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Abstract: This paper presents a technique to reduce the number of parameters in a transformer-based
encoder–decoder architecture by incorporating autoencoders. To discover the optimal compression,
we trained different autoencoders on the embedding space (encoder’s output) of several pre-trained
models. The experiments reveal that reducing the embedding size has the potential to dramatically
decrease the GPU memory usage while speeding up the inference process. The proposed architecture
was included in the BART model and tested for summarization, translation, and classification tasks.
The summarization results show that a 60% decoder size reduction (from 96 M to 40 M parameters)
will make the inference twice as fast and use less than half of GPU memory during fine-tuning
process with only a 4.5% drop in R-1 score. The same trend is visible for translation and partially for
classification tasks. Our approach reduces the GPU memory usage and processing time of large-scale
sequence-to-sequence models for fine-tuning and inference. The implementation and checkpoints are
available on GitHub.

Keywords: transformers; autoencoder (AE); sequence-to-sequence (seq2seq); compression;
summarization; translation; classification

1. Introduction

This paper is an extended version of the work published in [1] to explore the pro-
posed architecture in more detail to further study its strength and shortcomings. The
primary focus of this paper is to create a more efficient fine-tuning paradigm for pre-trained
transformer-based [2] models. It is no secret that the current landscape in natural language
processing (NLP) portrays a direct correlation between the model’s scale and capabilities.
Admittedly, the trend is more visible in decoder-only large language models like GPT-
family [3–5] and LLaMA [6]. However, other task-specific models can also experience
a boost in performance with a higher number of parameters. This tendency has serious
environmental [7] and usability impacts.

Exploring the new possibilities to enhance the accessibility of large-scale models
is a crucial research area. The performance of an architecture, no matter how capable
it may be, becomes irrelevant if researchers cannot make further improvements or
practitioners cannot build upon it. Even the process of loading some of the large-scale
models, like the encoder-only switch transformer [8], necessitates a substantial amount
of engineering effort. The impact of this trend on the sequence-to-sequence (seq2seq)
architecture is even more pronounced due to the presence of both an encoder and a
decoder component. Without adequate resources, it is challenging to effectively utilize
well-known seq2seq models such as BART [9] and Pegasus [10], which consist of 400 M
and 570 M parameters, respectively. It is worth noting that these numbers are considered
relatively small compared to the current standards.
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This research examines how the dimensionality reduction capability of autoencoders [11]
can be used to compress the latent space of an encoder–decoder architecture. Reducing the
size of the embedding space leads to a smaller decoder, as it reduces the input dimension of
the decoder. Both the fine-tuning and inference processes are expected to benefit from this
approach. However, we anticipate a significant improvement during inference, as the decoder
plays a crucial role in this stage. The main contributions of this paper are as follows:

• The best algorithm and architecture to perform an effective embedding space com-
pression were found.

• An extensive number of experiments were conducted to find the perfect balance
between the autoencoder’s compression rate and the model’s capability.

• The proposed architecture underwent testing across various datasets and was evalu-
ated for summarization, translation, and classification tasks.

• The autoencoder’s capacity to effectively generalize unseen datasets and diverse tasks
was explored.

The rest of the paper is organized as follows. In the next section, we provide an
overview of the prior literature on the topic of model compression. Section 3 will delve into
a comprehensive explanation of the proposed architecture and its individual components,
offering a more detailed perspective. Next, we discuss the experiments that were carried out
to both validate the approach and assess its effectiveness across various tasks. Subsequently,
we present the outcomes of the experiments, concluding with a comprehensive analysis
of the findings. You can find the implementation details and pre-trained weights in the
provided GitHub repository: https://github.com/AlaFalaki/compressedBART (accessed
on 13 July 2023).

2. Background

The transformer architecture has established its dominance across various NLP tasks.
The BART [9] model reigned supreme on the summarization task leaderboard for a long
time and demonstrated proficiency in translation as well. A number of studies extend it
for summarization like the current state-of-the-art approach, BRIO [12], which generates a
large pool of summaries and select the best candidate, or the HydraSum [13] architecture,
with multiple decoders for capturing different styles.

By pre-training on a multilingual dataset, the mBART [14] model has achieved an
enhanced performance in machine translation task. Various approaches have been in-
vestigated to enhance translation quality, including the utilization of back translation for
monolingual models [15] and parameter sharing across layers to reduce the number of
parameters and computational time [16].

For several classification tasks, the pre-trained XLNet [17] model demonstrated su-
perior performance compared to BERT. LadaBERT [18] presents a novel approach that
combines various dimensionality reduction techniques, including low rank decomposi-
tion and pruning. This approach leads to a compact and highly efficient model that can
seamlessly integrate into diverse applications. The ERNIE-Doc [19] model introduces a
recursive architecture that offers an improved efficiency in handling large sequences. It
surpasses competing models in multiple tasks, including classification.

Additional researchers are actively investigating the pre-training of large models to
achieve high performance across multiple downstream tasks. The T5 [20] architecture
is one of the well-known examples that resulted in in a pre-trained model to handle
translation, summarization, question answering, and classification with high accuracy.
These advancements are scaling up the parameter count and slowing the inference process.

Multiple research studies have already been conducted to tackle the growing size of
neural network models. Quantization [21] is one of the first experiments which apply to any
deep learning model by using a half-precision (16-bit) floating point to greatly reduce the
network size and memory usage. Micikevicius et al. proposed a mixed precision algorithm
in [22] to further close the gap in evaluation results. Recent works experimented with
the effect of the knowledge distillation [23] method to transfer information from a larger
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network to a smaller one without a significant loss in accuracy. There are multiple papers
that present different combinations of fine-tuning and distillation on top of BERT [24,25].
However, DistilBERT [26] obtained the best results by training the smaller student model
on BERT and then fine-tuning it for downstream tasks, resulting in a more generalized
pre-trained model. Lastly, the DistilBART [27] model aimed to create a smaller student
network for summarization.

The pruning [28] method’s influence on transfer learning has recently gained attention
from researchers. It refers to determining the parts in the network that have the weaker
effect on the model accuracy and removing them without compromising the model’s
accuracy on downstream tasks. The main ideas are to either focus on finding the less
important weights [29] or components such as the number of self-attention heads [30] and
layers [31]. This technique was also used in the lottery ticket hypothesis [32,33] to uncover
subnetworks performing on par with the full model. This method focusing on linear layers
is adopted for the seq2seq architectures like BART and Pegasus to speed up the inference
process [34].

The latest research area focuses on rethinking the self-attention mechanism to eliminate
its quadratic memory usage connection with respect to the input sequence length. The goal
is to find the best trade-off between performance and memory usage. Big Bird [35] and
Longformer [36] papers experiment on different attention patterns to reduce connections
and result in fewer computations. Wang et al. presented the Linformer [37] network that
projects the self-attention vectors to lower dimensions. Reformer [38] paper studies the
idea of grouping key and query vectors based on locality-sensitive hashing (LSH) to reduce
the computations needed to find similar vectors.

It is important to highlight several studies that have effectively combined two or
more methods to construct smaller models, while maintaining a high level of accuracy
without significant compromise. The literature contains numerous experiments that
explore the combination of distillation with pruning [39] or quantization [40], among
others. Furthermore, Thierry et al. made the EdgeBERT [41] model by leveraging both
pruning and quantization along with other methods. These techniques are not exclusive,
and it is possible to study them independently without testing all possible combinations.
This is why we can focus our study only on one reduction method and only a few
important models.

3. Proposed Method

Our proposed architecture is a sequence-to-sequence transformer (T) model that uses
a pre-trained autoencoder connecting the network’s encoder (Tenc) to its decoder (Tdec)
(Figure 1). The mentioned approach will result in a smaller Tdec and reduce the overall
number of trainable parameters. The modules are described in the following sub-sections.
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3.1. Transformer Encoder (Tenc)

The encoder (Tenc) part of the proposed architecture is a pre-trained transformer-based
model. We have selected a set of models that include some of the best models for text
summarization: BERT, DistilBERT, BARTenc (only encoder), and a custom transformer
model as a baseline comparison. The custom transformer model is used to evaluate the
effectiveness of our approach on a small pre-trained model with only six encoder layers.
Subsequently, its scores are used as a baseline and are not supposed to be competitive
with the ones of the other approaches. This component is frozen during the training of the
summarizer model.

3.2. Autoencoder (AE)

The AE (Figure 2) purpose is to reduce the Tenc’s output size to a smaller latent space
using the following equation:

X′AE = AEdec(AEenc(XAE))Z = AEenc(XAE) (1)

where XS×D
AE is the input, AEenc indicates the encoder responsible for compressing the

input to latent space ZS×C and a decoder AEdec generating the output X′S×D
AE , trying to

reconstruct the input XS×D
AE during the training process. Variables S and D denote the

sequence length and input’s embedding dimension, respectively. The values depend on
the chosen pre-trained model’s configuration and are set to 512 and 768 in the experiments.
However, C, representing the compressed latent space size, will vary to find out the optimal
latent space size. A six-layer linear AE (three for encoder and three for decoder) is selected
after comparing its reconstruction ability to the same architecture with long short-term
memory (LSTM) [42] or convolutional neural network (CNN) [43] building blocks (see
Section 5.1).
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Figure 2. The linear autoencoder architecture with three encoder layers (L1, L2, L3) and three
decoder layers (L4, L5, L6). Tensors X, X′, and Z represent the input, output, and compressed
latent representation, respectively. The autoencoder maintains the same sequence length (S) during
compression and only reduces the embedding size (D).

The final AE architecture with six linear layers is independently trained for each
selected pre-trained encoder Tenc. It attempts to reconstruct the output of Tenc using a
smaller representation Z. The frozen AEenc is then used in our summarizer architectures
to pass a compressed representation to the decoder Tdec (from size D to C). Refer to
Appendix A for more information about the autoencoder architecture details.

3.3. Transformer Decoder (Tdec)

The decoder component of the architecture (Tenc) is an original transformer decoder
with three layers and a linear head on top in all the experiments. It is the only piece of the
network that is not frozen after the AE has been trained. Its embedding dimension ties to
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the AE’s latent space size (C) that can drastically alter the architecture’s overall number of
trainable parameters.

4. Experiments

We performed two experiments to: (i) evaluate the effectiveness of the proposed
architecture as described in Section 3 and (ii) showcase its effectiveness by integrating it
with BART-base model on summarization, translation, and classification tasks.

The first study (we call it “validation”) starts by justifying the use of the linear
layer autoencoder by comparing its performance to compress and reconstruct the BERT’s
output with a different number of layers and building units (LSTM and CNN). Then, we in-
vestigated the advantage of using “frozen autoencoders” with several studies
listed below:

• AE (presented architecture): A pre-trained and frozen autoencoder that connects the
encoder to a 3-layer decoder.

• AE-S: The same architecture without pre-training the autoencoders. They will be
trained jointly with the decoder from scratch.

• LL: A small 1-layer learnable linear model to lower the encoder’s output dimensional-
ity from D to C.

• PCA: The classical dimensionality reduction algorithm, incremental PCA [44], trained
to project the outputs of the encoder to the 458 first principal components to preserve
more than 90% of variances and use them as the decoder input.

The summaries are generated using three different decoding strategies. The fastest
and easiest method is selecting the most probable output at each timestep, known as the
greedy algorithm. A more extensive approach is to use the beam search algorithm that
develops K paths in parallel using the top K tokens with the highest scores. Finally, we
used the weighted random sampling algorithm that randomly chooses a token from the
top K probable outputs proportionally to their respective probabilities.

Following the “Validation” phase, we thoroughly explore the potential of the proposed
architecture by evaluating it on different tasks. The compression rates are slightly different
in these experiments because the compression sizes (latent space dimension) must be
dividable by the number of the decoder’s attention heads (12).

Evaluation: The summarization and translation experiments use ROUGE [45] and
BLEU [46] scores to measure the model’s generation quality. The ROUGE score is the
standard metric to calculate how close a generated summary is, compared to the target.
It will measure the overlapping n-grams between the two (R-1 for unigrams, R-2 for
bigrams, etc.) and the longest common subsequence n-grams (R-L). The classification
task is measured using the accuracy metric. The BLEU score compares the machine-
generated translation with one or more reference translations. It counts how many words
and phrases from the machine translation are also present in the references and assigns a
score based on this overlap. The sentient analysis study will use the BART architecture
with a classification head.

Hardware and Hyperparameters: The effects of the proposed architecture will be
analyzed in subsections aimed at the GPU memory consumption and fine-tuning/inference
computational time. The experiments aim for maximum performance using Nvidia V100
GPU with 32 GB memory. Therefore, each task uses the largest possible batch size with
respect to hardware constraints. Moreover, the datasets are vastly varied in size and
characteristics. Thus, it is not possible to compare the tasks against each other.

Lastly, the autoencoder models are trained with fixed hyperparameters to make them
comparable. They are trained using the 1cycle [47] training policy that increases the learning
rate from 2 × 10−5 to a maximum of 5 × 10−4, while decreasing the momentum beta from
0.95 to 0.85 for a faster convergence. We also used the Adam [48] optimizer and the label
smoothing CrossEntropy [49] loss function for both autoencoder and summarizer models.

Datasets: The CNN/Dailymail (300 K samples) [50] and the Newsroom (1.3 M sam-
ples) [51] datasets were used in the following experiments. We combined the training set of
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mentioned datasets and randomly selected 60% of the samples to train the autoencoders.
This was performed to hold onto unseen data to evaluate the generalization ability of the
summarizer model. The summarizer models are trained using the CNN/Dailymail training
set and evaluated on the pre-defined test set.

The translation task utilizes the WMT16 dataset’s Romanian-to-English subset [52]. It
has 610 K samples in the training set and 2 K for each validation and test set. The training
set is used to create a Romanian language tokenizer with the same vocabulary size as
BART’s pre-trained tokenizer.

The Sentiment140 [53] dataset is used for the classification experiment. It is a sentiment
analysis dataset consisting of twitter data with corresponding annotations (0 for negative
and 4 representing positive). There are 1.6 M data points with random 80–10–10 splits for
training, validation, and testing, respectively. A simple preprocessing step was performed
to remove unnecessary characters (e.g., @ signs, URLs, or HTML codes).

5. Results

In the upcoming subsections, we will initially conduct a comprehensive examination
of the architecture’s viability and subsequently assess its performance in summarization,
translation, and classification tasks.

5.1. Validation

To assess their performance, we conducted experiments involving various types and
depths of AE layers. Specifically, we trained autoencoder architectures using linear, long
short-term memory (LSTM), and convolutional neural network (CNN) layer types, with the
mean square error (MSE) loss, over a span of seven epochs. A latent space representation
of size 64 was selected for this comparison benchmark (Table 1). The linear autoencoder
demonstrates a superior performance compared to both LSTM and CNN architectures
(refer to Appendix A, Table A1 for the complete list of all compression rates). Also, the
six-layer design choice results in a better score in all experiments.

Table 1. The comparison of MSE loss between linear, LSTM, and CNN blocks to train an autoencoder
with a 64 compression size.

Number of Layers
Types 4 6 8

Linear 0.0813 0.0766 0.0776
LSTM 0.0863 0.0810 0.0849
CNN 0.2666 0.2659 0.2750

Tables 2 and 3 present the comparisons of model sizes in terms of the number of
parameters. The first step is calculating the decoder’s size without using the dimension-
ality reduction method. As previously mentioned, the default encoder’s representation
dimension (dmodel) is 768 (based on the choice of the encoder), which results in a decoder
with either 48 M (for BARTenc) or 33 M (other options) parameters. We utilize this
value as a reference number to calculate the reduction percentage. It is important to
keep in mind that even though there are parameters being added to the model from the
autoencoder that affects the percentage, the number of trainable parameters in all the
experiments is equal to the decoder size since the rest of the components (encoder and
autoencoder) are frozen during the tests. We have decoders with different parameter
counts while using the same hyper-parameters, because we use each model’s pre-trained
tokenizers with different vocabulary sizes, which affects the decoder’s last layer output
dimension. BERT, DistilBERT, and transformer models use BERT’s pre-trained tokenizer,
and BART uses its own.
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Table 2. Comparing the decoder’s number of parameters in a 3-layer decoder network with a 768
input size to the number of parameters of the same decoder after applying the autoencoder to reduce
the encoder’s output dimension.

Decoder
Input

Dimension

AE
Parameters

Count

Decoder Parameters Count (by Encoder Type)

(Distil)BERT/
Transformer

Reduction
(%) BARTenc

Reduction
(%)

768 (Default) - 32 M - 48 M -
C = 512 2.3 M 21 M 26.26 32 M 28.48
C = 384 1.8 M 16 M 44.44 24 M 46.18
C = 128 1.1 M 5 M 79.84 8 M 80.91
C = 32 1 M 1 M 92.47 2 M 93.5

Table 3. Comparing the total number of parameters in a 3-layer decoder network with a 768 input
size to the number of parameters of the same decoder after applying the autoencoder to reduce the
encoder’s output dimension.

Decoder
Input

Dimension

AE
Parameters

Count

Network’s Total Parameters Count (by Encoder Type)

Transformer BART BERTenc DistilBERT

768 (Default) - 70 M 188 M 142 M 98 M
C = 512 2.3 M 61 M 174 M 134 M 90 M
C = 384 1.8 M 55 M 165 M 128 M 84 M
C = 128 1.1 M 44 M 149 M 116 75 M
C = 32 1 M 40 M 143 M 112 M 68 M

Table 4 displays the results of the proposed method on the text summarization task,
with the utilization of the classic ROUGE (R-1, R-2, and R-L) metric, employing the greedy
decoding strategy (refer to Appendix B for the weighted random sampling and beam
search scores). Autoencoders are trained with four (32, 128, 384, 512) different latent
space dimensions (C) to analyze the effect of these compression rates. The models are also
evaluated using the BERTScore [54] metric, and the results follow the same trend (refer to
Appendix C).

In addition to reducing the number of parameters in the network by decreasing the de-
coder size, our configurations exhibit the capability to enhance the model’s summarization
ability, resulting in higher scores compared to the original setup for both the transformer
and DistilBERT models. The experiments show that adding an AE with C = 512 outper-
forms the same vanilla encoder–decoder network. Both BARTenc and BERT experiments
with the same compression rate outperformed their vanilla model in several metrics by
only using the beam search method. At the same time, the rest of the scores with a smaller
decoder are still competitive. An even more interesting result is that a smaller dedicated
transformer with the proposed method and C = 384 performed better than both BARTenc
and BERT in the summarization benchmark.

Table 5 presents the results of our ablation study, illustrating the impact of the autoen-
coder pre-training step on the final score. It surpasses both training the AEenc jointly with
the network from scratch (AE S) and using a simple learnable linear layer for projecting
(LL). Lastly, the PCA dimensionality reduction technique does not produce desirable re-
sults as well. The results also show that using an autoencoder with a latent space size of
384 (C = 384) results in a ROUGE score close to the vanilla model. It reduces the decoder
size by 46% from 48 M to 24 M for the BARTenc model and 44% from 33 M to 16 M parame-
ters for the other models. The critical point is that the combination of this configuration in
association with the greedy decoding algorithm shows no noticeable degrading quality in
the generated summary (refer to Appendix D).
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Table 4. The ROUGE score for using a pre-trained autoencoder on top of pre-trained transformer-
based encoders with different compression sizes. The summaries are generated using greedy decoding
method. The percentages indicate the relative change in the ROUGE score compared to the baselines.

Models R-1 R-2 R-L

Transformer 0.346 0.143 0.312

+AE (C = 512 ) 0.368 (106%) 0.157 (109%) 0.325 (104%)
+AE (C = 384 ) 0.363 (104%) 0.154 (107%) 0.322 (103%)
+AE (C = 128 ) 0.308 (89%) 0.114 (79%) 0.286 (91%)
+AE (C = 32 ) 0.156 (45%) 0.019 (13%) 0.174 (55%)

BARTenc 0.355 0.142 0.310

+AE (C = 512 ) 0.341 (96%) 0.128 (90%) 0.298 (96%)
+AE (C = 384 ) 0.332 (93%) 0.121 (85%) 0.291 (93%)
+AE (C = 128 ) 0.257 (72%) 0.063 (44%) 0.239 (77%)
+AE (C = 32 ) 0.145 (40%) 0.014 (9%) 0.168 (54%)

BERT 0.349 0.133 0.306

+AE (C = 512 ) 0.339 (97%) 0.123 (92%) 0.298 (97%)
+AE (C = 384 ) 0.332 (95%) 0.119 (89%) 0.294 (96%)
+AE (C = 128 ) 0.278 (79%) 0.074 (55%) 0.256 (83%)
+AE (C = 32 ) 0.168 (48%) 0.021 (15%) 0.187 (61%)

DistilBERT 0.317 0.124 0.283

+AE (C = 512 ) 0.333 (105%) 0.123 (99%) 0.298 (105%)
+AE (C = 384 ) 0.334 (105%) 0.122 (98%) 0.297 (104%)
+AE (C = 128 ) 0.287 (90%) 0.083 (66%) 0.265 (93%)
+AE (C = 32 ) 0.161 (50%) 0.020 (16%) 0.180 (63%)

Table 5. The comparison between using the pre-trained autoencoder (AE), training the autoencoder’s
encoder jointly with the network from scratch (AE S), using a simple linear layer model for the
projection (LL), and PCA to perform the dimensionality reduction. The percentages indicate the
relative change in the ROUGE score compared to the baseline (BERT).

Models R-1 R-2 R-L

BERT 0.349 0.133 0.306
+AE (C = 512 ) 0.339 (97%) 0.123 (92%) 0.298 (97%)
+AE S (C = 512 ) 0.289 (82%) 0.079 (59%) 0.262 (85%)
+LL (C = 512 ) 0.277 (79%) 0.083 (62%) 0.260 (84%)
+PCA (C = 458 ) 0.143 (40%) 0.016 (12%) 0.156 (50%)

Our findings demonstrate that by reducing the encoder’s output dimension from 768
to 384, we achieve a 44% reduction in decoder size while preserving 95% of the R-1 score
in the worst-case scenario using BERT as the encoder. (refer to Appendix E for additional
experiments on intermediate compression rates) Alternatively, with DistilBERT, we observe
a potential increase of up to 105% in the R-1 score. Moreover, even with an almost 80%
reduction in the decoder size, we can still achieve 90% of the ROUGE score with our
dedicated transformer and DistilBERT architectures. This method will be integrated into a
full pre-trained sequence-to-sequence model to measure its footprint in the next section.

5.2. Summarization

This section’s experiment utilizes the proposed architecture in a sequence-to-sequence
pre-trained model (BART) to demonstrate its abilities. We fine-tune (i) vanilla BART-base
and (ii) BART-base with autoencoder (various compression rates), while both BART’s
encoder and the AEenc are frozen. The ROUGE score for these experiments (using beam
search decoding) and the number of decoder parameters are reported in Table 6. The
decoder component is responsible for generating tokens one at a time during inference, so
compressing it will largely optimize the generation process.
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Table 6. The ROUGE score results from integrating BART-base with our proposed architecture for
summarization. The autoencoders are frozen, and “fe” stands for “frozen encoder”. The last column
indicates the number of parameters in the decoder part of the network. The summaries are generated
using the beam search decoding method.

Models R-1 R-2 R-L # Dec Params

BART 0.419 0.198 0.393 96 M

BARTfe

+AE (C = 504) 0.401 0.182 0.375 56 M
+AE (C = 384) 0.400 0.181 0.374 40 M
+AE (C = 120) 0.351 0.133 0.331 21 M
+AE (C = 24) 0.182 0.026 0.170 11 M

Our proposed architecture with a 384 compression size shows a 4.5% drop in the R-1
score while reducing the model’s decoder size by nearly 60%. The slight decrease in the
ROUGE score does not seem to translate to a lower-quality summary (refer to Appendix F).
Moreover, the network size decrease will compensate for a few lost overlapping n-grams in
summaries by reducing the computational time and memory usage by a large margin at
training and inference time. The following experiments are performed using a batch size of
16 and 32 for training and inference, respectively.

5.2.1. Computational Time

As stated in Table 7, the BART + AE (C = 384) architecture can be fine-tuned 45%
faster. It is a one-hour reduction (or 45%) compared to the BART’s 2:40 h for one epoch.
Moreover, the inference (beam search) timing is a more important factor since the models
are usually fine-tuned once to be used in numerous applications in the future. The 54%
decrease in inference time on the test set (the 5:09 compared to 2:20 h) could greatly impact
the responsiveness of downstream applications.

Table 7. Comparing vanilla BART and the proposed architecture on the minutes it takes to fine-tune
the model for 1 epoch and performing inference on the full test set (summarization task).

Model
Computational Time (Minutes)

Fine-Tuning Inference

BART 145 309
BART + AE (C = 384) 79 140

The block pruning technique [34] reported a 1.35 speedup by reducing the “linear”
parameter count from 99 M to 23 M in the BART-base model. The smallest DistilBART [27]
model showed a 1.66 faster inference rate with a 100 M decoder size. Our approach resulted
in a much faster inference time with a 2.2 increase in speed rate.

5.2.2. GPU Memory Usage

The comparison of GPU memory consumption is shown in Table 8. The BART+AE
(C = 384) experiment shows a 57% reduction in GPU memory usage while fine-tuning
and a 20% reduction during inference. The massive drop in GPU utilization while fine-
tuning makes it easier for both researchers and practitioners to try larger models in their
experiments with minimal sacrifice in the quality.

Table 8. Comparing vanilla BART and the proposed architecture on the GPU memory (MBs) used to
fine-tune the model for 1 epoch and performing inference on the full test set (summarization task).

Model
GPU Memory Usage (MB)

Fine-Tuning Inference

BART 28,384 30,624
BART + AE (C = 384) 10,240 23,680
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5.3. Translation

The BART-base model is fine-tuned for translation to set a baseline score. Addi-
tionally, the proposed architecture is fine-tuned on the WMT16 dataset, as described
in Section 3. The translations are generated using beam search (K = 4), and the BLEU
score is used to measure the translation’s quality, as presented in Table 9. The proposed
architecture with a 50% compression rate (from 768 to 384) shows a ~10% decrease in the
BLEU score. Meanwhile, the generated translations are close in meaning, even identical
in some cases (refer to Appendix G). This experiment also reveals that an autoencoder
pre-trained on one dataset can perform well on others without additional fine-tuning.
The following experiments are conducted using a batch size of 32 and 64 for training
and inference, respectively.

Table 9. The BLEU score results from integrating BART-base with our proposed architecture for
translation. The autoencoders are frozen, and “fe” stands for “frozen encoder”. The last column
indicates the number of parameters in the decoder part of the network. The translations are generated
using the beam search decoding method.

Models BLEU # Dec Params

BART 21.05 96 M

BARTfe

+AE (C = 504) 18.93 56 M
+AE (C = 384) 18.63 40 M
+AE (C = 120) 13.95 21 M
+AE (C = 24) 1.27 11 M

5.3.1. Computational Time

The translation task shows excellent improvement in training speed. As stated in
Table 10, the fine-tuning process is 55% faster, and the inference speed increases by 9%.
Our architecture’s novelty is in reducing the decoder’s size to maximize efficiency that
primarily targets inference. However, the WMT16 dataset, on average, consists of a 50%
lesser word count in target sequences (25 words, compared to CNN/DM’s 50). It will
reduce the decoder’s workload, which might appear to be an unsatisfactory speed-up
rate. This result shows that the more extended the sequences are, the more impactful our
approach will be on inference speed.

Table 10. Comparing vanilla BART and proposed architecture on the minutes required to fine-tune
the model for 1 epoch and performing inference on the full test set (translation task).

Model
Computational Time (Minutes)

Fine-Tuning Inference

BART 247 23
BART + AE (C = 384) 110 21

5.3.2. GPU Memory Usage

As presented in Table 11, with only 10% translation quality loss, the proposed archi-
tecture uses 37% and 14% less GPU memory while training and inference, respectively.
The translation dataset’s short source and target sequences require less GPU memory to
process and store the weights. Nevertheless, there is a meaningful decrease in memory
usage during the model’s life cycle.
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Table 11. Comparing vanilla BART and the proposed architecture on the GPU memory (MBs)used to
fine-tune the model for 1 epoch and performing inference on the full test set (translation task).

Model
GPU Memory Usage (MB)

Fine-Tuning Inference

BART 25,024 31,680
BART + AE (C = 384) 13,120 27,200

5.4. Classification

The BART-base model with a classification head was used for the classification task.
Compared to previous sections, the main difference is using a feedforward layer instead of
a decoder. There are three experiments presented in Table 12. First, the baseline accuracy for
fine-tuning the model. Second, freezing the BART encoder to fine-tune the head component
that reduces the accuracy by 6%. Third, the addition of the pre-trained autoencoder with
various compression sizes. The 35% compression rate (C = 504) reduces the head size by
55% while showing an 8% reduction in accuracy. The following experiments are performed
using a batch size of 64 and 128 for training and inference, respectively.

Table 12. The accuracy results from integrating BART-base with our proposed architecture for
classification. The autoencoders are frozen, and “fe” stands for “frozen encoder”. The last column
indicates the number of parameters in the classification head part of the network.

Models Accuracy (%) # Classifier Head Params

BART 86.73 592 K
BARTfe 80.19 592 K

BARTfe

+AE (C = 504) 78.12 263 K
+AE (C = 384) 75.94 148 K
+AE (C = 120) 70.04 16 K
+AE (C = 24) 59.43 1 K

The proposed architecture does not make a significant contribution to the classification
task. It is better to freeze the encoder and sacrifice fewer accuracy points. It is worth noting
that the addition of the autoencoder results in a behavior as seen in previous experiments
regarding accuracy drop. However, it does not improve efficiency by a large margin since
the classifier head size is minimal, and there is little room for improvement. Also, it should
be noted that the autoencoder adds about 1.5 M parameters (depending on compression
rate) to the architecture.

5.4.1. Computational Time

The computational time results are displayed in Table 13. There is no noticeable change
in the prediction duration. However, it will result in a more efficient training process since
we are fine-tuning a small percentage of the network while the rest is frozen. The addition
of an autoencoder performs marginally worse.

Table 13. Comparing vanilla BART and the proposed architecture on the minutes it takes to fine-tune
the model for 1 epoch and performing inference on the full test set (classification task).

Model
Computational Time (Minutes)

Fine-Tuning Inference

BART 1200 83
BARTfe 450 83

BART + AE (C = 384) 480 85
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5.4.2. GPU Memory Usage

The Table 14 presents the GPU usage results. It follows the same trend as the compu-
tational time benchmarks and shows no advantage in using the proposed architecture for
the classification task.

Table 14. Comparing vanilla BART and the proposed architecture on the GPU memory (MBs) used
to fine-tune the model for 1 epoch and performing inference on the full test set (classification task).

Model
GPU Memory Usage (MB)

Fine-Tuning Inference

BART 27,264 22,831
BARTfe 3244 22,831

BART + AE (C = 384) 3264 22,966

6. Conclusions

This paper presents a method to shrink the decoder size (number of parameters) in a
sequence-to-sequence setting. It has been performed by incorporating an autoencoder as a
dimensionality reduction method between the encoder and decoder. The proposed method
was validated using a custom summarizer network with various pre-trained encoders. The
main idea is that decreasing the size of the encoder’s output leads to a dramatic decrease in
the decoder size. It results in an optimized network in terms of GPU memory consumption
and computational time.

Later, we thoroughly studied the strengths and shortcomings of the proposed architec-
ture on the BART-base model. It is shown that the mentioned architecture on summarization
can reduce the decoder’s size by 60% (from 96 M to 40 M) while maintaining 95.5% (in
terms of R1 score) of the text generation capability. This will significantly impact speeding
up both (i) fine-tuning by 45% while using 57% less GPU memory and (ii) the inference
process by 54% while utilizing 20% less GPU memory. It will make the large pre-trained
models more accessible to anyone without high-end hardware with negligible quality.

The automatic translation experiment follows the same trend as summarization.
However, the binary classification task did not improve the model’s efficiency while
showing the same trade-off between compression rate and accuracy loss. Furthermore,
the additional experiments revealed the autoencoder’s impressive generalization capa-
bility on different datasets.

Our method can be directly used with other approaches, such as distillation, pruning
and quantization, to reduce the network size further. One of our future research projects
will investigate which combination could lead to the best compromise between the size
and the model’s accuracy.
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Appendix A. Autoencoder Architecture

Table A1 shows the full results of different building blocks and sizes for autoencoder
architecture. The linear layer AE outperforms LSTM and CNN in almost all the com-
pression sizes. While the only exception is the LSTM network with the smallest latent
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space dimension (32) that narrowly achieved a better accuracy, none of the experiments
had an acceptable performance in that representation size. Also, it shows that the CNN
architecture resulted in the worst score by a large margin.

Table A1. The MSE loss value of the selected 3 network types (LSTM, linear, CNN) with a different
number of layers.

Type Compression Rate Number of Layers MSE Loss

Linear

32 6 0.0930

64
4 0.0752
6 0.0766
8 0.0775

128 6 0.0637
256 6 0.0453
384 6 0.0278
448 6 0.0239
512 6 0.0200

LSTM

32 6 0.0905

64

2 0.1176
4 0.0863
6 0.0810
8 0.0849
10 0.1043

128 6 0.0670
256 6 0.0543
384 6 0.0462
448 6 0.0427
512 6 0.0400

CNN 64
4 0.2666
6 0.2659
8 0.2750

Table A2 shows the details of the 6-layer linear architecture comprising three projec-
tions in each encoder and decoder (illustrated in Figure 2). The idea is to keep a gentle
decrease in size for large latent spaces and to have enough learning capacity with wider
networks in smaller compressed sizes.

Table A2. The autoencoder models projections for different compression rates.

First Projection (P1) Second Projection (P2) Third Projection/
Compressed Latent Space Size (C)

640 576 512
608 528 448
576 480 384
640 320 256
512 256 128
512 256 64
512 256 32

Appendix B. Full Results of the Validation Experiments

In these results (Tables A3–A5), we used K values equal to 5 and 2 for the beam search
and weighted random sampling based on previous experiments. It is also worth noting
that the greedy inference method constantly results in better scores, with the weighted
random sampling method following closely. The fact that the beam search algorithm leans
toward shorter sequences [55] reduces the ROUGE scores since there are fewer matching
N-grams in the generated and target summaries. It is partly because of not using any
method to force/penalize the token generation process in these experiments (this is not the
case in experiments in Section 5.2). It does not mean that the sentence structure/quality is
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flawless by using greedy/weighted random sampling, or poor by using beam search. The
results simply reflect what the ROUGE score is measuring: an N-gram overlap between the
generated and the target sequences.

Table A3. The ROUGE score for using a pre-trained autoencoder on top of pre-trained transformer-
based encoders with different compression sizes. Each network was tested using the greedy method.
The percentages indicate the relative change in the ROUGE score compared to the baselines.

Models
Greedy

R-1 R-2 R-L

Transformer 0.346 0.143 0.312

+AE (C = 512) 0.368 (106%) 0.157 (109%) 0.325 (104%)
+AE (C = 384) 0.363 (104%) 0.154 (107%) 0.322 (103%)
+AE (C = 128) 0.308 (89%) 0.114 (79%) 0.286 (91%)
+AE (C = 32) 0.156 (45%) 0.019 (13%) 0.174 (55%)

BARTenc 0.355 0.142 0.310

+AE (C = 512) 0.341 (96%) 0.128 (90%) 0.298 (96%)
+AE (C = 384) 0.332 (93%) 0.121 (85%) 0.291 (93%)
+AE (C = 128) 0.257 (72%) 0.063 (44%) 0.239 (77%)
+AE (C = 32) 0.145 (40%) 0.014 (9%) 0.168 (54%)

BERT 0.349 0.133 0.306

+AE (C = 512) 0.339 (97%) 0.123 (92%) 0.298 (97%)
+AE (C = 384) 0.332 (95%) 0.119 (89%) 0.294 (96%)
+AE (C = 128) 0.278 (79%) 0.074 (55%) 0.256 (83%)
+AE (C = 32) 0.168 (48%) 0.021 (15%) 0.187 (61%)

DistilBERT 0.317 0.124 0.283

+AE (C = 512) 0.333 (105%) 0.123 (99%) 0.298 (105%)
+AE (C = 384) 0.334 (105%) 0.122 (98%) 0.297 (104%)
+AE (C = 128) 0.287 (90%) 0.083 (66%) 0.265 (93%)
+AE (C = 32) 0.161 (50%) 0.020 (16%) 0.180 (63%)

Table A4. The ROUGE score for using a pre-trained autoencoder on top of pre-trained transformer-
based encoders with different compression sizes. Each network was tested using weighted random
sampling method. The percentages indicate the relative change in the ROUGE score compared to
the baselines.

Models
Random Sampling

R-1 R-2 R-L

Transformer 0.344 0.136 0.304

+AE (C = 512) 0.363 (105%) 0.147 (108%) 0.315 (103%)
+AE (C = 384) 0.360 (104%) 0.146 (107%) 0.314 (103%)
+AE (C = 128) 0.315 (91%) 0.110 (80%) 0.280 (92%)
+AE (C = 32) 0.184 (53%) 0.024 (17%) 0.185 (60%)

BARTenc 0.349 0.134 0.301

+AE (C = 512) 0.337 (96%) 0.120 (89%) 0.289 (96%)
+AE (C = 384) 0.327 (93%) 0.112 (83%) 0.282 (93%)
+AE (C = 128) 0.260 (74%) 0.058 (43%) 0.232 (77%)
+AE (C = 32) 0.174 (49%) 0.019 (14%) 0.179 (59%)

BERT 0.347 0.124 0.297

+AE (C = 512) 0.339 (97%) 0.116 (93%) 0.289 (97%)
+AE (C = 384) 0.333 (95%) 0.112 (90%) 0.286 (96%)
+AE (C = 128) 0.288 (82%) 0.072 (58%) 0.252 (84%)
+AE (C = 32) 0.197 (56%) 0.026 (20%) 0.194 (65%)
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Table A4. Cont.

Models
Random Sampling

R-1 R-2 R-L

DistilBERT 0.316 0.117 0.275

+AE (C = 512) 0.332 (105%) 0.116 (99%) 0.290 (105%)
+AE (C = 384) 0.334 (105%) 0.115 (98%) 0.288 (104%)
+AE (C = 128) 0.297 (93%) 0.081 (69%) 0.259 (94%)
+AE (C = 32) 0.189 (59%) 0.024 (20%) 0.188 (68%)

Table A5. The ROUGE score for using a pre-trained autoencoder on top of pre-trained transformer-
based encoders with different compression sizes. Each network was tested using the beam search
method. The percentages indicate the relative change in the ROUGE score compared to the baselines.

Models
Beam Search

R-1 R-2 R-L

Transformer 0.259 0.116 0.261

+AE (C = 512) 0.288 (111%) 0.127 (109%) 0.280 (107%)
+AE (C = 384) 0.278 (107%) 0.123 (106%) 0.274 (104%)
+AE (C = 128) 0.280 (108%) 0.116 (100%) 0.271 (103%)
+AE (C = 32) 0.132 (50%) 0.021 (18%) 0.147 (56%)

BARTenc 0.304 0.128 0.283

+AE (C = 512) 0.312 (102%) 0.126 (98%) 0.285 (101%)
+AE (C = 384) 0.278 (91%) 0.123 (96%) 0.274 (96%)
+AE (C = 128) 0.245 (80%) 0.071 (55%) 0.234 (82%)
+AE (C = 32) 0.128 (42%) 0.015 (11%) 0.146 (51%)

BERT 0.283 0.117 0.270

+AE (C = 512) 0.291 (102%) 0.117 (100%) 0.275 (101%)
+AE (C = 384) 0.272 (96%) 0.107 (91%) 0.263 (97%)
+AE (C = 128) 0.242 (85%) 0.076 (64%) 0.237 (87%)
+AE (C = 32) 0.140 (49%) 0.020 (17%) 0.153 (56%)

DistilBERT 0.302 0.123 0.280

+AE (C = 512) 0.287 (95%) 0.116 (94%) 0.275 (98%)
+AE (C = 384) 0.282 (93%) 0.114 (92%) 0.270 (96%)
+AE (C = 128) 0.240 (79%) 0.082 (66%) 0.238 (85%)
+AE (C = 32) 0.134 (44%) 0.019 (15%) 0.147 (52%)

Appendix C. BERTScore Results (Validation Experiment)

The following table (Table A6) demonstrates the evaluation results of the proposed
method using the BERTScore metric. The mentioned metric is also confirming the paper’s
discussions on the contextual level.

Appendix D. Extra Examples of Generated Summaries (Validation Experiment)

The samples of generated summaries using the greedy, weighted random sampling,
and beam search inference methods are presented in Tables A7–A9. All tables use an autoen-
coder with a latent space size of 384, which showed promising results in our experiments.
The generated summaries’ maximum length is set to 60 tokens in all experiments. All the
generated summaries are grammatically correct and capture the primary information of
the original texts.
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Table A6. Comparing the vanilla and proposed models generated the quality of summaries using the
BERTScore metric.

Model Inference
Method Vanilla +AE

(C = 512)
+AE

(C = 384)
+AE

(C = 128)
+AE

(C = 32)

Transformer
Greedy 0.858 0.861 0.860 0.846 0.801

Random 0.857 0.86 0.859 0.847 0.809
Beam 0.852 0.858 0.857 0.853 0.805

BART
Greedy 0.867 0.865 0.863 0.845 0.814

Random 0.869 0.864 0.862 0.845 0.819
Beam 0.866 0.866 0.865 0.851 0.821

BERT
Greedy 0.858 0.857 0.854 0.854 0.809

Random 0.857 0.856 0.854 0.843 0.815
Beam 0.841 0.854 0.854 0.846 0.814

DistilBERT
Greedy 0.798 0.855 0.855 0.842 0.809

Random 0.836 0.855 0.854 0.844 0.815
Beam 0.802 0.856 0.855 0.846 0.814

Table A7. Comparing the generated summaries of the vanilla model and the model with a latent
space size of 384 using the greedy decoding method.

Model Vanilla Model-Generated Summary
(Greedy)

+AE Model-Generated Summary
(Greedy)

Transformer

masked men armed with handguns have robbed
three banks in pittsburgh area. they are believed to
have had military training and are being described
as ‘armed and extremely dangerous’. the men are

believed to have threatened to kidnapping those at
their targets and shoot police. however, the way that

the men handle

two men armed with handguns robbed three banks in
pittsburgh area so far this year. the unknown men, who are

seen on surveillance footage pointing their guns at bank
employees’ heads, have threatened to kidnapping those at
their targets and shoot police. however, the way the men

handle their weapons has led

BARTenc

two men are believed to have had military training
and are being described by the fbi as ‘armed and
extremely dangerous’. the men are seen holding

their finger stretched along the barrel of his gun, just
off of the trigger, a safety method used by law

enforcement. the men, who wear dark

two pennsylvania bank robber are believed to have had
military training. they are believed to have been armed and

extremely dangerous. the men are believed to have been
armed with a pair of masked men armed with handgun. the

men are believed to have been from pittsburgh.

BERT

two pennsylvania bank robbers have robbed three
banks in the pittsburgh area so far this year. the

unknown men, who are seen on surveillance footage,
have threatened to kidnapping those at their targets

and shoot police. the two men, both 5′ 5′–9′ and
april 10, are described as

two pennsylvania bank robbers armed with handguns have
been robbed in the pittsburgh area so far this year. they

have been seen jumping over the counter as they take their
guns at targets and shoot them at police. the two men, who

are seen on surveillance footage, have threatened to
kidnapping those at their

DistilBERT

two robbers have been seen in a series of recent
heisting robberies. the men are believed to have had
military training and are being described as ‘armed
and extremely dangerous’. the men are believed to
have been armed and armed. the men are believed

to have been armed and extremely dangerous.

two masked men armed with handguns have robbed three
banks in the pittsburgh area so far this year. they are
believed to have had military training and are being

described by fbi as ‘armed and extremely dangerous’. the
men are believed to have had military training and are

being described by the fbi as
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Table A8. Comparing the generated summaries of the vanilla model and the model with a latent
space size of 384 using the weighted random sampling decoding method.

Model Vanilla Model-Generated Summary
(Weighted Random Sampling)

+AE Model-Generated Summary
(Weighted Random Sampling)

Transformer

masked men armed with handguns have robbed
three banks in pittsburgh area so far this year. they
are believed to be armed and extremely dangerous.
they are thought to have been armed with handguns
and are thought to be from pittsburgh. the suspects

are described as white, 5′ 8′ to 5

the men, who are seen on surveillance footage pointing
guns at bank employees’ heads, have threatened to

kidnapping those at their targets and shoot police. however,
the way that the two men handle their weapons has led the

fbi to suspect that the thieves are actually former police
officers themselves. they are also

BARTenc

two men have been robbed by the fbi since april 10,
according to surveillance footage. they have been

seen holding his finger stretched along the barrel of
his gun. they have been seen jumping over the

counter as they begin their heists. the two robbers
have a gun worn during the robberies

two pennsylvania bank robbery suspects have been seen in
a string of recent heists. the suspects are believed to have

been from pittsburgh. the suspects are believed to be from
pittsburgh because of their attitudes.

BERT

the unknown men, who are seen on surveillance
footage, have threatened to kidnap those at their

targets and shoot police. the two men, both 5′ 5′–9′

and april 10, have also been taken to the bank in
pittsburgh, pennsylvania. the fbi believes the two

suspects may have

two pennsylvania bank robbers armed as they do a series of
recent robberies. they have been described as ‘armed and

extremely dangerous’. they have been seen on surveillance
footage showing the two men. they have been described as

‘armed and extremely dangerous’ and dangerous.

DistilBERT

the men, who wear dark sweatpants, are believed to
be armed and extremely violent. the two men are
thought to have been armed and armed. they are

believed to be from pittsburgh, pennsylvania, who
have been robbed three banks. the men are thought

to have been wearing the gun and a gun.

two masked men are thought to have robbed three banks in
pittsburgh this year. they are believed to have been armed

and extremely dangerous. they have been described as
armed and extremely dangerous.

Table A9. Comparing the generated summaries of the vanilla model and the model with a latent
space size of 384 using the weighted random sampling decoding method.

Model Vanilla Model-Generated Summary
(Weighted Random Sampling)

+AE Model-Generated Summary
(Weighted Random Sampling)

Transformer
masked men armed with handguns have robbed

three banks in pittsburgh area so far this year, most
recently on april 10

two men armed with handguns robbed three banks in
pittsburgh area so far this year, most recently on april 10

BARTenc

the men, who are seen on surveillance footage
pointing their guns at bank employees’ heads, have
threatened to kidnapping those at their targets and
shoot police. the two men are actually former police

officers themselves.

two pennsylvania bank thieves are believed to have had
military training and are being described by the fbi as

‘armed and extremely dangerous’.

BERT two pennsylvania bank robbers are believed to have
had military training and are being described by

two pennsylvania bank robbers armed with handguns have
been robbed in the pittsburgh area so far this year, most

recently on april 10

DistilBERT

a pair of masked men armed with handguns have
robbed three banks in the pittsburgh area so far this
year, most recently on april 10. the unknown men,

who are seen on surveillance footage pointing their
guns at bank employees’ heads, have threatened to

kidnapping and shoot police.

two masked men armed with handguns have robbed three
banks in the pittsburgh area so far this year, most recently

on april 10
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Appendix E. Extra Results for BERT Model + AE (Validation Experiment)

We conducted a few more experiments on the BERT model to find the optimal latent
space size and ROUGE score combination. As shown in Table 4, the intermediate C values
also follow the same trend as presented in Table A10.

Table A10. The ROUGE score of more experiments on the optimal latent space size options.

Model Inference
Method R-1 R-2 R-L

BERT + AE
(C = 448)

Greedy 0.337 0.123 0.297
Random 0.337 0.115 0.289

Beam 0.283 0.113 0.270

BERT + AE
(C = 256)

Greedy 0.323 0.109 0.285
Random 0.323 0.101 0.277

Beam 0.272 0.103 0.262

BERT + AE
(C = 64)

Greedy 0.250 0.048 0.226
Random 0.234 0.047 0.227
Greedy 0.195 0.047 0.199

Appendix F. Samples of Generated Summaries (BART-Base Experiment)

The following summaries (Table A11) are generated using the beam searching decod-
ing method with K = 4 and a max length limit of 144 tokens. There is no noticeable quality
loss in the summaries generated using the smaller model.

Table A11. Comparing the quality of generated summaries of the BART-base model with the BART +
AE with a 384 compression size. The summaries are generated using beam search.

Vanilla BART-Base +AE (C = 384)

Rifaat al-Assad, 77, was kicked out of Syria ‘with nothing’ 30
years ago. He went into exile after staging failed coup against
brother Hafez al Assad. Activists say his fortune was stolen
during his time at heart of Syrian regime. Mr Al-Assad has

vehemently denied acquiring assets in France through illegal
means. Lawyer says his client’s property holdings dated back to

1984–1986.

Rifaat al-Assad, 77, went into exile in Europe after staging a
failed coup. He has spent more than 30 years living a life of

luxury moving between homes in Paris, London and the
southern Spanish city of Marbella. His family’s assets, outlined

by French customs in May 2014, are valued at around £64
million—much of it held through a web of businesses based in
Luxembourg. Al-Assad has vehemently denied acquiring assets

in France through illegal means.

Rand Paul, a libertarian-leaning Kentucky senator, launched his
presidential bid Tuesday in Louisville, Kentucky. He sparred
with TODAY host Savannah Guthrie about his past foreign
policy positions. ‘Why don’t we let me explain instead of

talking over me, OK?’ he griped. Guthrie obliged, asking him if
he had changed his views, but he charged ahead.

Rand Paul, a libertarian-leaning Kentucky senator, sparred with
Today host Savannah Guthrie about his past foreign policy

positions. Paul, who launched his presidential bid on Tuesday
in Louisville, Kentucky, was joined by his wife Kelley Ashby on
stage Tuesday as he declared that he would campaign to ‘take

our country back’ ‘If they’re immediately saying that the
agreement doesn’t mean what President Obama says, that is a

big problem,’ Paul said Wednesday.

The search area for missing Malaysia Airlines Flight 370 looks
set to double in size. The search will stretch into a new equally

vast area, officials from Malaysia, Australia and China say.
Families of passengers and crew members still have no answers

about what happened to their loved ones.

The search area for missing Malaysia Airlines Flight 370 looks
set to double in size. So far, they’ve covered 60% of the priority

search zone without reporting any trace of the airliner. The
search of the 60,000-square- kilometer area is expected to be

completed in May.

Japanese Prime Minister Shinzo Abe is scheduled to speak
Wednesday to a joint meeting of Congress. Julian Zelizer: Abe
arrives in Washington at an opportune time to help along the
economic centerpiece of the “pivot” Zelizer: The immediate

battle in Congress is not over the TPP directly, but something
called trade promotion authority.

David Rothkopf: Japanese Prime Minister Shinzo Abe to speak
Wednesday to Congress. He says U.S.-Japan relations have been

strained by trade promotion authority, but it’s not over.
RothkopF: Obama administration needs to sell “pivot” or

“rebalance” to Americans.
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Table A11. Cont.

Vanilla BART-Base +AE (C = 384)

Inverness Caley Thistle defender Josh Meekings has been
banned for one match. Meekings was charged over the handball

that thwarted a Leigh Griffiths effort. Celtic wrote to the SFA
seeking ‘an understanding’ of why no penalty and red card

followed. FIFA vice-president Jim Boyce says the suspension
is wrong.

Inverness defender Josh Meekings has been suspended for one
match. The defender was charged over the handball that

thwarted a Leigh Griffiths effort in their semi-final victory. FIFA
vice-president Jim Boyce says the ban should be made if the

Scottish FA feel the officials in charge of this game acted
improperly and made the wrong decision.

Appendix G. Samples of Generated Translation (BART-Base Experiment)

The following translations (Table A12) are generated using the beam searching decod-
ing method with K = 4 and a max length limit of 128 tokens. The translations generated
using the smaller model have no noticeable quality loss.

Table A12. Comparing the quality of generated translations of the BART-base model with the
BART+AE with a 384 compression size. The translations are generated using beam search.

Vanilla BART-Base +AE (C = 384)

s-a ajuns, de fapt, dintr-o reuniune unică de 12 persoane
convocată pentru a dezvolta un model de analiză a deciziilor cu
mai multe criterii pentru a-şi sintet aliza opiniile cu privire la

efectele asociate cu diferite produse cu conţinut de ngl;
rezultatele reuniunii au fost rezumate într-un document

de cercetare.

rea vine de la o singură reuniune a 12 persoane convocată
pentru a dezvolta un model multi-critic de luare a deciziilor

(mala da) pentru a-şi sintet aliza opiniile cu privire la riscurile
asociate cu diferite produse care conţin fumul de tutun;

rezultatele reuniunii au fost rezumate într-o lucrare
de cercetare.

ball y a apărat abordarea părţii sale şi a declarat că s-au axat
doar pe “ contactul “ lor atunci când au intrat în conflict.

y a apărat abordarea echipei sale şi a declarat că s-a concentrat
doar asupra “ contactului “ lor atunci când se luptă.

în urmă cu câteva zile, fostul director al oficiului, 41 iza
nedelcheva, şi alţi foşti sau actuali angajaţi ai cp ci au fost

urmăriţi penal în acest caz, fiind acuzaţi că au plătit pentru
serviciile percepute de companiile menţionate, deşi lucrările nu

au fost niciodată realizate.

la câteva zile în urmă, fostul şef al biroului, na riza ne zele cu, şi
alţi foşti sau actuali angajaţi ai co ci au fost judecaţi în acest caz,

fiind acuzaţi de plata serviciilor percepute de companiile
menţionate, deşi lucrările nu au fost niciodată efectuate.

unul din doi fumători de-a lungul vieţii moare din
cauza dependenţei.

unul din doi fumători de-a lungul vieţii moare din
cauza dependenţei.

vom discuta şi vom vedea. o să vorbim şi să vedem.
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