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Abstract: The understanding of water quality and its underlying processes is important for the
protection of aquatic environments. With the rare opportunity of access to a domain expert, an
explainable AI (XAI) framework is proposed that is applicable to multivariate time series. The
XAI provides explanations that are interpretable by domain experts. In three steps, it combines a
data-driven choice of a distance measure with supervised decision trees guided by projection-based
clustering. The multivariate time series consists of water quality measurements, including nitrate,
electrical conductivity, and twelve other environmental parameters. The relationships between water
quality and the environmental parameters are investigated by identifying similar days within a
cluster and dissimilar days between clusters. The framework, called DDS-XAI, does not depend
on prior knowledge about data structure, and its explanations are tendentially contrastive. The
relationships in the data can be visualized by a topographic map representing high-dimensional
structures. Two state of the art XAIs called eUD3.5 and iterative mistake minimization (IMM) were
unable to provide meaningful and relevant explanations from the three multivariate time series data.
The DDS-XAI framework can be swiftly applied to new data. Open-source code in R for all steps of
the XAI framework is provided and the steps are structured application-oriented.

Keywords: explainable AI; cluster analysis; structures in data; machine learning system; high-
dimensional data visualization; decision trees

1. Introduction

Human activities modify the global nitrogen cycle, particularly through agriculture.
These practices have unintended consequences; for example, terrestrial nitrate losses to
streams and estuaries can impact aquatic life [1]. A greater understanding of the variability
in water quality and its underlying processes can improve the evaluation of the state of
water bodies and lead to better recommendations for appropriate and efficient management
practices [2].

Accordingly, the objective here is to describe the water quality in terms of nitrate
(NO3) and electrical conductivity (EC) in the Schwingbach catchment (Germany) using
environmental variables typically related to chemical water quality. Electrical conductivity
is a measure that reflects water quality as a whole because it indicates the number of ions
dissolved in the water. NO3 in water bodies is partially responsible for the phenomenon
of eutrophication [3]. Eutrophication occurs when an excess of nutrients (including NO3)
leads to the uncontrollable growth of aquatic plant life, followed by the depletion of the
dissolved oxygen [3,4]. For decades, water quality has mainly been measured through
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manual grab sampling of water samples and subsequent chemical analysis in the laboratory.
Due to limited resources, high-resolution measurements in the order of days, hours, or
even minutes were not available for a long time. With the advancement of deployable, in
situ measuring techniques, such as UV spectrometry, a new era of field monitoring has
been established [5]. However, we still lack reproducible open-source code based method-
ological approaches that can analyze the resulting large datasets and are simultaneously
interpretable by domain experts [6,7].

Miller et al., 2017 argued that most AI researchers are building explainable AIs (XAIs)
for themselves [8] rather than for the intended domain expert. Hence, resulting rules
are often not straightforward to understand or even meaningful for the domain expert.
Therefore, we have focused on deriving simple but comprehensible rules for domain
experts i.e., understandable for non-AI experts outside the XAI community. Thus, our DDS-
XAI framework is introduced using a dataset from the Schwingbach catchment for which a
domain expert will interpret the explanations that the XAI provides. In consequence, the
proposed XAI framework’s goal is to provide meaningful and relevant explanations to a
domain expert based on the given data. An essential property of explanations should be
that they are contrastive [9]. This means that a domain expert would not only ask why
an event happened but also why that event happened rather than an alternative [9]. It
follows that interesting features describing water bodies should be distinguishable for
the explanations describing these water bodies to be relevant. This work proposed using
class-wise mirrored-density plots (MD plots) [10] to investigate if generated explanations
are tendentially contrastive in interesting features (see Section 2.3.3 for details).

This work demonstrates an XAI concept relying on distance-based data structures
(DDS) using three hydrochemical time series datasets. The main contributions are as
follows

• An open-source and application-oriented XAI framework through swiftly accessible
and combinable modules is provided

• Every module can be evaluated and verified separately using robust methods
• From a domain expert’s perspective, the DDS-XAI provides more meaningful and

relevant explanations than comparable XAIs
• Evaluation criteria of explainability are derived from well-founded principles: Grice’s

maxims [11]

The DDS-XAI is a flexible framework because it enables the user to change the mod-
ule’s specific method and still build the DDS-XAI and evaluate it. For example, the swarm
projection method of the projection-based clustering can be replaced by non-linear projec-
tion methods if the number of cases rises. The projection method allows specifying the
distance metric. The modules are combined in a sophisticated manner to detect meaningful
relationships in data, which makes it a comprehensive new tool for interpretable machine
learning or so-called explainable AI systems [12]. This work’s main contribution is an XAI
system that exploits distance-based data structures in time series with a solely data-driven
approach. In this context, data-driven means that no explicit or implicit assumptions about
the existence and type of structures in the data is made. Induction of decision trees is
performed by distance-based structures in the data that are independently verified.

Overall, this work shows for three datasets how to search for days with similar
behavior by using a transparent and open-source framework, which is explained in Figure 1.
The results explain similar environmental, and in particular water quality, situations,
although NO3 stream concentrations “integrate” many processes varying in space and in
time [13]. Finally, relevant and meaningful explanations could be used to predict future
NO3 and EC values.

Related Works

There are two approaches for the explanation of machine learning systems: predic-
tion, interpretation, and justification, which is used to explain sub-symbolic ML systems
(see [14]), and intrinsic interpretable approaches called symbolic ML systems (see [15]),
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which are explained through reasoning [16]. Recently sub-symbolic ML systems were
introduced in [17,18] for which interpretation and justification can be performed with
local interpretable model-agnostic explanation (LIME) [19] or its generalization SHapley
Additive exPlanations (SHAP) [20]. For example, LIME approximates any classifier or
regressor locally with an interpretable model. In the sense of the latter, explanation rep-
resents a distinct approach to extract information from the learned model [21]. Typical
interpretable ML systems consist of combinations of neural networks and rule-based expert
systems [22,23], classification based on predictive association rules [24], Bayesian networks
with rule mining [25], hybrids of clustering and fuzzy classification [26] or neuro-fuzzy
classification [27], non-iterative ANN-based XAIs [28,29], rule lists [30], interpretable deci-
sion sets [31] or decision tables [32], decision tree clustering [33,34] or clustering combined
with generative models [35]. The two most recent XAI approaches are the unsupervised
decision tree clustering eUD3.5 [36] and a hybrid of k-means clustering and a top-down
decision tree [37]. These two unsupervised approaches are the two most similar and current
approaches to our proposed XAI framework and will be used as a baseline for comparison.

Loyola-González et al. presented the eUD3.5 algorithm, which uses a split criterion
based on the silhouette index [36]. The silhouette index compares every object of a cluster
to its homogeneity within a cluster with the heterogeneity to other clusters [38]. In eUD3.5,
a node is split only if it’s possible descendants have a better split criterion than the best split
criterion found so far. This leads to a decision tree which is based on the cluster structures.
A cluster is associated with the class having the most members in the cluster. In eUD3.5,
100 different trees are generated, their performance is evaluated, and the best performing
tree is kept. The user can specify the number of desired leaf nodes (stop criterion). If
the algorithm produces more leaf nodes than specified by the user, then leaf nodes are
combined using k-means. The authors claimed this to have similar performance to k-means
and better performance than other conventional decision tree clustering algorithms [36].

Dasgupta et al. used a hybrid of k-means with a decision tree called iterative mistake
minimization algorithm (IMM) [37]. The k-means method provides the labels and cluster
centers with which the decision tree is built top-down using binary splits in which each
node of the tree is associated with a portion of the input data [37]. If this portion of input
data contains more than one cluster center, then it is split so that the fewest points are
separated from its cluster center: the optimal split is found by searching over all pairs using
dynamic programming. The IMM algorithm terminates at a leaf node whenever all points
have the same label resulting in a number of leaves equal to the number of clusters [37].
Dasgupta et al. did not provide any source code in their work [25]. Therefore, in the
first part of the IMM algorithm [25], the k-means clustering is used through the toolbox
published in [39]. Then, feature importance in a k-means clustering is measured using the
algorithm provided in the R package “FeatureImpCluster” available on CRAN [40]. The
importance per feature is measured by the misclassification rate relative to the baseline
cluster assignment due to a random permutation of feature values [40].

2. XAI Framework

Contrary to the approaches introduced above, in which an obscure global objective
function is optimized, this work uses the topographic map visualization [41] with projecti-
based clustering [42] to validate if the data contains any or no structures based on clusters.
Outliers can be interactively marked in the visualization [43] after the automated clustering
process in the case that they are not recognized sufficiently in the automatic clustering
process [43]. The clustering itself is confined in one module of the XAI framework presented
in Figure 1.

There are three main steps in Figure 1. First, structures in the data are identified (blue).
Next, the cluster analysis is performed (orange). In the third step, explanations (green)
are provided using the labels of the clustering and the multivariate time series data. Each
step has several modules that are connected to each other and colored similar to the step.
Arrows outline the connections between the modules.
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In the first step (I), the time series data are aggregated appropriately (e.g., daily) and 
then standardized. In step II, various available distance metrics are applied to the data, 
and the distributions of the distances are investigated for multimodality. If a distance dis-
tribution is multimodal, the framework uses the distance metric out of which the distri-
bution resulted. Otherwise, the Euclidean metric has to be used. The distance distribution 
can be modeled by a Gaussian mixture and exploited in the second step for the evaluation 
of cluster analysis. 

The cluster analysis in step II is composed of three modules. This visualization of the 
topographic map enables the user to choose the number of clusters and the setting of the 
one Boolean parameter. The number of clusters can be set as the number of visible valleys 
in the topographic map. The clustering can be further evaluated by the model of the dis-
tance distribution (last arrow between steps I and II), because using the Gaussian mixture 
model of step I hypothesizes that the intracluster distances of the clustering should be 
smaller than the Bayesian boundary defined by the Gaussian mixture. The clustering can 
be validated by the topographic map [42]. Additionally, it is preferable to search for linear 
models and to validate the clustering externally (e.g., by a heatmap). 

After validation in step II, the labels of step II’s resulting clustering are used in su-
pervised decision trees in step III for the training of the un-preprocessed but aggregated 
data. Then, meaningful explanations are defined by paths in the decision tree. Class-wise 
distribution analysis and statistical testing of interesting features are performed to assure 
that explanations are relevant to the domain expert. In the last module, a domain expert 
interprets relevant and meaningful explanations (c.f. [8]). The analytic procedure details 
can be found in the methods sections, which are organized according to these three steps, 
as illustrated in the titles in Figure 1. The result sections are organized the same way. The 

Figure 1. Framework of the DDS-XAI for multivariate time series without implicit assumptions about structures in data
(data-driven). The framework has the three main steps of the identification of structures in data, cluster analysis, and
providing explanations. Each step has several modules explained in the methods section.

In the first step (I), the time series data are aggregated appropriately (e.g., daily) and
then standardized. In step II, various available distance metrics are applied to the data,
and the distributions of the distances are investigated for multimodality. If a distance
distribution is multimodal, the framework uses the distance metric out of which the
distribution resulted. Otherwise, the Euclidean metric has to be used. The distance
distribution can be modeled by a Gaussian mixture and exploited in the second step for
the evaluation of cluster analysis.

The cluster analysis in step II is composed of three modules. This visualization of
the topographic map enables the user to choose the number of clusters and the setting of
the one Boolean parameter. The number of clusters can be set as the number of visible
valleys in the topographic map. The clustering can be further evaluated by the model of
the distance distribution (last arrow between steps I and II), because using the Gaussian
mixture model of step I hypothesizes that the intracluster distances of the clustering should
be smaller than the Bayesian boundary defined by the Gaussian mixture. The clustering
can be validated by the topographic map [42]. Additionally, it is preferable to search for
linear models and to validate the clustering externally (e.g., by a heatmap).

After validation in step II, the labels of step II’s resulting clustering are used in
supervised decision trees in step III for the training of the un-preprocessed but aggregated
data. Then, meaningful explanations are defined by paths in the decision tree. Class-wise
distribution analysis and statistical testing of interesting features are performed to assure
that explanations are relevant to the domain expert. In the last module, a domain expert
interprets relevant and meaningful explanations (c.f. [8]). The analytic procedure details
can be found in the methods sections, which are organized according to these three steps,
as illustrated in the titles in Figure 1. The result sections are organized the same way. The R
packages used in this work are summarized in Appendix I (Appendix I: Used R Packages
Table A6).

2.1. Step I: Identification of Structures in the Data

The dataset of 2013/2014 contains 32,196 data points, while those from 2015 and 2016
contain 35,040 and 35,136 data points, respectively. Each dataset comes with the same 14
variables with names and units defined in Table 1. Further details about the data collection
are described in Appendix J: Collection and Preprocessing of Multivariate Time Series Data.
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Missing data were imputed (see Appendix J). Data were standardized and de-correlated as
described in Appendix J because distance measures are sensitive to correlations and the
differences of variances of features.

Table 1. Measured environmental variables with abbreviations and units. The probability density
distributions of the transformed dataset are visualized in the supplementary section.

Variable Abbreviation International System of Units

Soil temperature St24 ◦C

Groundwater level
3 = lowland, 25 = hill slope,

32 = upstream in riparian zone

GWl3
GWl25
GWl32

m

Soil moisture Smoist24 m3/m3

Rainfall rain mm/d

Discharge q13
q18 L/s

Electric conductivity (EC) Con47 mS/m

Solar radiation Sol71 W/m2

Air temperature At47 ◦C

Streamwater temperature Wt18
Wt13

◦C

Nitrate (NO3) nnit13 mg/L

2.1.1. Distance Selection

Usually, partitioning and hierarchical clustering algorithms require a distance metric
because they seek to find groups of similar objects [44] (i.e., objects with small distances
between them). Often, the user cannot manually change the distance metric (c.f. 54 common
algorithms listed in [45]), resulting in the implicit application of the Euclidean metric if
not otherwise specified. In contrast, projection-based clustering has the advantage that a
specific distance metric can be selected by the user, which is then used in the dimensionality
reduction and clustering part of the algorithm. However, the critical choice of a distance
metric remains undiscussed in prior work.

We propose that a user selects a distance metric based on the multimodality of the
specific dataset’s distance distribution. Detailed mathematical definitions are found in
Appendix F: Definitions for Distance Distributions. The motivation is that intra-cluster
distances should be smaller than inter-cluster distances, and the threshold between the two
types of distances can be defined by a Bayesian boundary, which can be computed using a
Gaussian mixture.

Several metrics were investigated using the R package ‘parallelDist’ and the mirrored-
density plot (MD-plot) function [10] in the R package ‘DataVisualizations’. Multimodality
was visibly most evident in the probability density distribution of the Hellinger point
distance measure in the case of the given dataset. Hence, the probability density distribution
of the selected distance is modeled with a Gaussian mixture model and verified visually
with QQplot as described in [46] with the R package ‘AdaptGauss’. The Bayesian boundary
of two modes with the highest weights separates the intra-cluster distances from the
inter-cluster distances.

2.1.2. Projection

The swarm-based projection method of the Databionic swarm (DBS) algorithm is used
to project the distance matrix of data into a two-dimensional plane [47,48]. Similar to the
nonlinear and focusing projection methods of emergent self-organizing maps (ESOM) [49],
curvilinear component analysis (CCA) [50], t-distributed stochastic neighbor embedding
(t-SNE) [51], or neighbor retrieval visualizer (NerV) [52], the dimensionality reduction by



Mach. Learn. Knowl. Extr. 2021, 3 175

the swarm first adapts to global structures. As time progresses, structure preservation
shifts from global optimization to the preservation of local neighborhoods. This learning
phase requires an annealing scheme and usually require parameters to be set. However,
by exploiting concepts of self-organization and emergence, swarm intelligence, and game
theory, this projection method is parameter-free [47,48]. The intelligent agents of the
swarm, called DataBots [53], operate on a toroid grid, where positions are coded into polar
coordinates to allow for the precise definition of their movement, neighborhood function,
and annealing scheme.

In contrast to other focusing projection methods (e.g., [51,52,54]), the size of the grid
and the annealing scheme are data-driven. During the learning phase, each agent moves
across the grid or stays in its current position in the search for the most potent scent. The
equation (c.f. Equation (5) in [55]) that mathematically defines the scent uses information
stored in the distance matrix (c.f. definition in Appendix F). Hence, agents search for
other agents carrying data with the most similar features to themselves with a data-driven
decreasing search radius [55]. Every agent’s movement is modeled using a game-theory
approach, and the radius decreases only if a Nash equilibrium is found [54,56]. Contrary
to ant-based clustering algorithms, DataBots do not move data. Instead, each DataBot
possesses a scent, defined by one high-dimensional data point.

2.1.3. Structure Visualization by Topographic Map

Projection points near to each other are not necessarily near in the high-dimensional
space (vice versa for faraway points), but in planar projections of data, these errors are
unavoidable (c.f. Johnson-Lindenstrauss Lemma [57]). Hence, the topographic map
identifies structures in data based on a projection. First, the generalized U-matrix [47,58] is
calculated on this projection using emergence through an unsupervised artificial neural
network called a simplified (because parameter-free) emergent self-organizing map [41].
The topographic map with hypsometric tints is a visualization approach for the generalized
U-matrix (see [59] for alternative approaches), which can be vividly described as a virtual
3D landscape with a specific color scale chosen with an algorithm defining the contour
lines [59]. The topographic map addresses the central problem in clustering, i.e., the correct
estimation of the number of clusters. It allows the assessment of the number of clusters by
inspecting the 3D landscape.

The topographic maps correspond to high-dimensional distance and density struc-
tures. Hypsometric tints are surface colors that represent ranges of elevation. The contour
lines are combined with a specific color scale. The specific color scale is chosen to display
various valleys, ridges, and basins: blue colors indicate small distances (sea level), green
and brown colors indicate middle distances (low hills), and shades of white colors indicate
vast distances (high mountains covered with snow and ice). Valleys and basins represent
clusters, and the watersheds of hills and mountains represent the borders between clusters.
In this 3D landscape, the visualization borders are cyclically connected with a periodicity.

2.2. Step II: Cluster Analysis with Projection-Based Clustering (PBC)

The definition of a cluster remains a matter of ongoing discussion [60,61]. Therefore,
the justification for an appropriate choice for any one of the over fifty currently available
open-source clustering algorithms [45] is proposed using data-driven criteria of Gaussian
mixture models of distances, topographic maps, heatmaps, and Occam’s razor (in the
following Section 2.1.1, Section 2.1.3, Section 2.2.1, and Section 2.2.2). Additionally, a
benchmarking of 34 clustering algorithms revealed for a large variety of distance and
density-based cluster structures that projection-based clustering (PBC) is an appropriate
choice [42]. Therefore, in step II, projection-based clustering is applied, which involves
setting one Boolean parameter (details in [42]).
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2.2.1. Verification of a Clustering

Clustering is verified by one internal approach and two external methods, the to-
pographic map serves as an internal quality measure of a clustering. Additionally, the
choice of the Boolean parameter of compact versus connected can be evaluated using the
clustering in step II through the topographic map as specified in Figure 1: If a cluster
is either divided into separate valleys, or several clusters lie in the same valley of the
topographic map, the compact (or connected) clustering approach is not appropriate for
the data. An extensive discussion of this behavior can be found in [42]. Additionally, the
clustering can be improved further using an interactive interface (c.f. provided in the R
package ‘ProjectionBasedClustering’) [43].

Externally, the clustering can be evaluated with heatmaps and the Bayesian boundary
computed in Section 2.1.1.

A heatmap visualizes the homogeneity of clusters and the heterogeneity of intercluster
distances if the clustering is appropriate [62–64]. Furthermore, the clustering is valid if, in
the topographic map, mountains do not partition clusters indicated by colored points of
the same color and colored regions of points [42].

The Bayesian boundary is computed using a Gaussian mixture model and it provides
a data-driven hypothesis about the similarity of data points (i.e., days in the example of this
work). In this sense, days that a cluster analysis partitions to the same cluster are similar if
their intra-cluster distances are lower than the Bayesian boundary.

2.2.2. Occam’s Razor

Ockham’s razor states that if two models are applicable, the less complex one should
be used [65]. Therefore, the authors suggest investigating whether simpler models can
represent the structures in data and provide meaningful and relevant explanations. A
simpler projection approach assuming linear cluster structures and a simpler clustering [39]
approach assuming spherical cluster structures is applied to the data. Moreover, spherical
cluster structures are tested with the silhouette plot using the R package ‘DataVisualiza-
tions’.

2.3. Step III: Providing Meaningful and Relevant Explanations

Explainability should follow the Grice maxims of quality, relevance, manner, and
quantity [11], for the usage of decision trees in this work. They are summarized into
meaningful and relevant explanations that are interpretable by a domain expert [8].

2.3.1. Decision Trees for Identified Structures in Data

The conventional usage of decision trees is usually supervised, requiring a prior
classification (e.g., [66]) but, alternatively, can also be unsupervised using split evaluation
criteria that do not require a prior classification (e.g., [34]). Supervised decision trees are, for
example, the classification and regression tree (CART) [67] or globally optimal classification
and regression trees [68]. Here, we propose a third approach by using the clustering
labels provided by cluster analysis in step III instead of a prior classification. Contrary
to common usage, the decision tree is exploited here to explain the identified structures
in data. The supervised decision trees are computed using the labels and unprocessed
or back-transformed data. Exemplary, the R package “rpart” and the package “evtree”
are applied. If the number of leaves exceeds the Miller optimum, further pruning can be
specified in the open-source libraries.

The maxim of quality states that only well-supported facts and no false descriptions
should be reported. Quality will be measured by the accuracy of supervised decision trees
representing the clustering.

2.3.2. Extracting Meaningful Explanations

The maxim of manner suggests being brief and orderly and avoiding obscurity and
ambiguity [11]. For the explanation to be in an appropriate manner, the standardization
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has to be either back-transformed to provide measurement in the international system of
units or unprocessed data has to be used. The maxim of quantity states that neither too
much nor too few explanations should be presented [11]. This work specifies the statement
in the sense that the number of explanations should follow the Miller optimum of four to
seven [69,70]. Then, explanations are meaningful to a domain expert (c.f. discussion [8]).

However, decision tree algorithms do not aim at meaningful explanations [62,71].
Therefore a transformation of the decision tree into rules is necessary. Here, rules are
extracted from the decision tree by following each path from the root to the leaf. The
number of rules measures the property of meaningfulness.

2.3.3. Evaluating the Relevance of Explanations

The maxim of relevance requires that only rules relevant to the expert are listed.
Typically, explanations are especially relevant if they are tendentially contrastive (c.f. [9]).

Suppose an explanation based on a clustering of the data is relevant (i.e., reveals to
the domain expert relevant high-dimensional structures for similar days). In that case, the
classes defined by such explanations should contain samples of different environmental
states and be based on different processes. The property of relevance is qualitatively
evaluated by class mirrored-density plots class (MD plots) [10]. Additionally, statistical
testing of class-wise distributions of features can be performed to ensure that the classes
defined by rules are tendentially contrastive and, in consequence, relevant.

The mirrored-density plot (MD-plot) introduced in [10] visualizes a density estimation
in a similar way to the violin plot [63]. The MD-plot uses for density estimation the
Pareto density estimation (PDE) approach [64]. It can be shown that comparable methods
have difficulties in visualizing the probability density function in the case of uniform,
multimodal, skewed, and clipped data if the density estimation parameters remain in a
default setting [10]. In contrast, the MD plot is particularly designed to discover interesting
structures in continuous features and can outperform conventional methods [10]. The
MD plot does not require any adjustments in density estimation parameters, which makes
the usage compelling for non-experts. The class MD-plot is available in the R package
‘DataVisualizations’. The class MD plot visualizes the density of each class of an interesting
feature separately and is used to show the relationship of the clusters of the XAI systems to
NO3 and EC concentrations.

3. Results

An overview of the analysis is provided in Figure 1. For clarity, the rest of this chapter
is subdivided into four sections, of which the first three are based on Figure 1. The first
section consists of the selection of an appropriate distance metric, extracting the first
hypothesis from the distribution of distances (Section 3.1), and providing the topographic
map. However, the projected points in the topographic map are already colored by the
clustering of the second step. The second section presents the projection-based cluster
analysis method and validates the clustering (Section 3.2). The third section presents and
evaluates explanations (Section 3.3). The results focus on the first hydrochemical time
series data of 2013–2014. The DDS-XAI’s explanations of subsequent datasets of the years
2015 and 2016 are presented in Appendix K: DDS-XAI Results of 2015 and 2016 data. The
fourth section compares the DDS-XAI to the two most similar approaches of eUD3.5 and
IMM based on all three datasets (Section 3.4).

3.1. Step I: Structure Identification

In Appendix A (Appendix A: Features after Preprocessing), the probability density
distributions of the 12 finally selected and preprocessed variables are visualized with
mirrored-density plots [10] (described also Section 2.3.3 Step III). Appendix A shows the
result of an appropriate standardization of features resulting in similar variances.

As an example, Figure 2 presents the probability density estimation (PDE) [64] of
the distance feature df of the Hellinger point distance matrix of the preprocessed data of
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2013/2014 in black and its Gaussian mixture model (GMM) in red. Specific definitions
can be found in Appendix F: Definitions for Distance Distributions. The Hellinger point
distance [72] in the R package ‘parallelDist’ was chosen for cluster analysis because the
distribution of distances is statistically not unimodal according to Hartigan’s dip test [73]
(with p(D = 0.006385, N = 61425) < 0.001). The distance distribution can be modeled
through the Gaussian mixture model (GMM) using the expectation-maximization (EM)
algorithm [74]. The distance distribution and GMM are visualized in Figure 2. The quantile-
quantile plot (QQ-plot) verifies the GMM in Figure 3. This serves as an indication of the
existence of high inter-cluster distances (distances between different clusters) and outlier
distances as well as small intra-cluster distances (distances within each cluster), meaning
that a distance-based cluster structure can be found. The Bayesian boundary of the GMM
in Figure 2 is 0.39. For the 2015 dataset, a Minkowski distance is selected (Appendix K:
DDS-XAI Results of 2015 and 2016 data, Figure A10 top), and for the 2016 dataset, the
Euclidean distance is selected (Appendix K, Figure A11 top).
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Figure 2. Distribution analysis of the distances using a Gaussian mixture model (GMM) using the R package ‘AdaptGauss 
‘. The black line indicates the estimated distribution of the distance feature df (defined in Appendix F). The distribution of 
the distances drawn by the AdaptGauss package is estimated using Pareto density estimation (PDE). The blue line depicts 
the single Gaussian distributions (“modes”) of the model, and the red line the overall model, i.e., the superposition of 
single Gaussians to a mixture. The Bayesian boundary in magenta separates the first mode from the second mode and the 
third mode, leading to the hypothesis that the first mode should consist of intra-cluster distances if clustering is performed. 
PDE = Pareto density estimation (Ultsch, 2005). 

Figure 2. Distribution analysis of the distances using a Gaussian mixture model (GMM) using the R package ‘AdaptGauss ‘.
The black line indicates the estimated distribution of the distance feature df (defined in Appendix F). The distribution of the
distances drawn by the AdaptGauss package is estimated using Pareto density estimation (PDE). The blue line depicts the
single Gaussian distributions (“modes”) of the model, and the red line the overall model, i.e., the superposition of single
Gaussians to a mixture. The Bayesian boundary in magenta separates the first mode from the second mode and the third
mode, leading to the hypothesis that the first mode should consist of intra-cluster distances if clustering is performed. PDE
= Pareto density estimation (Ultsch, 2005).

Next, the topographic map of high-dimensional structures evaluates the clustering
of the 2013/2014 data by indicating which points are in the high-dimensional space far
away (brown/white hills) or near (blue seas, green grassland). The topographic map with
hypsometric tints generated with the R package ‘GeneralizedUmatrix’ is toroidal, meaning
that the grid’s borders are cyclically connected with a periodicity defined by the size of the
grid of the projection method. In Figure 4, a cutout island of the topographic map is shown.
Every point symbolizes a day. The high-dimensional distances of the low-dimensional
projected points are visualized. The topographic map shows three valleys and basins
indicating clusters and watersheds of hills and mountains shown by borderlines between
clusters. Thus, the number of clusters is equal to the number of valleys. Without the cluster
analysis providing the labels, all projected points would have the same color.
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Figure 3. Quantile-quantile plot (QQ plot) visualizes a good match between the distance and the 
GMM through a straight line. The plot is generated using the R package ‘AdaptGauss’. 
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Figure 4. In the topographic map of high-dimensional structures, every point symbolizes a day and is colored by the 
independently performed clustering. The labels of projection-based clustering define the color of the points. Clusters lie 
in valleys. The topographic map shows two main clusters (magenta and yellow points), a smaller cluster (black points). In 
addition, seven single outliers (marked in red and by red arrows) in the hydrology dataset are disregarded before compa-
rable XAIs are applied. Visualization of high-dimensional structures in data is generated using the R package “General-
izedUmatrix”. 

3.2. Step II: Cluster Analysis 
The clustering labels are hereafter visualized as the colors of the projected points. In 

addition to the two main clusters (magenta and yellow points) and one outlier cluster 
(black points), seven outliers can be identified as volcanoes or within the valleys indicated 
by red arrows in Figure 4. Next, the authors generated distance-based heatmaps in order 
to verify the clusterings. The heatmap for the 2013/2014 distances and clustering shows 
intra- versus inter-cluster distances ordered by each cluster in Figure 5. Heatmaps of 2015 
and 2016 data are presented in Appendix K, Figures A10 and A11. Blue colors symbolize 
small distances, and yellow and red colors represent large distances. The heatmap depicts 
clusters’ homogeneity because the pattern of blue and teal colors is present for intra-clus-
ter distances and yellow to the red color pattern for inter-cluster distances. The median 
intra-cluster distances of clusters 1, 2, and 3 are 0.24, 0.36, and 0.31, respectively and are 
below the Bayes boundary of the GMM in Figure 2 of 0.39 for the 2013/2014 data. The 
average inter-cluster distance is 0.48 and above the Bayesian boundary of 0.39. Similar 
results are obtained for the 2015 and 2016 data. These results indicate that the intra-cluster 
distances are smaller than the inter-cluster distances for all three datasets. This means that 
days within each cluster are evidently more similar to one another than days between 
clusters in each of the three datasets. 

Figure 4. In the topographic map of high-dimensional structures, every point symbolizes a day and is colored by the
independently performed clustering. The labels of projection-based clustering define the color of the points. Clusters lie
in valleys. The topographic map shows two main clusters (magenta and yellow points), a smaller cluster (black points).
In addition, seven single outliers (marked in red and by red arrows) in the hydrology dataset are disregarded before
comparable XAIs are applied. Visualization of high-dimensional structures in data is generated using the R package
“GeneralizedUmatrix”.
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For the 2015 dataset, seven clusters can be identified in Appendix K (Figure A10,
bottom), and for the 2016 dataset, only two clusters are depicted in the topographic map
shown in Appendix K (Figure A11 bottom).

3.2. Step II: Cluster Analysis

The clustering labels are hereafter visualized as the colors of the projected points. In
addition to the two main clusters (magenta and yellow points) and one outlier cluster
(black points), seven outliers can be identified as volcanoes or within the valleys indicated
by red arrows in Figure 4. Next, the authors generated distance-based heatmaps in order
to verify the clusterings. The heatmap for the 2013/2014 distances and clustering shows
intra- versus inter-cluster distances ordered by each cluster in Figure 5. Heatmaps of 2015
and 2016 data are presented in Appendix K, Figures A10 and A11. Blue colors symbolize
small distances, and yellow and red colors represent large distances. The heatmap depicts
clusters’ homogeneity because the pattern of blue and teal colors is present for intra-cluster
distances and yellow to the red color pattern for inter-cluster distances. The median intra-
cluster distances of clusters 1, 2, and 3 are 0.24, 0.36, and 0.31, respectively and are below
the Bayes boundary of the GMM in Figure 2 of 0.39 for the 2013/2014 data. The average
inter-cluster distance is 0.48 and above the Bayesian boundary of 0.39. Similar results are
obtained for the 2015 and 2016 data. These results indicate that the intra-cluster distances
are smaller than the inter-cluster distances for all three datasets. This means that days
within each cluster are evidently more similar to one another than days between clusters in
each of the three datasets.
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Figure 5. The four clusters have distinctive distances, as shown by the heatmap. The black lines 
divide the distances between the data points belonging to a cluster. The outliers are summarized 
in cluster 4. There are small distances within each cluster and large distances between the clusters. 
The heatmap was generated with the R package ‘DataVisualizations’. 

To check for a possibility of a simpler model, a linear projection by the method pro-
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pendix D: Silhouette Plots, Figure A2) of the 2013/2014, 2015, and 2016 data indicate inap-
propriate values for this clustering procedure if a spherical cluster structure is assumed. 
The clustering of the 2013/2014 data can be reproduced with an accuracy of 86% using 
hierarchical clustering as described by Ward [77] if the seven outliers are disregarded, 
because the method is sensitive to outliers [78]. 

3.3. Step III: Providing Explanations 
For the explanation of the clustering as described in step II, non-standardized fea-

tures have to be used because the system should explain the clustering to the domain 
expert and not the data scientist [8]. The clusters of the 2013/2014 dataset are explained by 
applying the evtree [68] and CART algorithm [67,79]. The evtree decision tree is shown in 
Figure 6a, and the CART decision tree for the data is visualized in Figure 6b. Both decision 
trees agree on the same feature sets and relations for each cluster except for cluster three, 
for which Rain < 0.2 is not required to differentiate from cluster one and two in evtree, 
although that makes cluster 3 less meaningful. The boundaries vary slightly between 
CART and evtree. None of the outliers could be explained by either evtree or CART. 
CART has a lower error and improves the meaningfulness of cluster three. CART provides 
a decision tree presented in Figure 6b that reproduces the clustering with an accuracy of 
96.5%. Therefore, the rules are extracted from the CART tree instead of the evtree by fol-
lowing a path from the root to the leaf. For example, rule R1 explains cluster one of Figure 

Figure 5. The four clusters have distinctive distances, as shown by the heatmap. The black lines
divide the distances between the data points belonging to a cluster. The outliers are summarized in
cluster 4. There are small distances within each cluster and large distances between the clusters. The
heatmap was generated with the R package ‘DataVisualizations’.

To check for a possibility of a simpler model, a linear projection by the method
projection pursuit [75] using a clusterability index of variance and ratio (c.f. [76]) is applied
on the 2013/2014, 2015, and 2016 datasets. The linear projections do not reveal clear
structures, even if the generalized U-matrix is applied to visualize high-dimensional
distance structures in the two-dimensional space (Appendix G: Linear Models, Figure A4).



Mach. Learn. Knowl. Extr. 2021, 3 181

Therefore, it can be assumed that the structures of these three datasets cannot be separated
linearly, motivating the usage of more complex and elaborate methods. Silhouette plots
(Appendix D: Silhouette Plots, Figure A2) of the 2013/2014, 2015, and 2016 data indicate
inappropriate values for this clustering procedure if a spherical cluster structure is assumed.
The clustering of the 2013/2014 data can be reproduced with an accuracy of 86% using
hierarchical clustering as described by Ward [77] if the seven outliers are disregarded,
because the method is sensitive to outliers [78].

3.3. Step III: Providing Explanations

For the explanation of the clustering as described in step II, non-standardized features
have to be used because the system should explain the clustering to the domain expert and
not the data scientist [8]. The clusters of the 2013/2014 dataset are explained by applying
the evtree [68] and CART algorithm [67,79]. The evtree decision tree is shown in Figure 6a,
and the CART decision tree for the data is visualized in Figure 6b. Both decision trees agree
on the same feature sets and relations for each cluster except for cluster three, for which
Rain < 0.2 is not required to differentiate from cluster one and two in evtree, although
that makes cluster 3 less meaningful. The boundaries vary slightly between CART and
evtree. None of the outliers could be explained by either evtree or CART. CART has a lower
error and improves the meaningfulness of cluster three. CART provides a decision tree
presented in Figure 6b that reproduces the clustering with an accuracy of 96.5%. Therefore,
the rules are extracted from the CART tree instead of the evtree by following a path from
the root to the leaf. For example, rule R1 explains cluster one of Figure 4 (magenta). The
combination of rules and clusters describes the classes which could predict future NO3 and
EC values (Table 2). The description of class 2 gains more detail if maximum likelihood
plots of rain and water temperature (Wt18) are used (Appendix E: Distinction of Class
2 and 2 in Regard to Rain and Water Temperature, Figure A3). Decision trees with 89%
accuracy for the 2015 and 2016 dataset are shown in Appendix K, Figure A9.

Table 2. Explanations based on rules derived from the decision tree of Figure 6b for the 2013/2014 dataset. Abbreviations:
rainfall intensity (rain), water temperature (Wt18),) and water level at point 25 (GWl25). All values are expressed as
percentages. For units of measurement, please see Table 1. Class 2 R5 is extended by Appendix E, Figure A3. The color
names of the projected points of Figure 4 are mapped to the rules of this table. Please see Tables A7 and A8 in Appendix K
for 2015 and 2016 data.

Rule
No.

Color

Class
No.

No. of
Days Explanations Short Description of Class for

Subsequent Plots

R1
magenta 1 162

rain < 0.15 and GWl25 ≥ 1.28 and Wt18 ≥ 6.86
=> Dry days, increased stream water temperature

and groundwater levels
DryDaysWarmWater

R3 and R5,
Figure A3

yellow
2 159

rain < 0.15 and GWl25 < 1.28 and Wt18 ≥ 6.11 or
rain ≥ 0.15 and Wt18 ≥ 6.11

=> Intermediate stream water temperature with
either dry days and low groundwater levels or

rainy days with a high level of water

Duality

R2 and R4
black 3 22

rain < 0.15 and GWl25 ≥ 1.28 and Wt18 < 6.86 or
rain < 0.15 and GWl25 < 1.28 and Wt18 < 6.11

=> Dry days with colder stream water and variable
groundwater levels

DryDaysColdWater

- Unclassified 7 Excluded, because cannot be explained with
decision trees Outliers
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Figure 6. (a) Globally optimal classification and regression trees (evtree) analysis visualizes a decision tree for the 
2013/2014 dataset using the labels of the three clusters identified by projection-based clustering. The error of class 1 is 15%, 
that of class 2 is 6.4%, and that of class 3 is 8.3%. Outliers are summarized in class 4. The rules are quite similar to (b) but 
have a higher error. The tree was generated using the R package’ evtree. (b) Classification and regression tree (CART) 
analysis visualizes a decision tree for the 2013/2014 dataset using the labels of the three clusters identified by projection-

Figure 6. (a) Globally optimal classification and regression trees (evtree) analysis visualizes a decision tree for the 2013/2014
dataset using the labels of the three clusters identified by projection-based clustering. The error of class 1 is 15%, that of class
2 is 6.4%, and that of class 3 is 8.3%. Outliers are summarized in class 4. The rules are quite similar to (b) but have a higher
error. The tree was generated using the R package’ evtree. (b) Classification and regression tree (CART) analysis visualizes
a decision tree for the 2013/2014 dataset using the labels of the three clusters identified by projection-based clustering.
Applying the algorithm to the labels of the clustering in combination with the dataset results in 12 misclassified points (3.5%
of daily observations). Eight outlier points are in class 4, for which nodes can be derived. The leaves are identified with rule
numbers used in Table 2 and colors of Figure 4. This error is lower than in (a). For units of measurements and abbreviations,
please see Table 1. The tree was generated using the R package ‘rpart’.
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3.3.1. Evaluating the Relevance of DDS-XAI’s Explanations

Next, we investigate the NO3 and EC probability density distributions per class. In the
previous section, the clusters were explained by rules to define classes. The class-dependent
MD-plots of Figure 7a,b show that the classes depend on normal or high NO3 levels
(Figure 7a) as well as on low, intermediate, or high conductivity levels (Figure 7b) because
the distributions of classes differ significantly from one another, with the exception of NO3
classes 2 and 3. It is confirmed by Kolmogorov–Smirnov tests (Appendix C: Kolmogorov-
Smirnov tests of clusters) that the classes differ significantly from each other in the NO3 and
EC distributions, except for class 2 versus class 3 in NO3. However, class 2 and class 3 also
differ significantly from each other in the variables of rain and Wt18 (water temperature)
in Appendix E, Figure A3. For the second and third dataset, the class-dependent MD-plots
in Appendix K, Figure A7 (2015 data), and Figure A8 (2016 data) show distinct NO3 and
EC levels depending on the class defined in Tables A7 and A8 (Appendix K), with the
exception of outliers and one class for EC. In sum, the results show that the explanations
are comprehensible and relevant to the domain expert.

3.3.2. Interpreting Explanations

We acquired relevant and meaningful explanations by the DDS-XAI framework pro-
posed in this work. As a proof of principle, the domain expert is able to interpret the
explanation of the first dataset of 2013/2014 in Table 2 as follows: while water temperature
governs the biological turnover of nitrogen compounds in the stream water, hydrological
variables such a groundwater level determine how and whether terrestrial NO3 pools are
connected to the stream system by activating flow pathways. Furthermore, the rainfall–
runoff generation processes either concentrate or dilute the stream NO3 concentration,
according to the difference in NO3 concentration in the stream and in the “new water”
added to the stream system.

In the search for days with similar behavior, days with normal and high NO3 were
identified. In 321 out of 343 days, the NO3 concentrations were normal (in the average
range of (1, 3.5) mg/L). On such days, the concentrations of electric conductivity (EC)
were either high (in the average range of 0.034–0.055 mS/m) or intermediate to low (in
the average range of 0.25–0.045 mS/m). Normal NO3 and higher EC occurred on dry
days with increased stream water temperature and higher groundwater levels. From a
data-driven perspective, these days were highly similar to one another (c.f. cluster 1 in
Figures 4 and 5). The explanation for normal NO3 with low to normal EC concentrations is
more complex and described by “duality”: they likely had an intermediate stream water
temperature (6.1 ◦C < WT18 < 12.5 ◦C) with either dry days (average rain < 0.15 mm)
and low groundwater levels (<1.28 m) or rainy days with high groundwater levels (see
Appendix E).

Simultaneously, high NO3 concentrations (in the average range of (3, 5.5) mg/L) and
very low EC concentrations (in the average range of (0.025, 0.028) mS/m) occurred only if
the stream water temperature was low on dry days. In particular, stream water temperature
influences the activities of living organisms. The groundwater level (or head, in m) is the
primary factor driving discharge in the Schwingbach catchment, while rainfall intensity
triggers discharge and affects the leaching of nutrients [80].
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Figure 7. (a) Class-wise mirrored-density plot (MD-plot) of the three explained classes with regard to NO3 and the outliers. 
There are two low to intermediate classes of N concentrations and one class of high N concentrations. Classes are colored 
similar to the clusters in Figure 4. The MD-plot was generated using the R package ‘DataVisualizations’. (b) Class-wise 
mirrored-density plots (MD-plot) of the three explained classes with regard to electrical conductivity C. There is a class of 
high concentration, a class of low to intermediate concentration, and a class of low C concentrations. Classes are colored 
similarly to the clusters in Figure 4. The MD plot was generated using the R package ‘DataVisualizations’. 
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Figure 7. (a) Class-wise mirrored-density plot (MD-plot) of the three explained classes with regard to NO3 and the outliers.
There are two low to intermediate classes of N concentrations and one class of high N concentrations. Classes are colored
similar to the clusters in Figure 4. The MD-plot was generated using the R package ‘DataVisualizations’. (b) Class-wise
mirrored-density plots (MD-plot) of the three explained classes with regard to electrical conductivity C. There is a class of
high concentration, a class of low to intermediate concentration, and a class of low C concentrations. Classes are colored
similarly to the clusters in Figure 4. The MD plot was generated using the R package ‘DataVisualizations’.

3.4. Comparison of DDS-XAI with eUD3.5 and IMM

Applying the eUD3.5 algorithm [36] to the unprocessed 2013/2014, 2015, and 2016
data identified in each case three clusters and resulted in 541, 503, and 552 rules that are
required to explain various overlaps in the data points of the three clusters. The seven
outliers for the 2013/2014 data and five outliers for the 2015 data identified in our analysis
were disregarded before using eUD3.5. In comparison, the DDS-XAI framework proposed
a streamlined solution with five, seven, and four rules. Furthermore, the class MDplots
for nitrate do not show different states of water bodies for eUD3.5 in Appendix H: Class
MDplots of eUD3.5 and k-means, Figure A5, except for one class of intermediate NO3
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concentrations in 2016 (Appendix H, Figure A5, left bottom) and one high state of electric
conductivity in 2013/2014 (Appendix H, Figure A5).

We further compared our DDS-XAI results with those of the k-means part of the
IMM algorithm combined with a measure of feature importance for the clustering because
Dasgupta et al. did not provide any source code in their work [37]. Therefore, the first part
of the IMM algorithm [37], the k-means clustering [39], was performed with the unprocessed
data of 2013/2014, 2015, and 2016 as no other information by Dasgupta et al. was available.
The seven outliers for the 2013/2014 data and the five outliers for the 2015 data identified
in our analysis were disregarded from the data for this k-mean clustering. Measuring
the feature importance for the clustering [40] indicates that it is based mainly on sol71 in
each dataset, leading to the assumption that the second part of the IMM algorithm, the
decision tree, would favor this feature strongly to explain the clusters. For all three datasets,
the k-means clustering was compared to the projection-based clustering, for which the
contingency tables are presented in Appendix B: Comparison to the K-means clustering
approach, Tables A1–A3. The contingency tables do not show an overlap of clusters between
projection-based clustering and the first part of the IMM algorithm, k-means. Additionally,
the class MDplots are presented in Appendix H, Figure A6 for all three datasets, which
do not show different states of water bodies with the exception of EC in 2015 and 2016,
meaning that IMM’s explanation is significantly less relevant to the domain expert.

The results are summarized in Table 3. The table shows that the IMM and eUD3.5
cover the data slightly better since the DDS-XAI is not able to explain the clustering exactly.
However, the IMM and eUD3.5 results are not meaningful to the domain expert because
the number of explanations is either primarily based on only one feature or the amount
of explanations is too high to be comprehensible for a domain expert. Furthermore, the
clusterings of IMM and eUD3.5 would largely not result in distinct water bodies, contrary to
DDS-XAI, resulting in irrelevant explanations. It follows that the explanations of eUD3.65
and IMM are neither meaningful nor relevant to the domain expert.

Table 3. Comparison of algorithms. Data coverage is the overlap between the clustering and
the explanations generated by the clustering measured through accuracy. (*) For called iterative
mistake minimization (IMM), the number of explanations can only be estimated based on the feature
importance. Explanations are relevant if they can distinct water bodies (see MD-plots).

Method Data Coverage Number of
Explanations Year of Data

IMM
98 1 * 2013/2014
98 1 * 2015
100 1 * 2016

eUD3.5
98 541 2013/2014
98 503 2015
100 552 2016

DDS-XAI
96.5% 5 2013/2014
89% 7 2015
89% 4 2016

4. Discussion

Conventional XAIs try to argue for explainability in various ways. For example,
numerous axioms can be postulated, and then it is proved that the proposed XAI best
satisfies these axioms (e.g., [81]), or diverse evaluation metrics for explainability are used
(e.g., [48]). The reason for this considerable variety lies in the fact that explainability is
rather complex to define [82]. We follow the view of Arrieta et al., that “explainability” is
associated with the notion of explanation as an interface between humans and a decision-
maker [machine] that is, at the same time, both an accurate proxy of the decision-maker
[machine] and comprehensible to humans” [83,84]. In this sense, explainability is evaluated
here by building on Grice’s maxims of logic and conversation. According to Grice’s maxims,
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our AI is an XAI and outperforms comparable approaches. DDS-XAI framework is applied
to hydrochemical time series. However, the framework could be applicable to other
datasets.

In the DDS-XAI, the selection of a suitable distance measure per dataset in combi-
nation with cluster analysis enables guides supervised decision trees. For three datasets,
explanations are extracted from these clustering-guided decision trees. It is assumed that
cluster analysis is valid if intra-cluster distances are smaller (more similar to each other)
than inter-cluster distances. As a parameter-free clustering algorithm, projection-based
clustering was chosen. It enables the evaluation of the clustering with a topographic map in
addition to the conventional heatmap. Projection-based clustering [42] with the projection
of the Databionic swarm [55] is a flexible and robust clustering framework that has the
ability to separate complex distance-based structures. The existence of structures in data
defining clusters and the number of clusters can be estimated prior to the clustering by the
visualization of the topographic map. Such structures were identified by low intra-cluster
distances and high inter-cluster distances of Gaussian mixture models of the distance
distributions and verified by the heatmaps and topographic maps for each dataset sep-
arately. Simpler linear models (Appendix G, Figure A4) or spherical cluster structures
were inappropriate (Appendix D, Figure A3, Appendix B, Tables A1–A3) for all three
datasets. It follows that most conventional approaches for clustering listed in [85] or recent
XAIs [36,37] would be not appropriate to detect meaningful and relevant structures in data.
Statistical testing indicates that the distributions of interesting variables differ between
classes (Appendices C and E) for the 2013/2014 dataset. Further results imply that the
explanations for all three clusterings were meaningful because brief rules were extracted
by applying decision trees. Overall, it can be deduced that this dataset contains linearly
non-separable distance based on non-spherical cluster structures that are meaningful and
relevant to the domain expert.

The major difference between other XAIs and the approach followed here is that
comparable approaches use unsupervised decision trees, whereas this work uses decision
trees based on a clustering that is performed independently. This has two main advantages.

First, in Thrun and Ultsch, it was shown that k-means can only grasp spherical cluster
structures, which is a severe restriction [42]. Moreover, the silhouette plot is only useful
in the case of spherical or ellipsoidal structures [38,86]. As a consequence eUD3.5 will
prefer hyper ellipsoidal cluster structures and IMM will only work well on spherical cluster
structures because it is based on k-means. The DDS-XAI presented here outperforms
k-means because it can find a large variety of cluster s [42]. Additionally, clustering
algorithms may return meaningless results in the absence of natural clusters [87–89] in
contrast to PBC, which will clearly indicate that no cluster structures exist [42,55]. Moreover,
PBC is able to discover small classes [42], whereas UD3.5 is not [36] (p. 52381).

Second, the compared approaches of eUD3.5 and IMM are limited to either use trans-
formed data simultaneously providing no meaningful explanations to the domain expert,
or to use non-transformed data. If unprocessed data measured with the international sys-
tem of units is used, the results show that comparable XAI would not provide meaningful
explanations. In eUD3.5, many rules are presented for each cluster which do not cover the
clusters well enough. IMM weights one feature significantly more than all other features
combined. Moreover, neither IMM nor eUD3.5 provide a clustering that is relevant to
the domain expert because. Most of the class-wise distributions of NO3 and EC do not
differ (see. Appendix H, Figures A5 and A6 for details). Hence, these classes do not define
different states of water bodies.

In summary, explanations are relevant and meaningful in our work, whereas for
eUD3.5 and IMM, the explanations are neither relevant nor meaningful.

5. Conclusions

No prior knowledge usable for a cluster analysis was available for the environmental
and water quality data used here. Therefore, an XAI system relying on verifiable projection-
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based clustering was used. Explanations were provided in a three-step approach of
“structure identification in data” followed by cluster analysis, for which explanations were
provided using unprocessed data.

Explanations were provided by rules through a combination of supervised decision
trees that are trained on the labels of the clustering of preprocessed data. Contrary to other
XAI approaches, the explanations of the XAI framework proposed here were meaningful.
They explained relevant content in a human-understandable way. The explanations suggest
that the stream water quality data regarding NO3 and EC can be described by a combination
of one variable related to biological processes (water temperature) and two variables related
to hydrological processes (rain and groundwater level). Our XAI provided explicit ranges of
values and could enable future prediction of stream water quality. One other XAI (eUD3.5)
failed to extract relevant and meaningful rules. Another XAI (IMM) failed because it
focuses on specific cluster structures and features, hence relies on prior knowledge about
data structure.

The XAI framework presented here allows for unbiased detection of explainable
structures in high dimensionality datasets. Such datasets become more and more available,
not only in hydrochemistry but also in other environmental disciplines due to the technical
innovation in monitoring equipment. Our explainable AI provides a unique possibility
to search for unknown structures and can provide meaningful and relevant explanations
because it does not rely on prior knowledge about any particular structure in the data.
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Appendix A. Features after Preprocessing

Variables were preprocessed such that metric distances can be used because the range
of every feature is approximately between zero and one. The distribution of the features is
shown by the MD-plot [10] (described also Section 2.3.3 Step III for definition) in Figure A1.
This preprocessed dataset of 2013/2014 is used for PBC [42]. The complete aggregated
dataset of 2013/2014 consisted of 343 days. The mirrored-density plots (MD-plots) show
that the range of a variable is approximately between zero and one because the robust
normalization approach uses 1% and 99% quantiles instead of maxima and minima, thus
allowing outliers to lie below zero or above one.

https://github.com/Mthrun/ExplainableAI4TimeSeries2020/tree/master/90RawData
https://github.com/Mthrun/ExplainableAI4TimeSeries2020/tree/master/90RawData
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Figure A1. The distribution of variables of the 2013/2014 data after preprocessing is visualized using mirrored-density
plots of the hydrology dataset. The magenta overlay marks features that are statistically not skewed or multimodal. The
mirrored-density plot (MD-plot) was generated using the R package ‘DataVisualizations’.

Appendix B. Comparison to the K-Means Clustering Approach

For the 2013/2014, 2015, and 2016 datasets, the clustering can be reproduced with
an accuracy of 42%, 52%, and 54%, using the k-means algorithm [39] if the outliers are
disregarded. The contingency tables are presented below (Tables A1–A3).

Table A1. Contingency table of projection-based clustering of the 2013/2014 versus k-means pub-
lished in [39] and integrated in FCPS [45].

PBC/k-Means 1 2 3 RowSum RowPercentage

1 24 77 61 162 47.23
2 28 65 66 159 46.36
3 0 8 14 22 6.41

ColumnSum 52 150 141 343 0
ColPercentage 15.16 43.73 41.11 0 100

Table A2. Contingency table of projection-based clustering of the 2015 versus k-means published
in [39] and integrated in FCPS [45].

PBC/k-Means 1 2 3 4 5 6 RowSum RowPercentage

1 0 0 3 4 19 30 56 24.45
2 32 0 12 0 0 0 44 19.21
3 0 0 10 26 3 3 39 17.03
4 10 22 4 1 0 0 37 16.16
5 30 0 0 0 0 0 30 13.10
6 10 1 4 5 3 2 23 10.04

ColumnSum 82 23 33 36 19 36 229 0
ColPercentage 35.81 10.04 14.41 15.72 8.3 15.72 0 100
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Table A3. Contingency table of projection-based clustering of the 2015 versus k-means published
in [39] and integrated in FCPS [45].

PBC/k-Means 1 2 RowSum RowPercentage

1 71 132 203 69.76
2 27 61 88 30.24

ColumnSum 98 193 29 0
ColPercentage 33.68 66.32 0 100

Appendix C. Kolmogorov-Smirnov Tests of Clusters

Tables A4 and A5 compare the clustering achieved for conductivity and NO3 for the
2013/2014 data. The clusters should contain samples of different natures and are based on
different processes. Given this assumption, it is valid to statistically test whether the NO3
and EC distributions significantly differ between clusters. The Kolmogorov–Smirnov test
(KS test) is a nonparametric two-sample test of the null hypothesis that two variables are
drawn from the same continuous distribution [90]. For the first three clusters, the NO3 and
EC distributions significantly differ among clusters. The number of days per cluster were
too small for the 2015 and 2016 data to use statistical testing.

Table A4. Kolmogorov–Smirnov (KS) test with test statistic (D) and p-value (p) for conductivity for
the first three clusters.

Cluster No.
(Sample Size) C2 (159) C3 (22)

C1 (162) D = 0.13429,
p = 0.11

D = 0.74074,
p < 0.001

C2 (159) D = 0.84906,
p < 0.001

Table A5. KS test with test statistic (D) and p-value (p) for NO3 for the first three clusters.

Cluster No.
(Sample Size) C2 (159) C3 (22)

C1 (162) D = 0.50769, p < 0.001 D = 0.98765, p < 0.001
C2 (159) D = 0.83019, p < 0.001

Appendix D. Silhouette Plots

The silhouette plot of projection-based clustering clustering of the three datasets is
presented in Figure A2 and demonstrates an inappropriate clustering w.r.t. spherical cluster
structures because values below 0.25 mean no (spherical) structures and below 0.5 lead to
the assumption that the (spherical) structure is weak and could be disregarded [38].
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Figure A2. Silhouette plot of projection-based clustering of the 2013/2014, 2015, and 2016 data shows low values for the 
three main clusters, indicating inappropriate clustering with regard to expected spherical structures. The silhouette plot 
was generated using the R package ‘DataVisualizations’. 

Appendix E. Distinction of Classes 1 and 2 in Regard to Rain and Water Temperature 

Figure A2. Silhouette plot of projection-based clustering of the 2013/2014, 2015, and 2016 data shows low values for the
three main clusters, indicating inappropriate clustering with regard to expected spherical structures. The silhouette plot
was generated using the R package ‘DataVisualizations’.

Appendix E. Distinction of Classes 1 and 2 in Regard to Rain and Water Temperature

Using the Kolmogorov–Smirnov test (KS test), which is a nonparametric two-sample
test of the null hypothesis that two variables are drawn from the same continuous distribu-
tion [90], Class 1 significantly differs from Class 2 in the variable Wt18 (water temperature)
with p < (162,159, D = 0.31982) < 0.001 and in the variable rain with p < (162,159, D = 0.70498)
< 0.001. This is visualized in the class-wise maximum-likelihood plots of Figure A3. More-
over, Figure A3 (right) shows that the water temperature in Class 2 is more likely to be
lower than that in Class 1 and less likely to be lower than that in Class 3.
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Figure A3. Class wise estimation of the probability density function using PDE allows for a more precise definition of Class
2 of the 2013/2014 data, “Duality”, because the plot shows that in Class 2, there are also rainy days with colder water than
in Class 3. The red and dashed line in the right plot marks a temperature of 12.5 ◦C. Classes are colored similarly to the
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Appendix F. Definitions for Distance Distributions

Let I be a finite subset of N high-dimensional points in a metric space with a distance
function d(l,j), then the matrix D =

(
Dl,j

)
l,j∈I

is called a distance matrix of I (c.f. [91]) with

each entry as Dl,j = d(l, j) being the distance between two high-dimensional points of data.
The distance matrix D satisfies four conditions, meaning that the diagonal entries are all
zero (d(l, l) = 0 ∀ 1 ≤ l ≤ N), positive (d(l, j) > 0 ∀ l 6= j), symmetric d(l, j) = d(j, l) and
for any l,j d(l, j) ≤ d(l, k) + d(k, j), ∀k (triangle inequality). Using the definition above, we
define the distance feature d f as the upper (or lower) triangle of the symmetric distance
matrix (d f = Dl j, ∀l > j, 1 ≤ l ≤ N, 1 ≤ j ≤ N).

Given a finite dataset I of N cases, each described by d features, the Euclidean dis-

tance is defined as d(l, j) =
√

∑
i
(li − ji)

2 which can be modified to the Hellinger point

distance with d(l, j) =

√
∑i

(√ li
∑ li
− √ ji

∑ ji

)2
c.f. ([72,92,93]). For details regarding the

Hellinger point distance and the application to the data, we refer to the function paral-
lelDist::parallelDist (R package “parallelDist” on CRAN) [94] and the provided source
code.

Appendix G. Linear Models

In Figure A4, the generalized U-matrix is applied to the three linear projections
to visualize high-dimensional distance structures in the two-dimensional space of the
2013/2014, 2015, and 2016 data. No structures are visible on the topographic maps.
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Figure A4. Toroidal topographic map of a projection pursuit approach by [75] of the 2013/2014 (top left), 2015 (top right), 
and 2016 (bottom) datasets. The linear projections do not reveal a linear structure, even if the generalized U-matrix is used 
to visualize high-dimensional distances of the two-dimensional projection [58]. This visualization was generated using 
the R package “GeneralizedUmatrix” and the projection and clustering using “FCPS”. 

Appendix H. Class MDplots of eUD3.5 and k-Means 
Exemplary for the 2013/2014 data class-wise MD plots are presented for eUD3.5 and 

k-means in Figures A5 and A6. Similar results can be derived for the 2015 and 2016 data. 
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Figure A5. Class-wise mirrored-density plot (MD-plot) of the three datasets of 2013/2014, 2015, and 2016 classes defined 
541, 503, and 552 rules, respectively, by eUD3.5 with regard to nitrate NO3 (left) and electrical conductivity EC (right). 
Seven outliers identified in PBC in 2013/2014 were priorly disregarded. In the case of nitrate, no clear differences between 
the distributions of the classes are visible, except for 2016. There is one high to intermediate classes of EC and classes of 
low to intermediate EC in 2013/2014. The MD-plot was generated using the R package ‘DataVisualizations’. 

 

 

 
Figure A6. Class-wise mirrored-density plot (MD-plot) of the three classes defined by the clustering part of IMM with 
regard to nitrate NO3 (left) and electrical conductivity EC (right). Seven outliers identified in PBC were priorly disregarded 
in the data of 2013/2014. No clear differences between the distributions of the classes are visible in 2013/2014 data. In the 
2015 and 2016 data, different states of EC are visible (middle and bottom right). The MD-plot was generated using the R 
package ‘DataVisualizations’. 

Figure A5. Class-wise mirrored-density plot (MD-plot) of the three datasets of 2013/2014, 2015, and 2016 classes defined
541, 503, and 552 rules, respectively, by eUD3.5 with regard to nitrate NO3 (left) and electrical conductivity EC (right).
Seven outliers identified in PBC in 2013/2014 were priorly disregarded. In the case of nitrate, no clear differences between
the distributions of the classes are visible, except for 2016. There is one high to intermediate classes of EC and classes of low
to intermediate EC in 2013/2014. The MD-plot was generated using the R package ‘DataVisualizations’.
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2015 and 2016 data, different states of EC are visible (middle and bottom right). The MD-plot was generated using the R
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Appendix I. Used R Packages

Table A6. The following R packages available on CRAN are used in this work.

Name of Packag Usage Reference Accessibility

ABCanalysis Computed ABCanalysis for
outlier detection [95] https://CRAN.R-project.org/

package=ABCanalysis

DataVisualizations
Mirrored density plot (MD
plot), density estimation,

heatmap
[96] https://CRAN.R-project.org/

package=DataVisualizations

FCPS
54 alternative clustering

algorithms for specific cluster
structures

[45] https://CRAN.R-project.org/
package=FCPS

DatabionicSwarm

Projection algorithm that finds
a large variety of cluster

structures and can cluster data
as a special of

Projection-based clustering.

[55,97] https://CRAN.R-project.org/
package=DatabionicSwarm

parallelDist Distance computation for
many distance metrics [94] https://CRAN.R-project.org/

package=parallelDist

AdaptGauss Gaussian Mixture Modelling
(GMM), QQ plot for GMM [46] https://CRAN.R-project.org/

package=AdaptGauss

rpart Supervised Decision Tree [79] https:
//CRAN.R-project.org/package=rpart

evtree Supervised Decision Tree [68] https://CRAN.R-project.org/
package=evtree

GeneralizedUmatrix
Provides the topographic map,

enables to visualize any
projection method with it

[58] https://CRAN.R-project.org/
package=GeneralizedUmatrix

ProjectionBased Clustering

Provides projection-based
clustering, interactive

interfaces for cutting tiled
topographic map into islands
and for interactive clustering

[42,43] https://CRAN.R-project.org/
package=ProjectionBasedClustering

FeatureImpCluster

“Implements a novel
approach for measuring

feature importance in k-means
clustering”

[40] https://CRAN.R-project.org/
package=FeatureImpCluster

Appendix J. Collection and Preprocessing of Multivariate Time Series Data

The first dataset used in this work was collected in 2013/2014 in the Schwingbach
Environmental Observatory (SEO) in central Germany. The mixed developed landscape is
mainly characterized by agricultural land use (44%) and forests (48%). The Schwingbach is a
small headwater stream draining the landscape. An in situ hyperspectral UV-spectrometer
(ProPS, Trios, Rastede, Germany, wavelength range 200–360 nm, path length 5 mm, solar
panel supplied) was used to measure absorption spectra every 15 min at the gauging
station of the catchment’s outlet. Prior to measurements, air blasts (5 s) were blown on the
lens to prevent the optics from biofouling. Wavelength spectra at 200–220 nm were utilized
for the calculation of nitrate concentration, following calibration with local stream water
matrix (see [6] for further details). All other variables used in this XAI approach (Table 1)
were also monitored at the same high-frequency or aggregated to 15 min intervals.

Discharge and stream water temperature was recorded by pressure transducers (Diver
DCX, Schlumberger Water Services, ON, Canada) at two gauging stations at the outlet
(q13) and upstream (q18) of the first-order stream of the Vollnkirchener Bach. Groundwa-
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ter depths in three piezometers were measured with similar pressure transducers. The
piezometers were located in different positions along the Schwingbach. GWl3 was mea-
sured in the lowland close to the outlet of the stream, GWl25 was recorded at a hillslope,
and GWl32 upstream in the riparian zone. Electromagnetic induction sensor (5TE) attached
to EM50 data loggers (Decagon, Labcell LTD, Alton, UK) installed at 0.1 m depth in the
riparian zone were used to gauge soil moisture and soil temperature. All meteorological
data were collected at a climate station 4 km from the outlet (Campbell Scientific Inc.,
CR1000 data logger, Loughborough, UK). Further technical information on the SEO, the
analytical procedures applied, the coding of abbreviations, and the experimental design, in
general, are outlined in detail by [6,7,91].

Data gaps due to technical problems and data quality control reduced the available
data coverage to two growing seasons (5 March 2013 to 24 September 2013, N = 15,475
measurements; 27 April 2014 to 23 October 2014, N = 16,721 measurements). In Table 1,
abbreviations and Appendix units of all variables are provided. The 2013/2014 data was
published earlier by Aubert et al. [6]. However, Aubert et al. used a high-frequency
temporal analysis. In comparison, this work focuses on the average daily measures for
each variable, resulting in a low-frequency analysis. Prior clustering was performed on
the 2013/2014 data aggregated by sum instead of mean [47,98], resulting in a clustering
that proved to be unfeasible to the domain expert ([55], SI B), not only due to the fact of the
unusable aggregation but also since knowledge acquisition was performed on preprocessed
data which proved to be problematic.

Four percent of the data are missing. For each day, the measurements were aggregated
by the mean of all available measurements for that day. Then, missing values (i.e., days)
were interpolated using the seven-nearest-neighbors approach. Distance measures are
sensitive to the variance in the distribution of features. For example, the Euclidean metric
weights feature more if they have values above 1. Therefore, the variance of features is
usually standardized before a cluster analysis is performed.

The variables q13 and q18 were log-transformed. All variables, with the exception of
rainfall, were normalized to values between zero and one through a robust normalization
procedure [99] improved by [47]. Correlating variables have to be detected before further
data evaluation; otherwise, these variables will be over-weighted in assessing the following
distance matrices. The discharges correlated linearly with each other (r = 0.95, p(S = 347,270,
N = 351) < 0.001), and q13 were therefore excluded from the analysis. The air temperatures
Wt13 and Wt18 also correlated linearly (r = 0.99, p(S = 18,386, N = 351) < 0.001); hence,
Wt13 was removed as well.

The outliers in the rainfall variable were detected via ABC analysis [95]. ABC analysis
is a method used to compute precise limits to acquire subsets in skewed distributions by
exploiting the mathematical properties pertaining to the distribution. The data containing
positive values are divided into three disjoint subsets, A, B, and C, with subset A comprising
very profitable values, i.e., the largest data values (“the important few”). Subset B contains
values for which the yield equals the effort required to obtain it, and subset C contains
the non-profitable values, i.e., the smallest datasets (“the trivial many”). The R package is
called ‘ABCanalysis’ and available on CRAN. Then, the rain was normalized with respect
to the minimum value in group A. All other points in group A were capped by defining
the upper bound for rainfall.

The second dataset used in this work was collected in 2015 in the Schwingbach
Environmental Observatory (SEO) in central Germany as described above. In this dataset,
N = 35,040 measurements are provided. Due to technical problems, data gaps reduced the
number of available days after aggregation for NO3 to 234 days. Then, preprocessing was
performed as described above.

The third dataset used in this work was also collected in the SEO but in 2016 containing
N = 35,136 measurements. Similarly, data gaps result from technical problems, reducing the
number of available days after aggregation for NO3 to 291 days. Thereafter, preprocessing
was performed as described above.
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Appendix K. DDS-XAI Results of 2015 and 2016 Data

Table A7. Explanations based on rules derived from the decision tree for 2015 data with an accuracy of 89%. Abbreviations:
rainfall intensity (rain), water temperature (Wt18) and water level at point 25 (GWl25). All values are expressed as
percentages. For units of measurement, please see Table 1. The color names of the projected points of Figure A10 are
mapped to the rules of this table.

Rule
No.

Color

Class
No.

No. of
Days Explanations Short Description of Class

for Subsequent Plots

R1
magenta 1 55

Wt18 >= 13.1 and rain < 3
=>Warm stream water without heavy rain

intensity

WarmWater
WithoutHeavyRain

R4,
yellow 2 39

Wt18 < 13.1 and Wt18 ≥ 5.8 and GWl25 ≥ 1.8
and rain < 2.3

=>Intermediate stream water temperature and
rain intensity with higher ground water levels

LightRain
MildWater

AtHighLevel

R3
black 3 27 GWl25 ≥ 1.8 and Wt18 < 5.8

=> High ground water levels with cold water ColdWaterAtHighLevel

R7
red 4 37

Wt18 < 13.1 and GWl25 < 1.3
=> Low ground water levels with decreasing

water temperature

CoolerWater
AtLowLevel

R6
blue 5 30

Wt18 < 13.1 and GWl25 >= 1.3 and GWl25 < 1.8
=> intermediate ground water level with

decreasing water temperature

CoolerWater
AtIntermediateLevel

R2 and R8
teal 6 21

Wt18 ≥ 13.1 and rain ≥ 3 OR
Wt18 < 13.1 and Wt18 ≥ 5. and

GWl25 ≥ 1.8 and rain ≥ 2.3
=> high rain intensity with either warm water
with or intermediate water temperature and

high ground water levels

HighRainIntensityAt
HighLevel

- Unclassified 5 Excluded, because cannot be explained with
decision trees Outliers

Table A8. Explanations based on rules derived from the decision tree for 2016 data with an accuracy of 89%. Abbreviations:
rainfall intensity (rain), water temperature (Wt18) and water level at point 25 (GWl25). All values are expressed as
percentages. For units of measurement, please see Table 1. The color names of the projected points of Figure A11 are
mapped to the rules of this table.

Rule
No.

Color

Class
No.

No. of
Days Explanations Short Description of Class

for Subsequent Plots

R1 and R2
magenta 1 94

GWl25 < 1.1 or
GWl25< 1.7 and Wt18 < 8.7

=> low stream water temperature temperature
with lower groundwater levels

ColdWaterAtLowerLevel

R4,
yellow 2 165

GWl25 ≥ 1.1 and Wt18 > 8.7
=> Intermediate stream water temperature with

high groundwater level
WarmWaterAtHigherLevel

R3

90% in
2

10% in
1

32 GWl25 > 1.7 and Wt18 < 8.7 IncorrectlyClassified
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Figure A7. DDS-XAI’s explanations of 2015 data are relevant to the domain expert because they explain distinct water 
bodies based on the NO3 and electrical conductivity (EC) level. The exception are the outliers and the class high rain 
intensity at high level (of ground water) which has in EC a large variance. PDE could not be estimated due to low number 
of days. 

Figure A7. DDS-XAI’s explanations of 2015 data are relevant to the domain expert because they explain distinct water
bodies based on the NO3 and electrical conductivity (EC) level. The exception are the outliers and the class high rain
intensity at high level (of ground water) which has in EC a large variance. PDE could not be estimated due to low number
of days.
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Figure A8. DDS-XAI’s Explanations of 2016 data are relevant to the domain expert because they explain distinct water 
bodies based on the NO3 and EC level. PDE could not be estimated for left class due to low number of days. 
Figure A8. DDS-XAI’s Explanations of 2016 data are relevant to the domain expert because they explain distinct water
bodies based on the NO3 and EC level. PDE could not be estimated for left class due to low number of days.
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Figure A9. Decision trees of 2015 data (top) and 2016 bottom used to derive the rules in Tables A7 and A8. Rules are 
numbered from left to right. 

Figure A9. Decision trees of 2015 data (top) and 2016 bottom used to derive the rules in Tables A7 and A8. Rules are
numbered from left to right.
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Figure A10. Gaussian mixture model of the Minkowski distance with p = 0.1 and QQplot is shown at the top, and a topo-
graphic map of the projection-based clustering and heatmap of distances is shown at the bottom for the 2015 dataset. 

Figure A10. Gaussian mixture model of the Minkowski distance with p = 0.1 and QQplot is shown at the top, and a
topographic map of the projection-based clustering and heatmap of distances is shown at the bottom for the 2015 dataset.
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Figure A11. Gaussian mixture model of the Euclidean distance and QQplot is shown in the top, topographic map of the 
projection-based clustering and heatmap of distances is shown at the bottom for the 2016 dataset. 
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