
����������
�������

Citation: Stadtler, S.; Betancourt, C.;

Roscher, R. Explainable Machine

Learning Reveals Capabilities,

Redundancy, and Limitations of a

Geospatial Air Quality Benchmark

Dataset. Mach. Learn. Knowl. Extr.

2022, 4, 150–171. https://doi.org/

10.3390/make4010008

Academic Editor: Andreas Holzinger

Received: 22 December 2021

Accepted: 26 January 2022

Published: 11 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

Explainable Machine Learning Reveals Capabilities,
Redundancy, and Limitations of a Geospatial Air Quality
Benchmark Dataset
Scarlet Stadtler 1,* , Clara Betancourt 1 and Ribana Roscher 2,3

1 Jülich Supercomputing Centre, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany;
c.betancourt@fz-juelich.de

2 Institute of Geodesy and Geoinformation, University of Bonn, Nußallee 17, 53115 Bonn, Germany;
ribana.roscher@uni-bonn.de

3 Data Science in Earth Observation, Technical University of Munich, Lise-Meitner Street 9,
85521 Ottobrunn, Germany

* Correspondence: s.stadtler@fz-juelich.de

Abstract: Air quality is relevant to society because it poses environmental risks to humans and
nature. We use explainable machine learning in air quality research by analyzing model predictions
in relation to the underlying training data. The data originate from worldwide ozone observations,
paired with geospatial data. We use two different architectures: a neural network and a random
forest trained on various geospatial data to predict multi-year averages of the air pollutant ozone. To
understand how both models function, we explain how they represent the training data and derive
their predictions. By focusing on inaccurate predictions and explaining why these predictions fail, we
can (i) identify underrepresented samples, (ii) flag unexpected inaccurate predictions, and (iii) point
to training samples irrelevant for predictions on the test set. Based on the underrepresented samples,
we suggest where to build new measurement stations. We also show which training samples do
not substantially contribute to the model performance. This study demonstrates the application of
explainable machine learning beyond simply explaining the trained model.

Keywords: explainable machine learning; air quality; k-nearest neighbors; neural network;
random forest

1. Introduction

Air pollution poses a significant environmental risk to human health, leading to
4.2 million premature deaths every year [1]. Therefore, air quality monitoring networks
are established in many countries to warn the public, monitor compliance to regulations
concerning air pollutant emissions, and analyze observations to assist with the develop-
ment of new regulations [2,3]. Tropospheric ozone is a toxic air pollutant. In contrast to
stratospheric ozone, which protects humans and plants from harmful ultraviolet radiation,
tropospheric, near-surface ozone harms humans and plants. It is also a greenhouse gas [4].
Uncovering the spatial variability of air pollutants such as ozone is crucial for controlling
air pollution and assessing human exposure.

Machine learning is a complementary approach to established physics-based chemistry-
transport modeling [5–7]. Data-driven techniques and machine learning are increasingly
explored for air quality modeling [8–12] because many observations are available on the
one hand. On the other hand, these methods were proven to capture complex relationships
while being easy to implement [12].

The downside of these easy-to-implement methods is the problem of opaque models.
For atmospheric scientists, it is essential to understand the internal functioning of their
models. Investigating machine learning approaches to predict ozone values based on
environmental data can help pinpoint influential factors for ozone values or predict the
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spatial variability of ozone. In addition, for decision-making, trustworthy and reliable
models are required. Understanding the models’ capabilities and limitations is a way to
increase trust in a model. Explaining how a trained machine learning model arrives at its
predictions gives us insights into its core functioning.

As stated in the beginning, air pollution monitoring is essential to design policies to
protect the public and for research to understand air pollution chemistry. Inspired by the
increasing application of data-driven techniques to air quality research, Betancourt et al. [11]
combine environmental data with air quality observations for the challenge to model
air pollutant tropospheric ozone. An impression of the AQ-Bench dataset is given in
Figure 1. Figure 1a shows the locations of ozone observation stations distributed around
the globe and their ozone values, while Figure 1b gives a histogram of the target data
distribution. In AQ-Bench, the authors model the target ozone metrics derived from air
quality measurement stations based on various geospatial datasets using different machine
learning algorithms [11]. Betancourt et al. [11] show differing scores for the coefficient of
determination for a random forest and a two-layer shallow neural network. They compare
the coefficient of determination of the three data-driven approaches and found that the
nonlinear methods had a higher score than linear regression. They conclude a similar
performance of the shallow neural network and the random forest. What is rarely done, to
our knowledge, is to explain the differences between various machine learning architectures
applied to the same task.
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Figure 1. Geospatial air quality benchmark dataset (AQ-Bench). (a) Measurements of the target on a
map projection. It is the average ozone from 2010 to 2014 of the AQ-Bench dataset and is given in
ppb (parts per billion). (b) Histogram of the average ozone values in the AQ-Bench dataset [13].

In this study, we explain the similarity of a shallow neural network and a random
forest, which are two different algorithms trained on the same dataset by showing similar
behavior in the models’ representation space. Thus, the contribution of this study is two-
fold. On the one hand, we uncover the core functionality of two different machine learning
approaches trained on the same benchmark dataset AQ-Bench. On the other hand, we use
the models’ explanations to gain a deeper understanding of the underlying dataset. The
explanations reveal the representation of AQ-Bench in the machine learning models. With
our analysis, we flag untrustworthy data samples, identify training data samples irrelevant
for prediction, and recommend where to build new near-surface ozone measurement
stations based on underrepresented test samples. The uniqueness of our approach is that
we use machine learning explanations based on analysis of the models’ representation
space to derive understanding and make recommendations in the geographical space.

2. Related Work

Earth system science research faces challenges when applying machine learning meth-
ods to environmental data. Tuia et al. [14] point out the challenges that arise from the basic
machine learning chain to derive input-output relations from Earth system data. The input
data are complex and, at the same time, limited. The black box behavior of the models
has to be overcome, and the output results should be turned to an explainable, reliable,
and scientifically consistent outcome. A full review is beyond the scope of this study,
but in the following sections, we (i) emphasize data-driven ways to model air pollution
(Section 2.1); (ii) show examples of overcoming the black box behavior in atmospheric
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science (Section 2.2); and (iii) highlight studies turning their results into scientific outcomes
(Section 2.3). We focus on studies within the Earth system science domain to meet the
goal of this study, which aims to use machine learning explanations for further use in
ozone research.

2.1. Data-Driven Air Pollution Modeling

Different machine learning approaches have been used in air pollution research in
recent years. Algorithms capable of learning nonlinear relationships in the input data are
needed to process complex air pollution data. Tree-based algorithms, such as random forest
and sophisticated neural networks, are commonly applied to model different air pollutants
such as fine particulate matter (PM2.5, PM10) and gases such as near-surface ozone.

Brokamp et al. [15] use a random forest for land-use regression and assessment of
several particulate pollutant species. They conclude to use random forests in land-use
models for more accurate exposure assessment in the future. Similarly, Mallet [16] states
that the best performing model in their study is the random forest, which can model 59%
of the variance in PM10. They use a range of meteorological, environmental, and temporal
variables as predictors. Althuwaynee et al. [17] judge the random forest to provide clear
insights about the PM10 pollution distribution. They implement a random forest and
extreme-gradient boosting to map the PM10 susceptibility index onto probability and classi-
fication index maps. Tian et al. [18] find that their random forest outperforms other models,
suggesting that the relationship between air quality and spatial configurations of the urban
elements such as the urban infrastructure is most likely nonlinear. They use a random forest
and a neural network to combine meteorological factors with urban elements to explore
intra-urban PM2.5 concentrations. Lu et al. [19] conclude that deviations of hourly ozone
prediction by their numerical chemistry transport model can be significantly reduced by
machine learning postprocessing. Their postprocessing involves Lasso regression, ran-
dom forest, and a long short-term memory recurrent neural network. Alimissis et al. [20]
compare the application of neural networks and multiple linear regression to spatial inter-
polation of the urban air pollutants nitrogen oxides, ozone, carbon monoxide, and sulfur
dioxide. They conclude that neural networks are significantly superior in most cases.
Cabaneros et al. [8] review 139 papers using neural networks for air pollution modeling
between January 2001 and February 2019. Wen et al. [21] propose using convolutional long
short-term memory to predict PM2.5. Their results show that their machine learning model
achieves a better performance than current state-of-the-art models for monitoring stations
in China. Based on meteorological and air quality data, convolutional neural networks are
applied to forecast ozone at several hundred measurement locations [9,22].

2.2. Explainable Machine Learning in Earth Science

Mcgovern et al. [23] state that the ultimate goal of Earth scientists is to deepen their
understanding of the Earth system. Therefore, incorporating machine learning into a cycle
of knowledge discovery is a means to get closer to this goal. To integrate machine learning
into the cycle of knowledge discovery, explainable AI and interpretation techniques are
required to understand the core functioning of the machine learning models. Review
articles list explainable AI methods [24,25]; here, we highlight Earth science studies that
explain their machine learning models.

Mcgovern et al. [23] use interpretation techniques such as saliency maps [26], backward
optimization [27], and neuron ranking by their discrimination ability to examine their
tornado predictions. Gu et al. [12] note that different models favor different predictor
variables and result in different interpretation abilities by interpreting their data-driven
air quality models using SHAP value-based explanations. Yan et al. [28] develop an
interpretable deep learning model to retrieve surface fine particle air pollution from satellite
data. They can extract spatio-temporal features from their model, which agrees with
their physics-based numerical model. Bennett et al. [29] analyze their neural network for
simulating latent and sensible heat fluxes using layer-wise relevance propagation [30], and
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they show that even simple neural networks can extract physically plausible relationships.
They suggest that explainable AI methods offer ways to learn from trained neural networks
instead of just making predictions. However, to reach the ultimate goal, as stated by
Mcgovern et al. [23], explaining a model is not the end, and scientific insights need to be
generated from the results.

2.3. Scientific Insights through Explainable AI

In their abstract, Roscher et al. [31] write: “An exciting and relatively recent develop-
ment is the uptake of machine learning in the natural sciences, where the major goal is
to obtain novel scientific insights and discoveries from observational or simulated data”.
According to Roscher et al. [31], an essential component is domain knowledge, which is
needed to increase models’ and results’ explainability and enhance scientific consistency.
Their article reviews various explainable machine learning approaches and highlights how
they are used in combination with domain knowledge from different disciplines. Some
studies go a step further than simply determining the explanation of used machine learning
models; they leverage the achieved explanations to gain a deeper understanding of the
Earth system. Stirnberg et al. [10], for example, use explanations based on SHAP values [32]
to reveal meteorological factors driving fine particulate air pollution variability. With their
SHAP value analysis, they gain process understanding at individual air pollution mea-
surement sites. Toms et al. [33] apply an explainable neural network as a tool to identify
patterns of Earth system predictability. Their neural network is trained to predict decadal
oceanic variability and explained it by applying layer-wise relevance propagation [30].
They conclude that explainable neural networks are useful in determining patterns of
predictability. Schramowski et al. [34] introduce a method called explanatory interactive
learning for deep convolutional neural networks with the task of plant phenotyping. They
use explanations by saliency maps to uncover correctly classified samples affected by
the Clever-Hans effect [35] and correct these predictions to arrive at an explainable and
trustworthy model. In perspective, Tuia et al. [14] argue that learning causal relationships
is crucial for understanding the Earth system. The link between explainability and actual
causal relationships is strong since relationships determined by machine learning can be
paired with domain knowledge to formulate hypotheses that can help to uncover novel
cause-and-effect relationships.

3. AQ-Bench Dataset

AQ-Bench is a machine learning benchmark dataset designed to empirically relate
ozone statistics observed at air quality measurement stations to geospatial data. It contains
aggregated ozone statistics from over 5500 measurement stations of the years 2010–2014.
These stations are distributed globally, although not evenly (see Figure 1). The primary
source of the ozone statistics is the Tropospheric Ozone Assessment report database [3].
Most of the stations are in Europe, North America, and East Asia. Although AQ-Bench
contains different ozone statistics, this study only focuses on the average ozone as a
target variable.

The geospatial features in AQ-Bench characterize the measurement site. Although
there are no functional relationships available as prior knowledge for machine learning in
the dataset, these geospatial features were selected because they serve as proxies for ozone
formation, destruction, and transport processes. Features such as ‘population density’ in
different radii around the station indicate human activity and, therefore, ozone precursor
emissions. In addition, features such as ‘altitude’/’relative altitude’ are used as proxies for
local flow patterns and ozone sinks. A complete description of the features in AQ-Bench
and their relation to ozone processes can be found in [11].

4. Methods

We combine the following methods to gain novel scientific insights about the AQ-
Bench dataset. First, we use the methods to understand how the trained models work.
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Second, we use our knowledge about the models’ functioning to explain inaccurate predic-
tions. We train our models on a dataset that consists of input feature vectors xi and target
values yi. Both machine learning models predict ŷi based on the input feature vector:

ŷi = fmodel(xi) . (1)

To gain novel insights, we uncover the models’ functioning by calculating SHAP global
importance for both models; see Section 4.1 and visualizing prediction patterns. Since we
use a random forest and a neural network, we implement visualization methods tailored to
the specific architectures. Section 4.2 presents the neural network visualization method and
Section 4.3 presents the random forest visualization method. These visualizations help us
to explain individual predictions. Nevertheless, interpreting individual predictions does
not yield a global understanding of the trained models. Therefore, we move from single
predictions to studying prediction patterns. For this, we use k-nearest neighbors on both
models for explaining inaccurate predictions; see Section 4.4.

4.1. SHAP

As Lundberg et al. [32] proposed, we use SHapley Additive exPlanations (SHAP) to
explain local and global predictions [36]. SHAP values are derived by a model-agnostic
post hoc explainable machine learning method and therefore are suitable for comparison of
our two different machine learning algorithms. The SHAP values quantify the contribution
of each feature to the model prediction. Contribution refers to the deviation from the base
rate, which is the expected value of the training dataset, where features with high absolute
contributions are considered more important. For example, a feature with a negative SHAP
value causes the model to predict a value lower than the expected value of the training
set. Since features with large SHAP absolute values are considered important for a single
prediction, averaging absolute SHAP values per feature across data results in an estimate
for global importance based on SHAP.

4.2. Neural Network Activation

For the neural network, Equation (1) takes the form:

ŷ = fnn(x, W, b) (2)

where W and b represent the neural network’s parameters [37]. Our trained, shallow neural
network can be easily visualized by representing the node structure and expressing the
values of weights and biases as colors (Figure 2, left). During inference, the trained neural
networks parameters W, b are combined with the input feature vector x and the activation
function σ in each layer:

A[1] = σ(W[1]ᵀx + b[1]) (3)

A[l] = σ(W[l]ᵀA[l−1] + b[l]) (4)

where W[l] and b[l] the weights and biases of layer l [37]. Therefore, we can also visualize
the trained neural network during inference by plotting the activation A. The neural
network signals are obtained by visualizing Equations (3) and (4); see Figure 2 (right).

4.3. Random Forest Activation

A random forest consists of decision trees h(x, θk), where θk are independent and
identically distributed random vectors. The random forest prediction is the average over
all K decision tree predictions. Thus, Equation (1) takes the form:

ŷ =
1
K

K

∑
k=1

h(x, θk), (5)
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given the input x [38]. Typically, a random forest consists of hundreds of decision trees [39].
Therefore, visualization of the individual decision trees is possible, but hardly useful due
to their sheer number and complexity.
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Figure 2. Visualization method for neural networks. It is possible to visualize the trained neural
network weights W and biases b, as shown in (a). During inference, active neurons (activation A)
transport a signal, as shown in (b), whereas it is also possible to have inactive neurons that do not
transport any signal; see (c). Note that we use lowercase letters to indicate the components of the
vectors and matrices.

Since we can represent our data in the geographical space, we use a more intuitive way
of visualizing the basis set of influential training samples that the random forest used for its
prediction. By visualizing the location of the basis set used for prediction on a global map,
we display the random forests’ functioning. We name this type of visualization leaf activation
to emphasize the similarity to an activated neural network during prediction. The steps to
create this kind of visualization are illustrated in Figure 3 and listed in the following:

1. Propagate all training samples through the trained random forest. Keep track of the
tree IDs, leaf node IDs, and corresponding training sample IDs.

2. Propagate a single test sample through the random forest. Track the corresponding
responsible tree IDs and leaf node IDs for the prediction.

3. To identify training samples that are most relevant for a given prediction, keep track of
the relative frequency of the training samples contributing to the leaf node predictions
responsible for a given test sample prediction.

4. Since each training sample has geographical information; influential training samples
can be visualized on a map. The marker size indicates the frequency of a specific
training sample contributing to the leaf nodes responsible for a particular prediction.

As decision trees split the data according to their features, these groups of training
samples should have similar features as the target test sample. These training samples took
the same decision path through the decision trees and ended up in the same leaf node as
the test sample.

4.4. Explaining Inaccurate Predictions with k-Nearest Neighbors

Figure 4 shows how to use k-nearest neighbors to explain inaccurate model predictions
as proposed by Bilgin and Gunestas [40], who explain their deep learning models through
post hoc analysis of k-nearest neighbors. For an inaccurately predicted test sample, they
extract the k-nearest neighbors in the training dataset and feed them into the trained
model. By comparing the prediction based on the nearest neighbors in the training set and
the inaccurate prediction of the test sample, they derive an interpretation of the model’s
response and identify different cases. Bilgin and Gunestas [40] apply their method to two
standard machine learning benchmark datasets: IRIS and CIFAR10. They originally tested
their method on supervised classification tasks, and we adapted and applied it to our
supervised regression task.

Since our goal is to explain the functioning of our two machine learning models, we
search the k-nearest neighbors in their respective representation spaces. For the random
forest, we defined the nearest neighbors as samples in the same leaf nodes (Section 4.3).
For the neural network, we defined the nearest neighbors as samples leading to similar
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activation patterns (Section 4.2), i.e., a group of neurons activated. To search the neural
network activation pattern space, we use the Euclidean distance

L(a1, a2) =

√
n

∑
i=1

(a1,i − a2,i) (6)

where a1 and a2 are a pair of neighboring activation patterns in the n-dimensional neural
network activation space.
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Figure 3. Leaf activation visualization pipeline as described in the text as enumerated bullet points.
We match the training samples contributing to a specific test sample prediction and determine the
influence each training sample has on the prediction. The basis set of training samples, the relative
influence of a training sample, and the target test sample are visualized as a scatter plot on the map.
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Figure 4. Explaining inaccurate predictions by k-nearest neighbors pipeline (adapted and extended
from [40]). After identifying the k-nearest neighbors in the model representation space, we analyze
the auxiliary predictions based on the nearest neighbors regarding the accuracy, relevance, and
distance to the test sample in the feature space.

We define the following prediction scenarios for inaccurate predictions; see Figure 5:

• Case-I-A: A sample of k-nearest neighbors leads to consistent, inaccurate predictions.
The k-nearest neighbors and the test station are located next to each other in the feature
space. The inaccurate prediction of the test sample is not unexpected. In this case, the
model might not be fitted well.

• Case-I-B: A sample of k-nearest neighbors leads to consistent, inaccurate predictions.
The k-nearest neighbors and the test station are not located next to each other in the
feature space. The inaccurate prediction of the test sample is not unexpected. In this
case, the model might not be fitted well, and the test sample is not well represented–
too many problems.

• Case-II-A: The model accurately predicts a sample of k-nearest neighbors, while it
inaccurately predicts the test sample. The k-nearest neighbors and the test station are
located next to each other in the feature space. Therefore, the inaccurate prediction of
the test sample is unexpected. This could point to either an erroneous test sample or a
model limitation. In any case, this prediction is untrustworthy.

• Case-II-B: A sample of k-nearest neighbors leads to accurate prediction, while the test
sample is inaccurately predicted. The k-nearest neighbors and the test station are not
located next to each other in the feature space. Thus, the inaccurate prediction of the
test sample is not unexpected. This points to an underrepresented test sample.



Mach. Learn. Knowl. Extr. 2022, 4 157

• Case-III-A: A sample of k-nearest neighbors leads to scattered accurate predictions.
The test sample is accurately predicted. In the feature space, the accurately predicted
test sample has nearest neighbors. The models are predicting a correct value. This is
the usual case for a healthy prediction.

• Case-III-B: A sample of k-nearest neighbors leads to scattered predictions; both accu-
rate and inaccurate predictions are possible. The test sample is accurately predicted
but due to the wrong reasons. The accurately predicted test sample has no nearest
neighbors in the feature space. The models are predicting a correct value but due to
the wrong reason. We can flag this case as the Clever-Hans effect [35].
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Figure 5. Schematic overview of possible cases. The upper columns show the predictions on k-nearest
neighbors training samples and the target test sample with respect to the prediction error. The lower
columns depict the k-nearest neighbor analysis in the feature space. Dots represent training samples,
while stars depict the test sample.

For the search of the k-nearest neighbors, we prepared the feature space by (i) using
scaled features such that all features have a comparable range of values and (ii) weighting
the features with the respective SHAP importance value. The weighting of the feature
space follows the method by Meyer and Pebesma [41], which calculates the distances’ mul-
tidimensional feature space, with features being weighted by their respective importance
in the model. Then, a Euclidean distance in this scaled and weighted feature represents the
distance relevant to the model prediction.

5. Experimental Setup

This Section gives an overview of the experimental setups of model training and
the application of explainable machine learning methods to our models. We describe the
model training in Section 5.1 and the evaluation in Section 5.2. We compare the feature
importance of both models with SHAP, as described in Section 5.3. To gain an insight
into the representation of AQ-Bench in the trained machine learning models, we visualize
single predictions, as described in Section 5.4. By investigating the predictions made on
the test set in relation to the training samples that this prediction is based upon, we gain
an understanding of prediction accuracy. We present in Section 5.5 how we use k-nearest
neighbors for explaining inaccurate predictions.

5.1. Model Training

We train a shallow neural network and a random forest to solve the task posed
by Betancourt et al. [11]: given geospatial data describing the environmental features, infer
the ozone metrics. In this study, we focus on predicting one ozone metric, the average
ozone. We want to solve the task of predicting average ozone values by training two
machine learning models on a subset of AQ-Bench features. AQ-Bench originally contains
over 100 features. Following the feature selection method by Meyer et al., here, we only
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use 31 of them (features listed in Appendix A, Table A1), because fewer features decrease
model complexity and enable more comprehensible explanations. Ref. [13] showed that
forward feature selection applied on AQ-Bench leads to 31 features. The data split is kept
as in AQ-Bench with 60% training (approximately 3300 samples) and 20% validation and
test samples (roughly 1110 samples, respectively).

We trained a two-layer shallow neural network and a random forest to predict the
average ozone value based on this subset of geospatial data. The hyperparameters of both
machine learning models are summarized in Table A2 in Appendix B.

5.2. Evaluation Metrics

To evaluate the performance of our models, we use common evaluation metrics in
the field of machine learning. We calculate the Root Mean Square Error (RMSE) and the
coefficient of determination (R2) based on the following formulas:

R2 = 1− ∑M
m=1(ym − ŷm)2

∑M
m=1(ym − 〈y〉)2

with 〈y〉 = 1
M

M

∑
m=1

ym (7)

RMSE =

√√√√ M

∑
m=1

(ym − ŷm)2

M
. (8)

Moreover, we consider deviations between the prediction and the reference value as
residuals. Residual ∆ is calculated by subtracting the prediction ŷ from the observed ozone
value y:

∆ = y− ŷ. (9)

Therefore, negative residuals point to an overestimation by the prediction, while
positive residuals depict underestimation.

5.3. SHAP Values

We aim to compare machine learning models based on different algorithms.
Gu et al. [12] propose to treat SHAP (Section 4.1) as a unifying framework for the compari-
son of different machine learning models. Thus, we use SHAP feature importance to rank
features of both trained random forest and neural network according to their relevance.
SHAP values for the random forest are are calculated analytically, whereas the SHAP values
for the neural network area are approximations. Details about the calculation of the SHAP
values and the software we used can be found in [32].

We expect that both models use similar features to predict average ozone, i.e., a subset
of features that are among the most important for both models.

5.4. Visualization of Individual Predictions

By visualizing the predictions patterns of an accurate prediction and an inaccurate
prediction, we aim to show that the underlying patterns leading to an accurate prediction
can be differentiated from the patterns leading to an inaccurate prediction. Here, we choose
two example test samples for visualization where the models had to predict high ozone
values. The one example shows accurate predictions by both models, while the second
example displays an inaccurate prediction with a positive residual, which is also called
underestimation by the models. We chose test samples to be geographically close to each
other; both are located in southern Europe. An overview of the selected test sample stations,
observed average ozone value, predicted values, and residuals is given in Table 1.
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Table 1. Example stations with the station IDs to identify them in the Tropospheric Ozone Assessment
Report database. Station 6952 is located in Spain, while Station 8756 is situated in Greece. The
subscripts point to the corresponding model abbreviation, nn for the neural network and r f for the
random forest.

Station ID Observation y ŷnn ∆nn ŷr f ∆r f

6952 42.44 42.00 0.43 41.99 0.44
8756 40.17 29.32 10.86 27.45 12.72

5.5. Identify k-Nearest Neighbors and Classify Predictions

We aim to test our hypothesis that certain feature combinations lead to activation
patterns in both models related to prediction accuracy. Moreover, we increase our un-
derstanding of how the models function and identify different reasons for inaccurate
predictions. To do so, we use auxiliary predictions on the k-nearest neighbors, as described
in Section 4.4. We identify the k-nearest neighbors for the auxiliary predictions in the
models’ representations spaces and compare if these k-nearest neighbors are also the test
sample’s k-nearest neighbors in the feature space. To automatically classify our test samples
to the different cases (Figure 5), we determine 11 nearest neighbors in the training set of
a given test sample. Then, we calculate the average residual of the training samples and
compare it to the test sample’s residual. In addition, we calculate the average distance
between the group of k-nearest neighbor training samples in the feature space and compare
it to the average distance between the test sample and its k-nearest neighbors. Based on
these values, we can classify our samples into different cases.

We expect both models to lead to similar classifications of the test stations to the cases.

5.6. Train on a Reduced Dataset

We hypothesize that removing non-influential training samples will not affect the
performance of machine learning models. To test the hypothesis, we re-train our models
on a reduced dataset. We identify the 10% training samples that are not influential for the
predictions on the test samples. To identify which samples are non-influential, we used the
identified 100 nearest neighbors for each test sample and ranked the whole training dataset
according to the proximity to the test samples. We eliminated the 10% of data with the
lowest proximity to the test samples in the models’ representation spaces from the training
dataset. This leads to a training dataset of the size 3000 training samples. For evaluation,
we use the evaluation metrics introduced in Section 5.2. The hyperparameters of both
models are kept unchanged.

We do not expect significant performance losses of both models. The random forest
is less sensitive to changes in the training dataset than the neural network, such that we
expect a slightly higher performance loss of the neural network than the random forest.

6. Results
6.1. SHAP Global Importance

Table 2 gives an overview of the global feature importance for the trained random
forest and neural network. In both models, the absolute value of the latitude is the most
influential feature, with global feature importance of 23.96% (RF)/20.50% (NN). For the
subsequential most important features, the models differ. The trained random forest
heavily relies on features related to topography, i.e., altitude, and then uses environmental
characteristics connected to an anthropologically influenced environment. The topography-
related features are also of relevance to the neural network. Both models attribute some
importance to the forest in the surrounding 25 km area, while for the neural network, this
feature is two times as important as it is for the random forest. There are several features
with low importance attributed by both models. These are mainly tropical, boreal, and
polar climatic zones, which are not well represented in the AQ-Bench dataset. The differing
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feature importance of both models leads to differently weighted features spaces when
searching the k-nearest neighbors.

Table 2. Global feature importance derived by SHAP for our trained random forest (RF) and neural
network (NN). The first column lists short descriptions of the AQ-Bench features; we kept the order
from the most important to the least important in the test set of our random forest. Percentage
values for the random forest are shown in the second column, and corresponding values of the
neural network are shown in the third column. The largest importance values of both models were
underlined, the second largest are shown in bold, and the third largest are shown in italic font. For a
table with the AQ-Bench feature names, see Appendix A Table A1.

Feature Description Importance RF [%] Importance NN [%]

Absolute latitude 23.96 20.5
Relative altitude 16.21 11.93
Altitude 10.44 8.16
Nightlight in 5 km area 9.73 4.35
Forest in 25 km area 5.37 13.54
Population density 4.41 1.8
Nightlight in 1 km area 4.12 8.77
Water in 25 km area 4.11 7.5
Maximum population density in
25 km area 3.54 0.32

NO2 emissions 3.51 6.31
Maximum population density in
5 km area 3.04 1.21

Savannas in 25 km area 2.68 0.84
Croplands in 25 km area 1.73 1.74
Grasslands in 25 km area 1.68 0.77
NOx emissions 1.62 0.84
Warm, dry climate 1.18 5.27
Shrublands in 25 km area 0.65 1.67
Maximum nightlight in 25 km area 0.35 0.39
Warm, moist climate 0.33 2.49
Cool, moist climate 0.32 0.14
Rice production 0.3 0.58
Permanent wetlands in 25 km area 0.27 0.15
Cool, dry climate 0.25 0.13
Tropical, dry climate 0.14 0.13
Tropical, wet climate 0.03 0.11
Tropical, moist climate 0.02 0.09
Boreal, moist climate 0.0 0.11
Polar, moist climate 0.0 0.07
Boreal, dry climate 0.0 0.1
Polar, dry climate 0.0 0.0
Tropical, montane climate 0.0 0.0

6.2. Comparison of Neural Network and Random Forest Performance and Residuals

The coefficients of determination for the neural network and random forest for the
training set, validation set, and test set can be found in Table 3. We calculated all perfor-
mance metrics using the observed values (ground truth) and Equations (7) and (8). The
coefficient of determination R2 is over 95% for the training set for the random forest, while
it is 64.21% for the neural network. The difference between the R2 and RMSE on the test set
is smaller than the difference on the training set. The random forest has a slightly higher
R2 with 53.03% than to the neural network with 49.46%. The difference between the RMSE
of both models is smaller, with 4.46 ppb for the random forest and 4.59 ppb for the neural
network. From these two scores, the models perform comparably well on the test set, while
it is apparent that the random forest performance is slightly better.
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Table 3. Coefficient of determination and RMSE for the training and validation test set.

Random Forest R2 [%] RMSE [ppb]

Training 95.75 1.33
Validation 56.99 4.08

Test 53.03 4.46

Neural Network

Training 64.21 3.52
Validation 58.34 3.87

Test 49.46 4.59

The focus of this study lies on the test set; therefore, we take a closer look at the
residuals of both models. The residual is defined in Section 5.2, Equation (9). Figure 6
shows the residuals of the random forest together with the residuals of the neural network.
Both models mainly predict the average ozone on the test set with a residual error below
5 ppb. We consider predictions with residuals below 5 ppb as accurate, considering
the conservative measurement error estimation of 5 ppb [3]. From 1110 test samples,
the random forest accurately predicted 867 samples, and the neural network accurately
predicted 842 samples. The correlation between the residuals of the random forest and
the neural network is shown in Figure 6. The correlation is high, so apparently, some test
samples are difficult to predict for both models. The following Sections focus on these
268 (neural network) and 243 (random forest) inaccurately predicted samples.
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Figure 6. Scatter plot of the residuals ∆ of the random forest on the x-axis and neural network on the
y-axis for the test set.

6.3. Visualization of Individual Predictions

In this section, we take a closer look at the visualization of single prediction patterns
by both machine learning models. As described in Section 4.3, it is possible to show in
geographical space upon which samples the random forest bases its prediction. Table 2
gives the coordinates, and the stations are displayed in Figure 7. Both test samples are
located in the Mediterranean area, in Spain (a,b) and Greece (c,d). Figure 3a,b show the
accurate prediction, where the random forest bases its prediction on stations with similar
features and similar average ozone values. The most influential training samples are located
next to the target test station in the geographical space. The predicted value is 41.99 ppb
compared to the observed value of 42.44 ppb. In contrast, Figure 7c,d shows an inaccurate
prediction with a residual of 12.72 ppb, while the target average ozone was 40.17 ppb,
which is indicated by the bright yellow star in Figure 7d. In this case, the influential training
samples have much lower average ozone values. Moreover, there are hardly any influential
stations with larger contribution but many with small markers, even in South Korea and
Japan. The accurate prediction for station 6952 is based upon 63 training stations, while the
inaccurate prediction of station 8756 is based upon 122 training stations.
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a) Station 6952

d) Station 8756 (close up)

b) Station 6952 (close up)

c) Station 8756

Figure 7. Map with training stations (dots) upon which the trained random forest bases its predictions
to predict the test station (star). The colors of the dots indicate the observed ozone value at the
respective training and test station. Plot (a) and (b) depict an accurate prediction with a small
residual. Plot (c) and (d) show an inaccurate prediction with a large residual. Plots (b) and (d) are
close-ups over Europe.

In Section 4.2, we introduced a way of visualizing shallow neural networks. We
visualize the neural network while it infers the average ozone values for the same two
example test stations presented in Table 2. Figure 8a shows the activation pattern caused
by the accurate prediction for the station in Spain, while b shows the activation pattern for
the inaccurately predicted station in Greece. The residual error for the accurate prediction
is comparable to that of the random forest, 0.43ppb, while the inaccurate prediction misses
the target value by 10.56 ppb. As a reference, we also show the weights and biases of the
network in Appendix C, Figure A1. Left of the input nodes, we noted down the feature
names, also found in Appendix A, Table A1. Red nodes indicate active input features
important for the respective prediction. In both cases (a) and (b), most input nodes are
light blue, indicating slightly negative values. While in (a), there are many connections
activating and deactivating nodes in the first hidden layer, the inaccurate prediction (b) has
a first hidden layer with mainly slightly activated nodes. The signals to the second hidden
layer are visible in (a), while again, in (b), there is hardly any departure from the mean state.
In the second hidden layer, the first node from the top can reduce the value of the output
node, while the other four nodes increase the output (see also Appendix C, Figure A1). In
(a), this node is correctly deactivated, leading to a high and accurate prediction. In (b), this
node is activated such that the second hidden layer increases and decreases the output
value, leading to a prediction near the average.

6.4. Explaining Inaccurate Predictions

To get a general impression of how our trained models work, we look at the 11 nearest
neighbors of the entire test set. As described in Section 4.4, the whole test set is needed
to classify all test samples into the three cases using the k-nearest neighbor algorithm
to identify the nearest neighbors. After classifying all test samples, we mainly focus on
inaccurate predictions with a residual larger than 5 ppb, which can only appear in case-I
and case-II. Figure 9 show inaccurately predicted test stations ordered according to their
predicted average ozone value. Each vertical sequence of dots represents one test sample.
Each dot is one nearest neighbor of the test sample. The nearest neighbors were identified in
the respective models’ representation. Afterward, we also checked the Euclidean distance
of these nearest neighbors in the weighted feature space. In the vertical, nearest neighbors
are ordered according to the weighted Euclidean distance in the feature space, meaning the
further away from zero the dot is placed, the more different the features of the neighbor and
the target test sample. The colors represent negative (red) and positive residuals (blue). The
dot size indicates proximity/importance in the models’ representation spaces. Figure 9a
shows the random forest results, and Figure 9b shows the neural network results.
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a) Station 6952 (Spain) b) Station 8756 (Greece)

-1.00 -0.50 0.0 1.000.50

Figure 8. Trained shallow neural network while making predictions for two test samples. Plot (a) de-
picts an accurate prediction with a small residual. Plot (b) shows an inaccurate prediction with a
large residual.
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a) Random forest

b) Neural network
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Figure 9. Plots showing inaccurate predictions (absolute values of ∆ > 5 ppb) on the test set by the
random forest (a) and neural network (b). The weighted Euclidean distance in the respective feature
space is on the y-axis. On the x-axis, the predicted average ozone is shown. The colors indicate the
residual: red points mean negative residuals and model overestimation, while blue points show
positive residuals and model underestimation. The size of the single dots points to the distance
between the test sample and the training sample in the representation space. A larger dot means that
the test sample and respective training sample lead to similar activation patterns in the model.

Inaccurate predictions can be found in both models over the average ozone distribu-
tion. We have far more test samples between 25 and 30 ppb than outside of this range.
Below 21 ppb and above 35 ppb, both models have trouble finding nearest neighbors in the
weighted feature space. This is visible through the vertical sequence of dots being farther
away from the zero line in black. Moreover, in the well-represented range between 25 and
30 ppb, some samples have nearest neighbors in the weighted feature space, but still, they
fail to produce accurate predictions. We further analyze the nature of the failed prediction
using the cases presented in Section 4.4 in Figure 10.

Figure 10 shows all inaccurately predicted test samples and accurately predicted
samples that do not have nearest neighbors in the weighted feature space. The colors
denote the case describing the reason for the inaccurate prediction. Blue dots represent
case II-A (untrustworthy sample and/or prediction), plum-colored dots represents case II-B
(underrepresented feature combination), and gray dots refer to case III-B (Clever-Hans
effect). Figure 10a shows the analysis for the random forest, and Figure 10b shows the
analysis for the shallow neural network. The prediction error on the test samples is
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mainly close to ≈0 ppb, never leading to case-I for both models. Thus, all inaccurate
predictions belong to case-II for AQ-Bench. The Random Forest incorrectly predicted
243 test samples, of which 238 belong to case II-A, while five belong to case II-B. There are
a total of 268 inaccurate predictions for the neural network: 246 categorized as case II-A
and 22 categorized as case II-B. We also checked the nearest neighbors in the weighted
feature space for all accurately predicted test samples and found six samples belonging to
case-III-B for the random forest and 52 for the neural network.
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a) Random forest

b) Neural network

Case II-A
Case II-B
Case III-B

Case II-A
Case II-B
Case III-B

Figure 10. Similar to Figure 9, but the colors indicate the type of inaccurate prediction (navy blue and
plum dots). Moreover, additionally to inaccurate predictions, we also show instances of Clever-Hans,
where the residual error ∆ < 5 ppb, but there are no nearest neighbors in the models’ representation
space (gray dots).

We can pick the inaccurately predicted samples and plot their geospatial locations
based on this classification. Figure 11 illustrates untrustworthy predictions, underrepre-
sented test stations, and training stations that were non-influential (Section 6.5) for all
predictions on the test set. We derive areas where new data acquisition would improve
our data-driven models for the underrepresented samples. Given our current test station
features, we searched the global feature space to identify locations where we recommend
additional observations. Figure 11 shows the areas in blue, red, and violet (overlap blue
and red) on the globe where we recommend building new ozone monitoring stations.
For example, both models recommend building stations around the underrepresented
stations in Greenland and Chile. Thus, these new training data samples would improve
our machine learning models given the current test set.

Neural network
Random forest
Both models

New station (neural network)
New station (random forest)
New station (both models)

Non-influential
Untrustworthy
Underrepresented

Figure 11. Map showing non-influential training stations in white, untrustworthy predictions on the
test set in blue, and underrepresented test stations in plum. The marker indicates the model on which
these stations were derived. The neural network’s marker is ×, the random forest’s marker is +, and
where those two symbols overlap, we get something like an asterisk ∗. Moreover, we indicate regions
where the models recommend building new stations in red, blue, and violet. The neural network
recommends building new stations in red-colored areas; the random forest recommends building
new stations in the blue-colored areas. Violet represents the intersection of regions recommended by
both models.
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6.5. Training Without Irrelevant Training Samples

We noticed that many training stations are not nearest neighbors to any of the stations
within the test set during our analysis of the test set predictions. The random forest does
not base any prediction upon them, and for the neural network, these training stations
cause different activation patterns, leading them to not be even amongst the 100 nearest
neighbors of any test sample. Given the assumption that we only want to predict the
average ozone on our test set, we can argue that these might be irrelevant training samples.
An overview of the location of these non-influential stations is given in Figure 11. We
trained both machine learning models on a reduced training dataset from scratch to test
if we could get a comparable performance by leaving out these training samples. Table 4
shows the RMSE and coefficient of determination of the models trained on the reduced
training dataset.

Table 4. Scores on the test set for the reduced training set excluding 10% of the non-influential
training data samples.

Random Forest R2 [%] RMSE [ppb]

Reference 53.03 4.46
Test 52.32 4.49

Neural Network

Reference 49.46 4.59
Test 47.45 4.72

Leaving out the non-influential training stations leads to slight decreases in the co-
efficient of determination on the test set. For the random forest, the R2 value decreases
by 1%, while the loss in accuracy is slightly higher for the neural network, around 2%. The
RMSE values of both models increase by 0.03 ppb for the random forest and 0.13 ppb for
the neural network.

7. Discussion

The following discussion is based on several assumptions. First, we assume that the
SHAP values, which indicate the impact a feature has on the prediction, are related to the
global importance of a feature when taking the entire set of SHAP values into account.
Moreover, to use the Euclidean distance as a measure for similarity, we assume that the
weighted feature space and the representation space are smooth. On top of this, we suppose
that the Euclidean distance in the weighted feature space and representation space reflects
similar samples and similar prediction patterns. We also assume that the weights in the
neural network and the structure of the decision trees within the random forest have
meaning. Finally, we assume that the k-nearest neighbors in the representations space are
the influential training samples for the prediction. This assumption is weak for the random
forest since we identified the training samples sharing leaf nodes with the predicted test
sample. It is a somewhat stronger assumption for the neural network, where we cannot
verify if the training stations we identified as k-nearest neighbors in the representation
space are the stations on which the prediction on the test sample is based.

The random forest achieves a higher R2 score and a lower RMSE than the neural
network on the training data set. However, both models achieve similar R2 scores differing
by 3.5% on the test set (Section 6.2). The comparison of the residuals of the neural network
and random forest shows that both models have difficulties of accurately predicting a
subset of the test samples, which points to shortcomings of the AQ-Bench dataset rather
than poorly fitted models.

To understand the difference between an accurate prediction and an inaccurate predic-
tion in the models’ representation space, we visualize the signal activation of the neural
network and the leaf activation of the random forest (Section 6.3). In both cases, the pat-
terns within the models’ activation differ between an accurate and an inaccurate prediction
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(Figures 7 and 8). These prediction patterns, which are representations of AQ-Bench sam-
ples in the model representation space, can be used to classify inaccurate predictions by
the reason the prediction failed. Section 4.4 defines cases based upon the distance to the
nearest neighbors in the model representation space and the weighted feature space. The
numerals in the names of the cases point to the model’s representation of the data. Case-I
points to consistent inaccurate predictions, case-II points to inaccurate predictions, and
case-III points to accurate predictions. On top of the model representation, we analyze
the weighted feature space where we defined cases. In case-A, the test sample is among
its nearest neighbors of the training set, while in case-B, it is far away from the training
samples classified as nearest neighbors in the model representation space. In the following,
we first discuss case-I and case-III because case-II gives more insights to AQ-Bench.

The first conclusion we draw from the analysis in Section 6.4 is that samples are
assigned to any case except case-I-A and case-I-B, which means that both models are well
fitted. Furthermore, case-III represents all accurate predictions. Over 93% of the predictions
can be assigned to case-III-A for both models, which shows that most of these samples are
not affected by the Clever-Hans effect (case-III-B). Although there is a difference between
the neural network and the random forest, the neural network detected nearly nine times
more often Clever-Hans predictions than the random forest.

In contrast to case-I and case-III, the discussion of case-II is diverse. Test predictions
assigned to case-II are unexpected and inaccurate, while the k-nearest neighbor predictions
are accurately predicted. Based on the examination of the weighted feature space, it is
possible to identify underrepresented samples and untrustworthy predictions. The expla-
nations lead to further insights about the AQ-Bech dataset and both models’ predictions, as
discussed in the following.

Overall, we found 0.5% underrepresented test samples for the random forest and 2%
for the neural network. We suppose the data split causes the low rates of underrepresented
test samples because Betancourt et al. [11] follow good practices of a dataset design, taking
into account spatial correlations, data distribution, and representation ability.

Nevertheless, there is an overlap between the test samples identified as underrepre-
sented in the training dataset, leading to areas where we recommend building new ozone
observation stations based on both models (violet areas, see Figure 11). We chose machine
learning as an alternative method to propose new station locations, which is a task that is
also tackled by using an atmospheric chemistry model [42]. Although we show that the
number of underrepresented test samples is not a significant issue for the prediction on the
test dataset, underrepresented locations become problematic in the case of applying the
models to areas outside the AQ-Bench dataset, e.g., in (global) mapping studies [13,41,43].

We also identified training samples that are non-influential when making predictions
on the test set shown in Section 5.6. Those samples were either rarely or not included
in the set of the 100 nearest neighbors and never used as auxiliary predictions. Neural
network and random forest show slight differences regarding which subset of training
samples are non-influential, but both agree on a set of roughly 5%. The non-influential
stations are either located in data-dense regions or data-sparse regions. We interpret
non-influential stations appearing in a data-dense region as redundancy in the training
dataset. In contrast, non-influential stations in data-sparse areas are attributed to rare
feature combinations not present in the test dataset and therefore are not needed to make
accurate predictions on the test set. We further observe training samples in areas with
sparse observations that are non-influential for one model but influential for the other
one (Figure 11). One model recommends adding more stations in these areas while the
other model flagged the available station as non-influential, highlighting the differences
in the models’ representations. This is underlined by the SHAP importance (Table 2) that
shows that the models primarily base their predictions on different features. The spatial
distribution of the new building locations in Figure 11 shows the strong influence of the
feature absolute latitude. Areas, where we recommend building new stations based on
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the model’s results, are distributed across zonal bands and are characterized by relevant
feature combinations.

The majority of the inaccurately predicted test samples of approximately 22% for
both models belong to the case-II-A of an unexpected inaccurate prediction (Section 6.4).
Here, the auxiliary predictions of the 11 nearest neighbors are accurate, and these training
samples are also nearest neighbors in the weighted features space. We flag these predictions
as untrustworthy because we do not trust the decision process they follow, as detailed
in the following. There are two possible reasons for an inaccurate test sample prediction
while the nearest neighbor predictions are accurate. The first reason is that the test sample’s
ozone value is erroneous, which might be due to an error in the observation. The AQ-Bench
is a reliable benchmark dataset originating from a trustworthy data source. Errors in ozone
values could occur in single cases, but it is doubtful that 22% of the data are erroneous.
The second reason is the relationship between the features and their importance and the
target average ozone deviates for these samples. The features in AQ-Bench are a variety of
characteristics describing the environment around the measurement station and are proxies
for precursors and atmospheric variables. There is no direct chemical relationship between
environmental characteristics and average ozone. As a result, possible relevant features are
missing, and the relation between features and target cannot be represented sufficiently
because the system is underdetermined. Therefore, we attribute the untrustworthy samples
to unique relationship between features and targets not reflected in the learned models.

8. Conclusions

In this study, we present various ways of using explainable machine learning to
understand the core functionality of different machine learning models to support our
understanding of the underlying dataset. Although AQ-Bench consists of proxies for
chemical processes, we can gain new scientific insights and understand how different
machine learning architectures use the input data to derive their predictions. By analyzing
inaccurate predictions within the representation space of the machine learning models and
assessing their k-nearest neighbors of the inaccurate predictions in the feature space, we
draw conclusions about data representation and flag untrustworthy predictions. Moreover,
our analysis also shows that given our current test dataset, irrelevant training samples
exist, which we can drop without significant deterioration of model performance. Our
experiments conclude that our machine learning models trained on geospatial air quality
data do not represent the chemical relationships but rather found patterns in comparable
training samples. Based on these learned patterns, both models construct the predictions
with slightly different feature importance. Therefore, both models need enough representa-
tive and variable training samples to correctly reproduce prediction patterns required for
the full range of predictions.
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Appendix A. SHAP Importance with Feature Variable Names

Table A1. Feature importance derived by SHAP. The first column lists the names of the AQ-Bench
features; we kept the order from the most important to the least important in the test set of our random
forest. Percentage values for the random forest are shown in the second column; corresponding
values of the neural network are shown in the third column.

Feature Importance RF [%] Importance NN [%]

lat 23.96 20.5
relative_alt 16.21 11.93
alt 10.44 8.16
nightlight_5km 9.73 4.35
forest_25km 5.37 13.54
population_density 4.41 1.8
nightlight_1km 4.12 8.77
water_25km 4.11 7.5
max_population_density_25km 3.54 0.32
no2_column 3.51 6.31
max_population_density_5km 3.04 1.21
savannas_25km 2.68 0.84
croplands_25km 1.73 1.74
grasslands_25km 1.68 0.77
nox_emissions 1.62 0.84
climatic_zone_warm_dry 1.18 5.27
shrublands_25km 0.65 1.67
max_nightlight_25km 0.35 0.39
climatic_zone_warm_moist 0.33 2.49
climatic_zone_cool_moist 0.32 0.14
rice_production 0.3 0.58
permanent_wetlands_25km 0.27 0.15
climatic_zone_cool_dry 0.25 0.13
climatic_zone_tropical_dry 0.14 0.13
climatic_zone_tropical_wet 0.03 0.11
climatic_zone_tropical_moist 0.02 0.09
climatic_zone_boreal_moist 0.0 0.11
climatic_zone_polar_moist 0.0 0.07
climatic_zone_boreal_dry 0.0 0.1
climatic_zone_polar_dry 0.0 0.0
climatic_zone_tropical_montane 0.0 0.0
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Appendix B. Hyperparameters

Table A2. Hyperparameters of the random forest and the neural network.

Random Forest

Number of trees 100
Criterion RMSE
Depth Unlimited
Bootstrapping Training samples

Neural Network

Learning rate 1.0× 10−4

L2 lambda 5.0× 10−2

Batch size No mini batches
Number of epochs 15,000

Appendix C. Trained Neural Network Visualization

Figure A1 shows the trained neural network’s weights and biases. The strength
between the connections of input features and the first layer is consistent with the global
importance given by SHAP. Moreover, we can note nodes with certain roles in the second
hidden layer: A node activated to reduce the final predicted value (blue connection to
output node) and three nodes (red/orange connections) that can be activated to increase
the final prediction.

-1.00 -0.50 0.0 1.000.50

Figure A1. Weight and biases for our trained shallow neural network.
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