · , n j = 1, · · · , l. (2)

Cross recurrence plot (CRP) is an extension of RP which shows all the times when a state in one
time series occurs in the other time series. When the length of the two time series n and l respectively
differs, the CRP matrix becomes non-square.

3. Proposed TSC Approach by DNN with Modified Recurrence Plot

In this work, time series classification with deep neural network with a proposed modification of
recurrence plot for improvement of classification performance has been investigated. Based on our
literature survey we considered two architectures, fully convolutional networks (FCN) and Residual
Network (ResNet) with three types of data representation, the first one being traditional recurrence
plot and the two others being proposed modifications for time series classification.

The first step in the proposed classification approach is the recurrence plot generation. It is
a simple tool for reconstruction of nonlinear dynamical system from the observed time series based on
the concept of the embedding theorem. The embedding theorem proposed by Taken and expanded by
Sauer [46] guarantees that the phase space of time delayed vectors with sufficiently large dimension
will capture the structure of the original phase space.

A deterministic time series signal {sn(t)}Tn
t=1(n = 1, 2, . . . , N) can be embedded as a sequence of

time delay co-ordinate vector vsn(t) known as experimental attractor, with an appropriate choice of
embedding dimension m which is the minimum number of co-ordinates needed to represent the time
series with no overlapping in the state space and delay time τ which is the time lag of the time series
points taken as coordinates.

vsn(t) ≡ {sn(t), sn(t + τ), . . . , sn(t + (m− 1)τ)}, (3)
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Now for correct reconstruction of the attractor, a fine estimation of embedding parameters (m and
τ) is needed. There are a variety of heuristic techniques for estimating those parameters [47]. The most
popular method of estimating m is False Nearest Neighbour proposed by Kennel and the most popular
technique for estimating τ is Average Mutual Information.

3.1. Recurrence Plot (RP) Generation

After estimation of the embedding parameters, a time series vi can be converted to recurrence
plot. The recurrence plot is an array of dots in a n× n square, where a dot is placed at (i, j), whenever
xj is sufficiently close to xi. By choosing an embedding dimension m, the m-dimensional orbit of xi can
be constructed by the method of time delay. Then ri is chosen such that the ball of radius ri centred
at xi in Rm contains a reasonable number of other points of the orbit. Finally, a dot at each point (i, j)
for which xj is in the ball of radius ri centred at xi , is plotted and the generated image is called the
recurrence plot. The practical steps of generation are:

• Estimation of proper embedding parameters m and τ.
• Embedding of time series data with Equation (3).
• Calculation of Euclid distance to generate Di,j = dist(vi − vj).
• The square distance matrix is finally converted to grey scale image as the input to CNN

for classification.

Now the square matrix generated is symmetric across the diagonal, lower left triangular part and
upper right triangular part contains the same information.

3.2. Proposed Modified Recurrence Plot (Recurrence Plot Raw RP1)

In our previous study [48] for time series classification on 85 benchmark data sets from UCR
repository using CNN (convolutional Neural Network) similar to the CNN used in Reference [39],
it has been found that the two dimensional recurrence plot representation of input data with CNN
produces better classification accuracy compared to the classification accuracy of one dimensional raw
time series data with 1NN classifier and Euclid distance or DTW as the similarity measures for most of
the data sets. The simulation study was done with recurrence plot generation for different m and τ

values, However the following issues were noticed that need further consideration.

1. It was found that for some data sets it was possible to improve classification accuracy by tuning
the parameters m and τ while in other data sets, tuning did not work. As an explanation for
this, it is assumed that, during generation of the recurrence plot, if the change in the time series
is small, the distance values in the matrix become close to zero, resulting in poor classification
accuracy while those types of time series are better classified with the 1NN classifier and DTW
measure using the raw time series.

2. Due to the symmetric nature of the square recurrence plot transformed image across the diagonal,
only one triangular part is needed for representation of the data, the other part is redundant,
which has an effect on increasing computational burden.

3. The computational cost increases with the size of the input image, so recurrence plot image
size should be the smallest needed to preserve the characteristic pattern of the time series for
classification, so resizing of the input image is needed to reduce computational burden.

To alleviate the above points, a modified image representation of the input data is proposed
here where one triangular half of the square image retains the recurrence plot of the input data and
the other part contains information from the raw data to remove the redundancy in the input image
representation and to take care of different types of time series to be classified with similar accuracy.
Finally the image is resized and checked that it does not affect classification accuracy. The steps of
generation of the transformed image are summarized below and is shown in Figure 2.

1. Estimation of proper embedding parameters m and τ.
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2. Embedding of time series data with Equation (3).
3. Calculation of Euclid distance to generate the distance matrix Di,j = dist(vi − vj).
4. Normalization of the distance values to lie between 0.0 and 1.0 to form the square matrix A.
5. Another square matrix B is formed with the original time series values sifted by τ. Let us suppose

that the normalized original time series is represented by S consisting of 11 points. Its distribution
in a square matrix B with τ = 2 is shown in the left square of the figure.

6. The final square matrix F is designed by combining A and recurrence plot information from B in
which upper triangle represents the upper triangle (except the diagonal) of the recurrence plot
values and the lower triangle represents the lower triangle (with the diagonal) of the original
square matrix A as shown in the right square of the figure.

7. Finally, square matrix F is converted to image (RP1) and optimized to proper size as a representation
of the time series.

Figure 2. Generation of modified recurrence plot.

Recurrence Plot DTW (RP2)

In another version of time series representation, step 3 of the recurrence plot algorithm for distance
matrix calculation is modified and dynamic time warping (DTW) is used. The DTW distance matrix
DTW(i, j) by DTW (the distance between the time series pi and qj with the best alignment) is obtained
by the following Alogrithm 1.

Algorithm 1: Calculation of DTW
for i = 0 to n do

for j = 0 to l do
Cost = D(pi, qj)
DTW(i, j) = Cost + min(Euclid(i− 1, j), Euclid(i, j− 1), Euclid(i− 1, j− 1))

end for
end for
return DTW(i, j)

D(pi, qj) represents the euclid distance between pi and qj.

3.3. Classification by FCN and ResNet

In this work, fully convolutional neural network (FCN) and Residual network (ResNet) has been
used for time series classification. The basic structure of the FCN used is shown in Figure 3. It consists
of the input layer followed by two sets of convolutional layer and max-pooling layer, two fully
connected layers and output layer. The number of neurons in the first fully connected layer depends
on the input image size (input image size × feature map size) and in the second fully connected layer
is 512. We used three sizes of input images 70× 70, 100× 100, 200× 200. The detailed parameters
used after some trial and error with the model are shown in Table 1. The basic structure of the ResNet
used in this work is same as used in Reference [49] and is shown in Figure 4. The input image size for
ResNet is restricted to 50× 50 for all time series.
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Figure 3. Basic structure of the FCN used.

Figure 4. Basic structure of the ResNet used.



Mach. Learn. Knowl. Extr. 2019, 1 1108

Table 1. Parameters of FCN.

Parameters Value

Epoch 200
Drop Out 0.5

Learning rate 0.002
Activation function ReLU

Kernel size of convolution layer 3
Stride 1

Size of max pooling 2 × 2
Feature map of first convolution 64

Feature map of second convolution 32

4. Comparative Study and Simulation Experiments

The proposed approaches based on FCN and ResNet with three types of recurrence plot-based
data representation RP, RP1 and RP2 for time series classification have been evaluated with benchmark
data sets from UCR archive. A comparative study has been done to verify the classification efficiency
of the proposed approaches in comparison with some other popular and successful approaches for
TSC. Here we selected the following classification approaches for comparative study.

1. 1NN classifier with Euclid distance as the similarity measure using raw time series. This is the
simplest approach and has the lowest computational cost. However, this approach cannot be
used to compare two time series of unequal length.

2. 1NN classifier with DTW (dynamic time warping) as the similarity measure between two time
series. This is the most popular approach; it produces high classification accuracy but has high
computational cost. The algorithm is presented in the previous section.

3. 1NN classifier with longest common subsequence (LCSS) [50] as the similarity measure. LCSS is
a variant of edit distance which also matches two time series by allowing them to stretch like
DTW. It has two parameters ε ND a matching threshold. Two points from two time series are
considered to match if their distance is less than ε and δ, the warping threshold which controls the
window size for matching. It is known to be more robust to noise and outliers compared to DTW.

4. CrossTranslation error (CTE), similarity measure for two time series, was developed by one
of the authors previously for the online signature verification problem, which is based on the
delay vector representation of time series. The details can be found in Reference [51]. It is
computationally very light, although classification accuracy is poor. The calculation process is
described in short here.

• Let vsi (t) and vse(t) denote m-dimensional delay vectors generated from time series si(t)
and time series se(t) respectively according to Equation (3).

• A random vector vsi (k) is picked up from vsi (t). Let the nearest vector of vsi (k) from vse(t)
be vse(k

′). The index k′ for the nearest vector is defined as follows;

k′ ≡ arg min
t
||vsi (k)

′ − vse(t)
′||. (4)

• For the vectors vsi (k) and vse(k
′), the transition in each orbit after one step is calculated

as follows;

Vsi (k) = vsi (k + 1)− vsi (k), (5)

Vse(k
′) = vse(k

′ + 1)− vse(k
′). (6)
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• Cross Translation Error (CTE) ecte is calculated from Vsi (k) and Vse(k
′) as

ecte =
1
2
(
|Vsi (k)− V̄|
|V̄| +

|Vse(k
′)− V̄|
|V̄| ), (7)

where V̄ denotes average vector between Vsi (k) and Vse(k
′).

• ecte is calculated for L times for a different selection of random vector vsi (k) and the median
of ei

cte (i = 1, 2, . . . , L) is calculated as

M(ecte) = Median(e1
cte, . . . , eL

cte). (8)

The final cross translation error Ecte is calculated by taking the average, repeating the
procedure Q times to suppress the statistical error generated by random sampling in the
step (3).

Ecte =
1
Q

Q

∑
i=1

Mi(ecte). (9)

5. Time series bag of features (TSBF) is an an extension of Time series forest (TSF) with multiple
stages. The first stage generates a subseries classification problem and the second stage forms class
probability estimates for each subseries. The third stage constructs a bag of features from these
probabilities and finally a random forest classifier is built on the bag of feature representation.
The details can be found in Reference [28].

6. We also used one dimensional FCN ( Convolutional Neural Network) and ResNet and used raw
time series data for classification to compare the effect of 2D recurrence plot approach for time
series classification compared to 1D raw time series data. Due to limitation of computational
resources while implementing ResNet, we compressed the time series for recurrence map
generation, we used the same compressed time series for one dimensional version of FCN
and ResNet for fair comparison.

4.1. Dataset Used

The simulation experiments were done with the benchmark datasets from UCR/UEA time series
classification archive [52]. We used 85 data sets, details of which are presented on the archive website.
The data sets contain time series of various characteristics, length ranges from 24 to 2709, number
of classes varies from 2 to 60. Some data sets have a very small training set size. The data sets are
collected from different application domains and can be divided into seven categories as Image Outline
(29), Sensor Readings (16), Motion Capture (14), Spectrographs (7), ECG measurements (7) Electric
device profiles (6) and Simulated Data (6), the numbers in bracket represents the numbers of data sets
in the said category.

4.2. Simulation Experiments

Following simulation experiments for time series classification with benchmark data sets, training
and test sets were used, as is mentioned in the original data set with 10 fold cross validation for
each classifier. For convolutional neural network CNN, some trial and error experiments were
done for appropriate hyper parameter setting and the hyper parameters are set for the best results
and are represented in the next section. For ResNet, due to time limitations, we used previously
reported parameters.

• FCN classifier with three types of recurrence plot representation (RP, the original one, RP2,
in which DTW is used for distance calculation for recurrence plot, RP1, our proposed modified
recurrence plot in which raw data is also combined with the recurrence plot)

• The above experiments are repeated with ResNet with the same three types of recurrence plots.
• Experiments were done with Nearest Neighbor classifier with Euclid and DTW using the original

raw time series.
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• 1NN classifier with edit distance-based approaches, LCSS (longest common subsequence),
TWED (time warped edit distance) and MSM (Move-Split-Merge), are used for classification using
the original raw time series.

• Cross transtational error (CTE) based on the concept of multidimensional delay vector
representation with 1NN classifier.

• A feature-based approach TSBF with random forest classifier is used.

We attempted to implement ensemble-based algorithms on the data sets but due to lack of proper
computing resources, we restricted our comparative study to non-ensemble algorithms.

5. Simulation Results and Analysis

Table 2 represents classification accuracies of 85 data sets with different classification approaches.
In all tables, in every row, the highest value is presented in bold which represents the best classification
accuracy obtained for the particular data set. Column 1 represents data sets, column 2 represents
classification accuracies by FCN with traditional recurrence plot similar in the work presented in
Reference [39]. Columns 3, 4 and 5 represent classification accuracy values for FCN with recurrence
plot RP2, FCN with proposed modified recurrence plot RP1 and ResNet with RP1 respectively. We
found that RP1 produces better classification accuracies than RP and RP2, so we did not present (RP2
+ ResNet) results. The rest of the columns represent classification accuracies for Euclid, DTW, LCSS,
CTE and TSBF. We did not include the results of TWED and MSM as those have poor classification
accuracies compared to the methods presented in the table. It is found that no algorithm is best for all
the data sets. Though TSBF produces the best classification accuracy for most of the data sets, average
classification accuracy over 85 data sets is not the highest among all the methods. Our proposed
method (RP1 + ResNet) achieves the highest average classification accuracy over 85 data sets. RP2
uses DTW for distance calculation, which increased computational cost as well as accuracy for some of
the data sets, as a whole the increase in classification accuracy is not so significant compared to the
increase in computational cost. However, our proposed modification of recurrence plot RP1 seems to
have the best effect on the increase of classification accuracy. This modification does not increase the
computational cost. From this table it can be assumed that TSBF, RP1+FCN and RP1 + ResNet are the
effective classifiers.

Table 3 represents the comparison of classification accuracies of different one dimensional deep
networks with raw time series input and two dimensional deep network-based algorithms with
recurrence plot input. We excluded TSBF here to focus on the results of recurrence plot-based methods.
Column 4 and column 6 represent the results of 1D convolutional neural network and 1D ResNet,
respectively. It is found that the results of two dimensional deep networks with recurrence plot input
are far better than one dimensional deep networks with raw time series input for most of the data
sets. From this table it is also found that the classification accuracy of column 7 (RP1 + ResNet) is the
highest for the most of the data sets. It can be concluded that ResNet with our proposed modified
recurrence plot input produces the best average classification accuracy and the highest classification
accuracy for most of the data sets. Also, the variability of the classification accuracies among different
data sets is the lowest (same as DTW).
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Table 2. Classification Accuracies with Different Algorithms.

Datasets RP + FCN RP2 + FCN RP1+ FCN RP1 + ResNet EUCLID DTW LCSS CTE TSBF

50words 0.657 0.679 0.675 0.635 0.631 0.690 0.635 0.301 0.776
Adiac 0.711 0.627 0.742 0.652 0.611 0.604 0.028 0.412 0.291

ArrowHead 0.629 0.600 0.640 0.829 0.800 0.703 0.423 0.594 0.841
Beef 0.867 0.867 0.867 0.800 0.667 0.633 0.333 0.567 0.850

BeetleFly 0.750 0.750 1.000 0.950 0.750 0.700 0.800 0.900 0.682
BirdChicken 0.800 0.800 0.850 0.750 0.550 0.750 0.650 0.900 0.975

Car 0.883 0.850 0.883 0.850 0.733 0.733 0.433 0.600 0.917
CBF 0.999 0.999 0.998 0.999 0.852 0.997 0.943 0.689 0.787

ChlorineConcentration 0.473 0.484 0.484 0.740 0.650 0.648 0.386 0.656 0.969
CinC_ECG_torso 0.990 0.988 0.987 0.949 0.897 0.651 0.925 0.564 0.879

Coffee 1.000 1.000 1.000 1.000 1.000 1.000 0.536 0.857 0.676
Computers 0.588 0.600 0.604 0.744 0.576 0.700 0.524 0.556 0.853
Cricket_X 0.687 0.677 0.736 0.708 0.577 0.754 0.651 0.379 0.758
Cricket_Y 0.703 0.703 0.715 0.669 0.567 0.744 0.649 0.372 0.600
Cricket_Z 0.692 0.685 0.726 0.690 0.587 0.754 0.656 0.354 0.901

DiatomSizeReduction 0.974 0.971 0.977 0.990 0.935 0.967 0.301 0.856 0.702
DistalPhalanxOutlineAgeGroup 0.628 0.620 0.650 0.840 0.783 0.792 0.265 0.735 0.975

DistalPhalanxOutlineCorrect 0.812 0.797 0.813 0.810 0.752 0.768 0.512 0.673 0.495
DistalPhalanxTW 0.685 0.663 0.783 0.785 0.728 0.710 0.075 0.730 0.960

Earthquakes 0.733 0.739 0.755 0.776 0.674 0.742 0.733 0.646 0.969
ECG200 0.950 0.960 0.940 0.910 0.880 0.770 0.880 0.800 0.930

ECG5000 0.753 0.705 0.734 0.941 0.925 0.924 0.933 0.913 0.618
ECGFiveDays 0.987 0.973 0.981 0.972 0.797 0.768 0.943 0.727 0.692

ElectricDevices 0.493 0.476 0.559 0.691 0.551 0.601 0.573 0.465 0.940
FaceAll 0.462 0.459 0.463 0.801 0.714 0.808 0.751 0.504 0.860

FaceFour 0.977 0.955 0.955 0.966 0.784 0.830 0.841 0.455 0.680
FacesUCR 0.886 0.886 0.919 0.868 0.769 0.905 0.872 0.497 0.745

FISH 0.914 0.880 0.931 0.880 0.783 0.823 0.149 0.406 0.514
FordA 0.908 0.882 0.914 0.846 0.659 0.562 0.696 0.617 0.793
FordB 0.809 0.760 0.855 0.749 0.558 0.594 0.618 0.552 0.782

Gun_Point 0.967 0.967 0.973 0.980 0.913 0.907 0.733 0.913 0.881
Ham 0.733 0.714 0.743 0.743 0.600 0.467 0.533 0.590 0.517

HandOutlines 0.867 0.876 0.871 0.867 0.801 0.798 0.699 0.617 0.677
Haptics 0.458 0.412 0.484 0.471 0.370 0.377 0.305 0.315 0.813
Herring 0.656 0.641 0.656 0.641 0.516 0.531 0.594 0.563 0.804

InlineSkate 0.382 0.355 0.393 0.356 0.342 0.384 0.220 0.291 0.825
InsectWingbeatSound 0.639 0.638 0.658 0.564 0.562 0.355 0.570 0.145 0.860
ItalyPowerDemand 0.974 0.964 0.976 0.972 0.955 0.950 0.801 0.878 0.709

LargeKitchenAppliances 0.552 0.528 0.571 0.653 0.493 0.795 0.533 0.365 0.721
Lighting2 0.820 0.770 0.836 0.902 0.754 0.869 0.787 0.754 0.986
Lighting7 0.740 0.726 0.767 0.658 0.575 0.726 0.575 0.521 0.993
MALLAT 0.949 0.951 0.953 0.918 0.914 0.934 0.541 0.609 0.780

Meat 0.733 0.750 0.933 0.983 0.933 0.933 0.333 0.917 0.668
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Table 2. Cont.

Datasets RP + FCN RP2 + FCN RP1+ FCN RP1 + ResNet EUCLID DTW LCSS CTE TSBF

MedicalImages 0.634 0.616 0.712 0.751 0.684 0.737 0.664 0.663 0.858
MiddlePhalanxOutlineAgeGroup 0.545 0.540 0.523 0.765 0.740 0.750 0.270 0.555 0.400

MiddlePhalanxOutlineCorrect 0.795 0.800 0.813 0.792 0.753 0.648 0.353 0.605 0.858
MiddlePhalanxTW 0.569 0.539 0.564 0.599 0.561 0.584 0.404 0.581 0.688

MoteStrain 0.863 0.857 0.887 0.844 0.879 0.835 0.859 0.908 0.535
NonInvasiveFatalECG_Thorax1 0.791 0.785 0.860 0.915 0.829 0.791 0.141 0.240 0.828
NonInvasiveFatalECG_Thorax2 0.804 0.796 0.864 0.931 0.880 0.865 0.253 0.294 0.770

OliveOil 0.800 0.733 0.700 0.433 0.867 0.833 0.167 0.833 0.844
OSULeaf 0.636 0.616 0.661 0.674 0.521 0.591 0.541 0.463 0.979

PhalangesOutlinesCorrect 0.834 0.818 0.841 0.831 0.761 0.728 0.640 0.674 0.801
Phoneme 0.071 0.066 0.083 0.190 0.109 0.228 0.140 0.195 0.714

Plane 0.981 0.971 0.981 1.000 0.962 1.000 0.800 0.990 0.762
ProximalPhalanxOutlineAgeGroup 0.693 0.668 0.644 0.844 0.785 0.805 0.429 0.820 0.770

ProximalPhalanxOutlineCorrect 0.904 0.866 0.911 0.863 0.808 0.784 0.684 0.756 0.754
ProximalPhalanxTW 0.688 0.665 0.755 0.793 0.707 0.737 0.450 0.710 0.936
RefrigerationDevices 0.483 0.477 0.475 0.523 0.395 0.464 0.424 0.432 0.683

ScreenType 0.376 0.363 0.392 0.456 0.360 0.397 0.360 0.413 0.832
ShapeletSim 0.644 0.800 0.667 0.956 0.539 0.650 0.633 0.811 0.726

ShapesAll 0.430 0.420 0.470 0.782 0.752 0.768 0.497 0.372 0.704
SmallKitchenAppliances 0.541 0.515 0.547 0.587 0.344 0.643 0.299 0.491 0.875
SonyAIBORobotSurface 0.882 0.870 0.884 0.940 0.696 0.725 0.712 0.714 0.680

SonyAIBORobotSurfaceII 0.845 0.848 0.861 0.866 0.859 0.831 0.832 0.780 0.888
StarLightCurves 0.974 0.964 0.976 0.972 0.849 0.907 0.827 0.903 0.721

Strawberry 0.887 0.886 0.914 0.954 0.938 0.940 0.408 0.923 0.908
SwedishLeaf 0.835 0.834 0.894 0.920 0.789 0.792 0.296 0.653 0.823

Symbols 0.897 0.889 0.931 0.921 0.899 0.950 0.771 0.861 0.675
synthetic_control 0.490 0.473 0.723 0.997 0.880 0.993 0.940 0.673 0.770
ToeSegmentation1 0.596 0.601 0.671 0.855 0.680 0.772 0.711 0.706 0.952
ToeSegmentation2 0.723 0.708 0.777 0.915 0.808 0.838 0.854 0.846 0.982

Trace 0.990 1.000 1.000 1.000 0.760 1.000 0.690 0.820 0.778
TwoLeadECG 0.904 0.483 1.000 1.000 0.907 1.000 0.993 0.370 0.786
Two_Patterns 0.492 0.905 1.000 0.983 0.747 0.904 0.516 0.887 0.940

UWaveGestureLibraryAll 0.953 0.635 0.971 0.794 0.739 0.727 0.658 0.397 0.775
uWaveGestureLibrary_X 0.654 0.645 0.824 0.700 0.662 0.634 0.586 0.326 0.607
uWaveGestureLibrary_Y 0.661 0.647 0.752 0.730 0.650 0.658 0.616 0.380 0.862
uWaveGestureLibrary_Z 0.664 0.951 0.972 0.944 0.948 0.892 0.948 0.279 0.654

wafer 0.994 0.994 0.997 0.998 0.995 0.980 0.995 0.970 0.495
Wine 0.593 0.704 0.648 0.815 0.611 0.574 0.500 0.704 0.786

WordsSynonyms 0.599 0.594 0.607 0.611 0.618 0.649 0.610 0.295 0.770
Worms 0.448 0.459 0.541 0.530 0.365 0.464 0.370 0.525 0.985

WormsTwoClass 0.641 0.652 0.696 0.707 0.586 0.663 0.580 0.702 0.994
yoga 0.863 0.865 0.869 0.847 0.830 0.836 0.597 0.650 0.783

Average 0.736 0.728 0.774 0.800 0.712 0.744 0.576 611 0.783
Win 6 6 22 22 2 7 0 1 35
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Table 3. Classification Accuracies for Deep Network based Classifiers (TSBF excluded).

Datasets Rp + FCN RP2 + FCN 1D FCN RP1 + FCN 1D ResNet RP1+ Resnet EUCLID DTW

50words 0.657 0.679 0.613 0.675 0.652 0.635 0.631 0.690
Adiac 0.711 0.627 0.671 0.742 0.644 0.652 0.611 0.604

ArrowHead 0.629 0.600 0.443 0.640 0.713 0.829 0.800 .703
Beef 0.867 0.867 0.703 0.867 0.700 0.800 0.667 0.633

BeetleFly 0.750 0.750 0.900 1.000 0.710 0.950 0.750 0.700
BirdChicken 0.800 0.800 0.705 0.850 0.750 0.750 0.550 0.750

Car 0.883 0.850 0.768 0.883 0.713 0.850 0.733 0.733
CBF 0.999 0.999 0.963 0.998 0.846 0.999 0.852 0.997

ChlorineConcentration 0.473 0.484 0.414 0.484 0.740 0.740 0.650 0.648
CinC_ECG_torso 0.990 0.988 0.940 0.987 0.835 0.949 0.897 0.651

Coffee 1.000 1.000 1.000 1.000 0.989 1.000 1.000 1.000
Computers 0.588 0.600 0.541 0.604 0.584 0.744 0.576 0.700
Cricket_X 0.687 0.677 0.669 0.736 0.636 0.708 0.577 0.754
Cricket_Y 0.703 0.703 0.659 0.715 0.601 0.669 0.567 0.744
Cricket_Z 0.692 0.685 0.686 0.726 0.645 0.690 0.587 0.754

DiatomSizeReduction 0.974 0.971 0.971 0.977 0.878 0.990 0.935 0.967
DistalPhalanxOutlineAgeGroup 0.628 0.620 0.584 0.650 0.779 0.840 0.783 0.792

DistalPhalanxOutlineCorrect 0.812 0.797 0.794 0.813 0.725 0.810 0.752 0.768
DistalPhalanxTW 0.685 0.663 0.769 0.783 0.720 0.785 0.728 0.710

Earthquakes 0.733 0.739 0.608 0.755 0.779 0.776 0.674 0.742
ECG200 0.950 0.960 0.872 0.940 0.887 0.910 0.880 0.770
ECG5000 0.753 0.705 0.588 0.734 0.928 0.941 0.925 0.924

ECGFiveDays 0.987 0.973 0.968 0.981 0.828 0.972 0.797 0.768
ElectricDevices 0.493 0.476 0.387 0.559 0.657 0.691 0.551 0.601

FaceAll 0.462 0.459 0.216 0.463 0.739 0.801 0.714 0.808
FaceFour 0.977 0.955 0.865 0.955 0.765 0.966 0.784 0.830
FacesUCR 0.886 0.886 0.845 0.919 0.802 0.868 0.769 0.905

FISH 0.914 0.880 0.877 0.931 0.818 0.880 0.783 0.823
FordA 0.908 0.882 0.836 0.914 0.753 0.846 0.659 0.562
FordB 0.809 0.760 0.772 0.855 0.630 0.749 0.558 0.594

Gun_Point 0.967 0.967 0.883 0.973 0.901 0.980 0.913 0.907
Ham 0.733 0.714 0.685 0.743 0.741 0.743 0.600 0.467

HandOutlines 0.867 0.876 0.853 0.871 0.808 0.867 0.801 0.798
Haptics 0.458 0.412 0.427 0.484 0.399 0.471 0.370 0.377
Herring 0.656 0.641 0.586 0.656 0.552 0.641 0.516 0.531

InlineSkate 0.382 0.355 0.303 0.393 0.277 0.356 0.342 0.384
InsectWingbeatSound 0.639 0.638 0.661 0.658 0.528 0.564 0.562 0.355
ItalyPowerDemand 0.974 0.964 0.972 0.976 0.924 0.972 0.955 0.950

LargeKitchenAppliances 0.552 0.528 0.462 0.571 0.633 0.653 0.493 0.795
Lighting2 0.820 0.770 0.726 0.836 0.716 0.902 0.754 0.869
Lighting7 0.740 0.726 0.716 0.767 0.575 0.658 0.575 0.726
MALLAT 0.949 0.951 0.951 0.953 0.837 0.918 0.914 0.934

Meat 0.733 0.750 0.892 0.933 0.763 0.983 0.933 0.933
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Table 3. Cont.

Datasets Rp + FCN RP2 + FCN 1D FCN RP1 + FCN 1D ResNet RP1+ Resnet EUCLID DTW

MedicalImages 0.634 0.616 0.551 0.712 0.700 0.751 0.684 0.737
MiddlePhalanxOutlineAgeGroup 0.545 0.540 0.461 0.523 0.731 0.765 0.740 0.750

MiddlePhalanxOutlineCorrect 0.795 0.800 0.620 0.813 0.727 0.792 0.753 0.648
MiddlePhalanxTW 0.569 0.539 0.595 0.564 0.576 0.599 0.561 0.584

MoteStrain 0.863 0.857 0.871 0.887 0.808 0.844 0.879 0.835
NonInvasiveFatalECG_Thorax1 0.791 0.785 0.814 0.860 0.900 0.915 0.829 0.791
NonInvasiveFatalECG_Thorax2 0.804 0.796 0.833 0.864 0.928 0.931 0.880 0.865

OliveOil 0.800 0.733 0.727 0.700 0.340 0.433 0.867 0.833
OSULeaf 0.636 0.616 0.570 0.661 0.559 0.674 0.521 0.591

PhalangesOutlinesCorrect 0.834 0.818 0.789 0.841 0.813 0.831 0.761 0.728
Phoneme 0.071 0.066 0.055 0.083 0.137 0.190 0.109 0.228

Plane 0.981 0.971 0.978 0.981 0.960 1.000 0.962 1.000
ProximalPhalanxOutlineAgeGroup 0.693 0.668 0.547 0.644 0.807 0.844 0.785 0.805

ProximalPhalanxOutlineCorrect 0.904 0.866 0.820 0.911 0.885 0.863 0.808 0.784
ProximalPhalanxTW 0.688 0.665 0.746 0.755 0.759 0.793 0.707 0.737
RefrigerationDevices 0.483 0.477 0.336 0.475 0.443 0.523 0.395 0.464

ScreenType 0.376 0.363 0.360 0.392 0.374 0.456 0.360 0.397
ShapeletSim 0.644 0.800 0.606 0.667 0.779 0.956 0.539 0.650

ShapesAll 0.430 0.420 0.349 0.470 0.715 0.782 0.752 0.768
SmallKitchenAppliances 0.541 0.515 0.462 0.547 0.655 0.587 0.344 0.643
SonyAIBORobotSurface 0.882 0.870 0.856 0.884 0.776 0.940 0.696 0.725

SonyAIBORobotSurfaceII 0.845 0.848 0.834 0.861 0.718 0.866 0.859 0.831
StarLightCurves 0.974 0.964 0.954 0.976 0.963 0.972 0.849 0.907

Strawberry 0.887 0.886 0.838 0.914 0.947 0.954 0.938 0.940
SwedishLeaf 0.835 0.834 0.838 0.894 0.875 0.920 0.789 0.792

Symbols 0.897 0.889 0.896 0.931 0.697 0.921 0.899 0.950
synthetic_control 0.490 0.473 0.501 0.723 0.978 0.997 0.880 0.993
ToeSegmentation1 0.596 0.601 0.536 0.671 0.746 0.855 0.680 0.772
ToeSegmentation2 0.723 0.708 0.666 0.777 0.722 0.915 0.808 0.838

Trace 0.990 1.000 0.985 1.000 1.000 1.000 0.760 1.000
TwoLeadECG 0.904 0.483 1.000 1.000 0.999 1.000 0.907 1.000
Two_Patterns 0.492 0.905 0.888 1.000 0.806 0.983 0.747 0.904

UWaveGestureLibraryAll 0.953 0.635 0.820 0.971 0.766 0.794 0.739 0.727
uWaveGestureLibrary_X 0.654 0.645 0.714 0.824 0.651 0.700 0.662 0.634
uWaveGestureLibrary_Y 0.661 0.647 0.734 0.752 0.697 0.730 0.650 0.658
uWaveGestureLibrary_Z 0.664 0.951 0.966 0.972 0.918 0.944 0.948 0.892

wafer 0.994 0.994 0.990 0.997 0.990 0.998 0.995 0.980
Wine 0.593 0.704 0.596 0.648 0.563 0.815 0.611 0.574

WordsSynonyms 0.599 0.594 0.513 0.607 0.505 0.611 0.618 0.649
Worms 0.448 0.459 0.418 0.541 0.423 0.530 0.365 0.464

WormsTwoClass 0.641 0.652 0.598 0.696 0.630 0.707 0.586 0.663
yoga 0.863 0.865 0.816 0.869 0.806 0.847 0.830 0.836

average 0.736 0.728 0.703 0.774 0.728 0.800 0.712 0.744
variance 0.034 0.035 0.042 0.033 0.028 0.027 0.030 0.027

wins 8 6 3 32 4 39 2 13
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Table 4 represents the comparison of the classification performance of the our proposed
classification algorithm, ResNet with modified recurrence plot RP1 as input (RP1 + ResNet), the best
among all recurrence plot-based algorithms and TSBF, the best classifier among all others (where
recurrence plot is not used) considered in this work. It is clearly seen that our proposed method is
better in classification performance for greater number of data sets compared to TSBF.

Table 4. Comparison of Proposed Classifier and TSBF.

Datasets RP1 + ResNet TSBF Datasets RP1 + ResNet TSBF

50words 0.635 0.776 MiddlePhalanxOutlineAgeGroup 0.765 0.400
Adiac 0.652 0.291 MiddlePhalanxOutlineCorrect 0.792 0.858

ArrowHead 0.829 0.841 MiddlePhalanxTW 0.599 0.688
Beef 0.800 0.850 MoteStrain 0.844 0.535

BeetleFly 0.950 0.682 NonInvasiveFatalECG_Thorax1 0.915 0.828
BirdChicken 0.750 0.975 NonInvasiveFatalECG_Thorax1 0.915 0.828

Car 0.850 0.917 OliveOil 0.433 0.844
CBF 0.999 0.787 OSULeaf 0.674 0.979

ChlorineConcentration 0.740 0.969 PhalangesOutlinesCorrect 0.831 0.801
CinC_ECG_torso 0.949 0.879 Phoneme 0.190 0.714

Coffee 1.000 0.676 Plane 1.000 0.762
Computers 0.744 0.853 ProximalPhalanxOutlineAgeGroup 0.844 0.770
Cricket_X 0.708 0.758 ProximalPhalanxOutlineCorrect 0.863 0.754
Cricket_Y 0.669 0.600 ProximalPhalanxTW 0.793 0.936
Cricket_Z 0.690 0.901 RefrigerationDevices 0.523 0.683

DiatomSizeReduction 0.990 0.702 ScreenType 0.456 0.832
DistalPhalanxOutlineAgeGroup 0.840 0.975 ShapeletSim 0.956 0.726

DistalPhalanxOutlineCorrect 0.810 0.495 ShapesAll 0.782 0.704
DistalPhalanxTW 0.785 0.960 SmallKitchenAppliances 0.587 0.875

Earthquakes 0.776 0.969 SonyAIBORobotSurface 0.940 0.680
ECG200 0.910 0.930 SonyAIBORobotSurfaceII 0.866 0.888
ECG5000 0.941 0.618 StarLightCurves 0.972 0.721

ECGFiveDays 0.972 0.692 Strawberry 0.954 0.908
ElectricDevices 0.691 0.940 SwedishLeaf 0.920 0.823

FaceAll 0.801 0.860 Symbols 0.921 0.675
FaceFour 0.966 0.680 synthetic_control 0.997 0.770
FacesUCR 0.868 0.745 ToeSegmentation1 0.855 0.952

FISH 0.880 0.514 ToeSegmentation2 0.915 0.982
FordA 0.846 0.793 Trace 1.000 0.778
FordB 0.749 0.782 TwoLeadECG 1.000 0.786

Gun_Point 0.980 0.881 Two_Patterns 0.983 0.940
Ham 0.743 0.517 UWaveGestureLibraryAll 0.794 0.775

HandOutlines 0.867 0.677 uWaveGestureLibrary_X 0.700 0.607
Haptics 0.471 0.813 uWaveGestureLibrary_Y 0.730 0.862
Herring 0.641 0.804 uWaveGestureLibrary_Z 0.944 0.654

InlineSkate 0.356 0.825 wafer 0.998 0.495
InsectWingbeatSound 0.564 0.860 Wine 0.815 0.786
ItalyPowerDemand 0.972 0.709 WordsSynonyms 0.611 0.770

LargeKitchenAppliances 0.653 0.721 Worms 0.530 0.985
Lighting2 0.902 0.986 WormsTwoClass 0.707 0.994
Lighting7 0.658 0.993 yoga 0.847 0.783
MALLAT 0.918 0.780 average 0.800 0.783

Meat 0.983 0.668 variance 0.027 0.020
MedicalImages 0.751 0.858 wins 45 40

Table 5 displays the average classification accuracies for each category of time series with all the
algorithms. It is clear from Table 5 that ResNet with our proposed modified recurrence plot RP1 is the
best algorithm for four categories of time series data among seven categories, one category (Spectro)
has the highest classification accuracy with (RP1 +FCN). If we choose only the algorithm (RP1+ResNet)
for comparison, it will produce highest classification accuracy for five categories among a total of
seven categories because, for the Spectro category, this algorithm has the second best value. Only for
two categories, Device and Motion, did TSBF outperform our proposed method. It is also found that
ResNet with RP1 has the best performance among all other recurrence plot-based methods (as noted in
the average classification accuracy of 85 data sets in the table). This is also evident in Figure 5, in which
recurrence plot-based methods are compared where recurrence plot denotes RP, recurrence plot with
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DTW represents RP2 and recurrence plot raw represents RP1. It is seen from Figure 5, that (RP1 +
ResNet) has the best classification accuracy for 5 categories and is not so significantly different from
(RP1 + FCN) in the other two categories.

Table 5. Average classfication accuracies according to category.

Category RP + FCN RP2 + FCN RP1+ FCN RP1 + ResNet EUCLID DTW LCSS CTE TSBF

Image 0.736 0.722 0.763 0.802 0.728 0.750 0.510 0.614 0.751
Spectro 0.802 0.808 0.829 0.818 0.802 0.769 0.401 0.770 0.750
Sensor 0.809 0.798 0.821 0.823 0.729 0.741 0.688 0.678 0.802
Device 0.506 0.493 0.524 0.609 0.453 0.600 0.452 0.454 0.817
Motion 0.659 0.650 0.731 0.718 0.628 0.683 0.610 0.485 0.828

EGG 0.865 0.784 0.896 0.945 0.870 0.853 0.691 0.557 0.771
Simulated 0.715 0.826 0.868 0.970 0.787 0.896 0.715 0.734 0.801

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

Image Spectro Sensor Device Motion EGG Simulated

Classification accuracy of Recurrence plot based method

Recurrence plot + FCN Recurrence plot DTW + FCN Recurrence plot raw FCN Recurrence plot raw Resnet

Figure 5. Category-based classification accuracies.

For testing the statistical significance between different approaches, we followed the methodology
described in Reference [53]. Critical difference (CD) plots of different algorithms for individual 85 data
sets and categorized into 7 group of data sets respectively are presented in Figures 6 and 7 respectively
in which recurrence plot denotes RP, recurrence plot with DTW represents RP2 and recurrence plot raw
represents RP1. In both the figures, it is seen that our proposed approach (RP1 + ResNet) ranks higher
than other approaches. From Figure 6, it is seen that the algorithm (RP1 + ResNet) has the highest rank
and there is no significant difference between the algorithms (RP1 + ResNet) and (RP1 + FCN), which
are significantly better than other algorithms. From Figure 7 the same conclusion can be drawn.

Figure 6. Critical difference plot for different classifiers (individual 85 data sets).
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Figure 7. Critical difference plot for different classifiers ( 7 categories of data sets).

For consideration of computational cost, it is difficult to compare all the algorithms by implementing
all of them in the same platform. It is needless to say that the parameter search of deep neural network
architectures takes time and our reported results might not constitute the most optimized architecture.
On the other hand, for NN-DTW, warping window size has a considerable effect on the final accuracy and
we did not put significant effort into searching for the best warping window. As a rough comparison, our
proposed representation technique based on recurrence plot and deep network considerably improved
classification accuracy without incurring additional computational cost compared to other popular non
ensemble and deep network-based algorithms.

6. Conclusions

In this paper, the effect of time series data representation methods for time series classification
problems in terms of increased classification accuracy with affordable computational cost and
intrepretability has been studied. Our study focussed mainly on recurrence plot-based representation
of time series for use with deep network-based classifiers. Because there are several deep network
architectures and, from the reported results, it is found that CNN and ResNet perform better than others
in time series classification problems, fully convolutional network (FCN) and residual network (ResNet)
have been used in our work. A new modified recurrence plot representation of time series data set
has been proposed which judiciously includes information from raw time series in the recurrence plot
framework without much additional computational cost for improvement of classification accuracy.

The use of recurrence plot as the input representation form increases the interpretability of the
classification method compared to the raw time series input. Deep networks are known to be black
boxes which inherently extract the features of the time series for grouping. Although it is convenient,
this process is invisible to users. Recurrence plots are more visually interpretable than raw time series.
Humans can deploy the results of classification by deep network later to establish a correlation between
the structure of the recurrence plot with the categories of time series. Interpretability of classification
process can also be increased by extracting explicit features from the time series and then classifying
the time series by those features which will allow users to relate the classes with the characteristics of
the time series. However, the proper selection of a feature set is important for efficient classification
and there is no general way to do that.

In our work, the modification of recurrence plot by mixing of information from raw time series
data with the recurrence plot allows us to consider static and dynamic features of the time series
simultaneously and extends the use of recurrence plot to a wide variety of time series data. Due to
computational resource limitations, we optimized the size of recurrence plot in such a way that the
computational limitations could be overcome without much degradation of classification accuracy
and we selected 50 × 50 image size for input to ResNet for all time series irrespective of their original
length according to our computational environment. The computational cost of deep network based
approaches with original time series input increases with the increase of the length of time series as
the network complexity (number of parameters) increases which in turn increases the training time.
Our approach is an attempt to optimize computational burden, classification accuracy with general
applicability to different types of time series and also to add interpretability. Of course increasing the
size of recurrence plot might increase the classification accuracy for some time series. We did not tuned
the size for all the time series individually at this stage. There is a scope of further improvement of
classification accuracy at the cost of more computation time.
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A comparative study has been done with some of the state-of-the art algorithms and it was
found that our proposed approach can produce better classification accuracy for most of the data sets.
For comparison, we did not include ensemble algorithms. Although ensemble algorithms produce
better classification accuracy, their computational cost is too high to find out the proper combination.
It has been found from the comparative study that our proposed algorithm performs better than
popular traditional non-ensemble algorithms for time series datasets for most of the domains available
from the benchmark data set repository.
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