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Abstract: While machine learning (ML) has been quite successful in the field of structural health
monitoring (SHM), its practical implementation has been limited. This is because ML model training
requires data containing a variety of distinct instances of damage captured from a real structure and
the experimental generation of such data is challenging. One way to tackle this issue is by generating
training data through numerical simulations. However, simulated data cannot capture the bias and
variance of experimental uncertainty. To overcome this problem, this work proposes a deep-learning-
based domain transformation method for transforming simulated data to the experimental domain.
Use of this technique has been demonstrated for debonding location and size predictions of stiffened
panels using a vibration-based method. The results are satisfactory for both debonding location and
size prediction. This domain transformation method can be used in any field in which experimental
data for training machine-learning models is scarce.

Keywords: domain transfer; structural health monitoring; vibration; deep leaning; experimental
data generation

1. Introduction

Data-driven methodologies in the field of structural health monitoring (SHM) have
seen significant success in a wide range of applications, including damage detection,
localization and quantification. The data-based SHM system uses machine learning (ML),
pattern-recognition techniques, or statistical techniques to identify structural conditions
based on observed data [1,2]. By extracting meaningful patterns and knowledge from large
datasets, data mining enables improved damage-related detection, diagnosis, prognosis
and decision-making in SHM systems. Over the last three decades, numerous data-driven
approaches for SHM have been reported for various structures employed within the civil,
aerospace and mechanical domains using vibration, ultrasonic, electrical and magnetic-
signal based approaches [3–7]. Out of these, vibration and ultrasonic signals have been
very commonly used for SHM because of their effectiveness and wider applicability for
damage detection in structures [8,9]. There are generally two types of machine learning
(ML) algorithms: supervised learning and unsupervised learning. A supervised-learning
approach involves training the learning algorithm with available data and a label. The
structure’s undamaged or damaged state, the location of the damage, and the severity
of the damage are all possible labels in SHM. For the supervised learning approach, all
damage severity and locations of interest for a specific structure must be included in the
training dataset. The unavailability of experimentally recorded data from a real structure
with all relevant class labels is the main problem with supervised learning. In the absence
of experimentally recorded damage data for any structure, one can also use unsupervised
machine learning. However, this model’s limitation is that it can only identify the presence
or absence of damage [10]. The model does not offer any specific damage information, such
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as damage location or severity. One needs to incorporate supervised learning in SHM in
order to perform damage diagnosis at an advanced level.

In the majority of cases, collecting training data for the data-based approach through
experiments is not practical due to time and resource constraints. Alternatively, the gen-
eration of training data using a physics-based model and testing with experimental data
could be an alternative strategy. However, this approach could be problematic because
the underlying distributions of the data generated from the physics-based model and the
data from the actual structure are different for various reasons, such as environmental
uncertainty in the experiment, modelling bias of the physics-based model, etc. ML mod-
els, whether supervised or unsupervised, are created with the presumption that testing
and training data demonstrate the same distribution. Generation of experimental data
through a large number of experiments for the purpose of training an ML model is con-
sidered impractical. Due to these issues, data-based approaches are not widely used in
SHM. These issues are particularly problematic for supervised learning, because it needs
labeled damage-state data for all potential damage scenarios. Nevertheless, supervised
learning has been used for the past three decades to diagnose damage in SHM [11,12].
The development of a model for the diagnosis of damage using a data-driven method
that trains with data generated by a physics-based model and tests with actual signals
captured from a structure by means of experiments has gained attention in recent years.
A strain field-monitoring-based diagnostic system has been shown to detect, localize and
quantify anomalies in a real crack propagating on an aluminum stiffened-skin structure [13].
Lamb wave signals and a numerically-enhanced ML approach have been used for assess-
ment of cracks in plate-like structures [14]. Lamb-wave-scattering-based hole-type defect
diagnosis has been reported in laminated composites [15,16]. Application of domain adap-
tation has also been reported in SHM [17]. A combination of simulated and experimental
data achieved through deep-metric-learning-based SHM has reportedly been used for
guided wave signals [18]. Application of artificial neural network and Probability Ellipse
techniques for Lamb-wave-based damage detection has also been reported [19].

From the study of past work, it is evident that several efforts have been made to
mitigate the unavailability of real-structure-based damage data for data-driven SHM.
However, most of the previous studies have considered guided wave data. There is a clear
lack of similar studies related to vibrational-data-based SHM. In this work, we attempt to
fill this lacuna. We report a more generalized methodology than described in a previously
reported work [20], in order to reduce the variability between numerically simulated data
and experimental data, so that one can generate training data by numerical simulation. In
the proposed method, numerically simulated data has been transferred to the experimental
domain, as shown in Figure 1.

Mach. Learn. Knowl. Extr. 2024, 6, FOR PEER REVIEW  2 
 

 

In the absence of experimentally recorded damage data for any structure, one can also use 
unsupervised machine learning. However, this model’s limitation is that it can only iden-
tify the presence or absence of damage [10]. The model does not offer any specific damage 
information, such as damage location or severity. One needs to incorporate supervised 
learning in SHM in order to perform damage diagnosis at an advanced level. 

In the majority of cases, collecting training data for the data-based approach through 
experiments is not practical due to time and resource constraints. Alternatively, the gen-
eration of training data using a physics-based model and testing with experimental data 
could be an alternative strategy. However, this approach could be problematic because 
the underlying distributions of the data generated from the physics-based model and the 
data from the actual structure are different for various reasons, such as environmental 
uncertainty in the experiment, modelling bias of the physics-based model, etc. ML models, 
whether supervised or unsupervised, are created with the presumption that testing and 
training data demonstrate the same distribution. Generation of experimental data through 
a large number of experiments for the purpose of training an ML model is considered 
impractical. Due to these issues, data-based approaches are not widely used in SHM. 
These issues are particularly problematic for supervised learning, because it needs labeled 
damage-state data for all potential damage scenarios. Nevertheless, supervised learning 
has been used for the past three decades to diagnose damage in SHM [11,12]. The devel-
opment of a model for the diagnosis of damage using a data-driven method that trains 
with data generated by a physics-based model and tests with actual signals captured from 
a structure by means of experiments has gained attention in recent years. A strain field-
monitoring-based diagnostic system has been shown to detect, localize and quantify 
anomalies in a real crack propagating on an aluminum stiffened-skin structure [13]. Lamb 
wave signals and a numerically-enhanced ML approach have been used for assessment of 
cracks in plate-like structures [14]. Lamb-wave-scattering-based hole-type defect diagno-
sis has been reported in laminated composites [15,16]. Application of domain adaptation 
has also been reported in SHM [17]. A combination of simulated and experimental data 
achieved through deep-metric-learning-based SHM has reportedly been used for guided 
wave signals [18]. Application of artificial neural network and Probability Ellipse tech-
niques for Lamb-wave-based damage detection has also been reported [19]. 

From the study of past work, it is evident that several efforts have been made to mit-
igate the unavailability of real-structure-based damage data for data-driven SHM. How-
ever, most of the previous studies have considered guided wave data. There is a clear lack 
of similar studies related to vibrational-data-based SHM. In this work, we attempt to fill 
this lacuna. We report a more generalized methodology than described in a previously 
reported work [20], in order to reduce the variability between numerically simulated data 
and experimental data, so that one can generate training data by numerical simulation. In 
the proposed method, numerically simulated data has been transferred to the experi-
mental domain, as shown in Figure 1. 

 
Figure 1. Schematic representation of domain transfer. 
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Once the simulated database is transformed to the experimental domain, the trans-
formed dataset is used to train the machine-learning model for damage assessment. There-
after, the trained ML model is used to estimate the damage condition using experimental



Mach. Learn. Knowl. Extr. 2024, 6 20

data. For the domain transformation, we have used an artificial neural network (ANN)-
based deep learning (DL) model, and for damage assessment we used a stacked learning
model. The proposed methodology is employed to determine debonding localization and
quantification in metallic stiffened panels, based on vibration analysis.

The paper is organized into the following sections: in Section 2, the proposed method-
ology is described; in Section 3, the experimental set-up and specimen details are provided;
in Section 4 the Finite Element (FE) simulation of stiffened panels is described; in Section 5,
the detailed implementation of the proposed methodology is discussed, and Section 6 gives
concluding remarks.

2. Methodology
Related Works

In data-driven SHM, addressing the lack of data recorded from actual structures is
a crucial challenge. Researchers have investigated numerous methods and strategies for
addressing this issue. Table 1 lists some important contributions to the tackling of the lack of
availability of damage data recorded from real structures. Some of the work reported in the
literature considering the vibration-based approach either uses a relatively high amount of
experimental data or studies very simple structures. For example, Barthorpe et al. created
various damage scenarios by adhering and detaching panels for the wing panel of an
airplane wing taken from a single experimental specimen [21]. Similarly, Bao et al. created
various damage scenarios by loosening and tightening a bolt on a single portal frame [22].
However, this is not possible for many other forms of structures. Sbaruffatti et al. introduce
the scale factor to reduce experimental and FE model biases [13]. The FE model is then
used to generate various damage-scenario datasets for the ML model’s training, and these
datasets are tested with experimental data. The author has conducted extensive study on
the evaluation of fatigue damage in helicopter fuselage structures. The presented method
produces satisfactory results for damage assessment. Due to the difference in boundary
condition fixity between the FE models and the experiments the model bias is also very
prevalent in vibration models. Consequently, the present work is motivated by scaling the
FE simulated data to experimental data as demonstrated by Sbaruffatti et al. [13]. In this
study, rather than directly scaling FE data to experimental data, we use a deep learning
model to transfer the FE domain to an experimental domain for vibration-based SHM.

Table 1. Related work addressing the lack of available damage data in SHM.

Authors Method Approach Structure Damage
Type

Exp. Data
Quantity

Sbarufatti et al.,
2013 [13] Scaling factor Strain field Helicopter

fuselage
Fatigue
damage

Less exp.
data

Sbarufatti et al.,
2013 [14]

Numerically-
enhanced ML
approach

Guided wave Plate Discontinuity Less exp.
data

Barthorpe and
Worden 2017 [21]

Generating exp.
data from one
specimen

Vibration Wing panel
of airplane Discontinuity High exp.

Data

Gardner and
Worden 2019 [17]

Domain
adaptation Vibration

MDOF
spring-mass
body

Stiffness
variation

Less exp.
Data

Zhang et al.,
2022 [18]

Effective
combination of
FE and exp.
data

Guided wave Plate Discontinuity

Equal
quantity
of FE and
exp. data

Bao et al.,
2023 [22]

Transfer
Learning Vibration Portal frame Nut–bolt

loosening

Relatively
more exp.
Data
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This section provides a summary of the entire domain-transfer-based damage assess-
ment methodology (Figure 2). The goal is to review all of the fundamental components of
the procedure and demonstrate how they were put together to achieve the current investi-
gation’s goal, which is the implementation of an SHM system based on model-enhanced
signal processing. The proposed methodology consists of three major parts.
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Figure 2. Domain-transfer-based SHM methodology framework.

Part one is experimental data pre-processing, part two is domain-transformation
model architecture definition and part three is damage assessment using transformed
dataset. The objective of the first part is to obtain the statistical distribution of the relevant
parameters from the experimental data. The goal of the second part is to construct a neural
network model which effectively transforms the FE-simulated data into the experimental
domain. The third part deals with the feature-sensitive analysis, dimension reduction and
proper ML model selection for damage assessment.

The first part of the proposed methodology begins with collecting a minimum of 30
(to obtain sufficient statistical parameter estimation according to the central limit theorem)
samples of experimental data of an undamaged structure. In the present work, we have
collected 35 samples of experimental data. Then the collected data were resampled by
bootstrapping [23]. Bootstrapping is, broadly defined, expressed by the law of large
numbers; this implies that if original samples are resampled repeatedly with replacement,
then the resampled data would closely reflect the actual population data. Bootstrapping
techniques have been used in many scientific studies for resampling or for better statistical
accuracy with the sample data [24–27]. Figure 3 shows the bootstrap sampling procedure
used in the present study. The bootstrap sample was then examined with quantile–quantile
(Q-Q) plots to see whether it had the same distribution as the original data.

In the second part, the objective is to construct a model which accurately transforms
the FE-simulated database into the experimental domain. The schematic diagram of the
transformation model is shown in Figure 4. The input dataset for the model is undamaged
FE-simulated model data and the output is the experimental dataset generated in part one
of the methodology.
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Figure 4. Schematic domain transfer model.

The third part of methodology (Figure 5) begins with a reduction in the dimensionality
of the transformed feature. In this work, we use a two-step dimension reduction process.
In step one, the sensitivity of the feature to be studied for damage is measured using
the Mahalanobis square distance (MSD). The features are filtered using a threshold MSD
value. Then, the dimensionality for the filtered features is further reduced using principal
component analysis (PCA). This is followed by training and performance evaluation
through ML algorithms. In the final step, the trained ML algorithm is tested with an
experimental dataset.
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3. Experimental Setup and Specimen Detail

In the present work, a scanning laser Doppler vibrometer (LDV) was used to ex-
tract vibration data for metallic stiffened panels. The experimental setup for the LDV
(manufactured by PolyTec, Germany) consists of a laser scanning head (PVS 500), an LDS
magnetic oscillator (V406 M4-CE) manufactured by LDS, England, a function generator
(TEKTRONIX 3021B) manufactured by Tektronix, USA and a voltage amplifier (PA100E CE)
manufactured by LDS, England, as shown in Figure 6.

The experiment was completed in the following sequential steps: positioning of scan
head, 2-D alignment, definition of scan points on the specimen, laser focus, scan, and
data extraction.
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3.1. Test Specimen

The experiment was carried out on a metallic stiffened panel made of aluminum plate
and a T-stiffener of material grade AL5052 H32. The dimensions of the plate are 530 mm
length, 330 mm width and 1.5 mm thickness, and the stiffener has web dimensions of
26 mm × 2 mm and flange dimensions of 2 mm × 26 mm. Epoxy adhesive was used to affix
the stiffener to the plate. The epoxy adhesive was made by combining resin and hardener
in equal amounts (Loctite EA E-102). The bonding–curing time was 24 h. Four specimens
were created, one undamaged and the other three damaged (with debonding). Table 2
shows the locations of the damaged points.

Table 2. Test Specimens.

Specimen 1 Specimen 2 Specimen 3 Specimen 4

Intact
(Undamaged)

Debonding at
X = 265 of L = 50

Debonding at
X = 265 of L = 100

Debonding at
X = 285 of L = 70

Where X is the center of the debonding location, and L is the length of the debonding in mm.

To improve the laser beam’s reflection from the stiffened structure, the plate is
painted white (RUST-OLEUM 249126 FLAT WHITE). There were a total of 416 node points,
26 along the length and 16 along the width, with a 20 mm distance between each (Figure 7).
To prevent laser beam scattering, only 300 mm × 500 mm out of 530 mm × 330 mm is taken
into account when measuring a point’s area, as shown in Figure 7d. Beyond this area, the
incident laser beam might extend past the specimen due to the bending of the specimen
during the experiment.

To measure the modal frequency of the experimental specimen, the parameters of the
LDV were as given in Table 3.

Table 3. Experimental parameters.

Parameters Value

Minimum speed 5 µm/s
Maximum speed 10 m/s
Frequency resolution 0.125 Hz
Frequency range 0–200 Hz
Number of FFT lines 12,800
Scan time for one scan point 64 s

FFT: fast Fourier transform.
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3.2. Experimental Variability Reduction

One of the most difficult aspects of conducting an experiment is ensuring that the
results are consistent with those from a repeated testing of the same specimen or while
testing a different specimen. The major source of experimental variability in vibration-
based experiments is related to fixed boundary conditions. Maintaining the same boundary
condition for all specimens is nearly impossible. However, maintaining equal clamping
forces can help minimize the variability of boundary conditions. To accomplish this, at the
fixed boundary condition, all clamping nut-and-bolt arrangements were tightened with a
torque wrench to a constant torque. The sequence in which the bolts were changed was
also considered, with a consistent attachment sequence maintained throughout the test.
The mean of 11 tests was used as a single value of experimental data for each specimen.
This was implemented while bootstrapping the original sample’s data.
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4. Numerical Modeling of Stiffened Panel

The finite-element software package ANSYS 16.1 was used to model a stiffened alu-
minum plate with the same dimensions as the experimental specimen. For the modelling
of the plate and stiffener, the eight-node quadrilateral solid shell element (SOLSH190) with
three degrees of freedom in translation direction at each node was used. To determine
the size of the element, a convergence analysis was performed and, finally, meshing of
the entire structure was performed with 1 mm element size. The mechanical properties of
the modelled specimen are E = 70.3 GPa, density = 2680 kg/m3 and Poisson ratio = 0.33.
Debonding is simulated by breaking the node connection between the plate and stiffener.
The contact in the area of debonding is modelled using the parameters in Table 4.

Table 4. Contact modelling parameters.

Parameter Type

Contact type Flexible surface-to-surface
Target element TARGE170
Contact element CONTA174
Contact algorithm Augmented Lagrange method
Location of contact detection Gauss point
Contact selection Asymmetric
Gap/closure No adjustment
Behavior of the contact surface No separation
Geometry 3-D

Numerical Model Verification with Experiment

A numerical model’s ability to recreate a real test sample is limited. Nonetheless,
certain critical panel parameters can be verified. The important parameters of the vibration-
based model are modal frequency and mode shape displacements. However, it is very
difficult to verify the mode shape displacements in this specific case of a stiffened plate. An
attempt was therefore made to verify the undamaged specimen’s modal frequency. Chang-
ing the clamping torque value modifies the fixed boundary condition. This can be utilized
to obtain a modal frequency of an experimental test sample that is close to the numerical
model. At a torque of 22 Nm, the experimentally determined first modal frequency showed
good agreement with the frequency value predicted by the finite element model, with a
difference of 1.17%. Table 5 shows the first three modal frequencies that were obtained
from FE-simulated models and experiments on both undamaged and damaged samples.

Table 5. Model frequency (Hz).

Undamaged 50 mm Debonding 100 mm Debonding

Mode 1 2 3 1 2 3 1 2 3

FEM 49.95 70.00 110.26 49.91 69.73 109.43 49.91 69.34 109.43
Exp. 49.37 68.22 105.9 49.296 68.12 105.51 49.12 67.86 104.95

5. Methodology Implementation
5.1. Data Preparation for Domain Transformation

The experimental data pre-processing framework discussed in the methodology sec-
tion is used to create the experimental dataset for domain transfer. The data preparation
started with the performance of 35 experiments on the LDV experimental set-up to collect
35 samples (as per the central limit theorem, to have a strong statistical estimation, we
require at least 30) of data for each scanning point (shown in Figure 7d) of the undamaged
stiffened panel. Here, it should be noted that we have a total of 416 scanning points, as
shown in Figure 7d. Because of the symmetry of the stiffened panel along its length, we only
used half of the points, i.e., the first 208 scanning points, in this study, as shown in Figure 8.
The 35 data points were bootstrapped to create a larger sample size of 200. To reduce the
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experimental variability of the experimental data, one element of bootstrap data is the
mean of 11 elements of the originally collected data, as discussed in Section 3.2. Figure 9a
shows the histogram of the initial 35 data points, Figure 9b shows the 200 bootstrapped
sample data points, and Figure 9c shows the quantile–quantile (Q-Q) plot for the bootstrap
sample data. The Q-Q plot confirms that the bootstrapped data has the same distribution
as that of the original sample. Subsequently, the mean and standard deviation (SD) of this
sample were calculated and were used with the Python-based NumPy library, which was
employed to generate a sample of size 1000 for every scan point.
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Similarly, we also need 1000 sets of undamaged FE-simulated data. In order to create
1000 pieces of data, FE-simulated data were repeated 1000 times, adding 0.2 percent random
Gaussian noise to each instance through the Python based NumPy library. Now we have
two 1000 × 208 matrices, one for the undamaged sample experiment, and one for the FE
simulation of the same.

5.2. Domain Transformation Models

For choosing the appropriate domain transformation model, three neural network-
based models were constructed, namely, an artificial neural network (ANN), a one-
dimensional convolution neural network (1D-CNN) and a 1D-CNN with a fully con-
nected network (FC) (1D-CNN-FC-CNN), as models 1, 2 and 3, respectively. ANNs are
computer programs that work like the neural network in the brain. An ANN is made up
of a group of nodes or neurons. Neurons are connected to each other, making a network
structure similar to that of biological neural mechanisms, which is where intelligence comes
from. An ANN has a set number of neurons in each layer: input, hidden and output.
Mathematically, the ANN for input X and label X̂ can be represented as

ŷ = σ
(

WTX + b
)

(1)

where ŷ is predicted output, X is input vector, W is weight, b is bias and σ is an
activation function.

A loss function compares the target output value and the predicted output value to
determine how effectively the ANN models the training data. During training, the goal is
to reduce this difference between the predicted and desired outputs as much as possible.
The mean square error (MSE) loss function is defined as

L(ŷ, X̂) = ∥ŷ(i) − X̂(i)∥
2

(2)

Here, L is loss.
The objective of an ANN training algorithm is to minimize the loss function by

optimizing the value of weight W and bias b, defined as

J(WT , b) =
1
M

M

∑
i=1

L(ŷ(i), X̂(i)) (3)

Here, J is the Jacobian which optimizes the weight W and bias b to minimize loss; L, M is
the number of samples in the training dataset.

The 1D-CNN is an effective deep learning tool used for finding the underlying pattern
in a one-dimensional sequence dataset. Several damage detection methods [28–30] have
used it in different fields. A standard CNN has the following parts: the input layer,
convolution layers, a pooling layer and a fully connected layer. Each convolution layer is
made up of kernels k(m) of length m whose parameters can be learned. Mathematically, the
convolution layer for input x(n) of length n and kernel k(m) is shown as [31]

y(n) = ρ
(

x(n)
⊗

k(m)
)

(4)

ρ(n)
⊗

k(m) =
n

∑
k=0

x(k)k(n − m) (5)

Here, ρ represents the activation function, while the symbol
⊗

denotes the convolution
operation, m is kernel length and n is input length. To obtain an outcome from convolution,
a pooling layer is utilized which extracts inherent signal features.

The standard activation functions in ANN architecture are the tangent hyperbolic
(tanh), rectified linear unit (ReLU), leaky ReLU, and sigmoid. The tangent hyperbolic
(Figure 10) showed better performance in terms of sensitivity and learning speed than
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the other activation functions in the initial trials. Therefore, we have chosen tanh as the
activation function to be used throughout the present study. To further accelerate the
training process, batch normalization (BN) is introduced between the CNN layers. The
training of deep neural nets is significantly accelerated by BN as it tries to minimize the
internal covariate shift. It achieves this by fixing the means and variances of the layer
inputs during the normalization step [32]. The model’s architecture and its parameters are
shown in Figure 11. The detailed parameters of the model are provided in Appendix A.
The total number of trainable parameters for the three models are 845520, 2118112 and
2905641 for models 1, 2 and 3, respectively.
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Once the domain transformation (DT) models are constructed, the next step is the
training of the models. The source domain Ds (input) and target domain Dt (output) for the
DT model are FE-simulated database X and an experimental database X̂, both with a size
of 1000 × 208. The DT model was trained with the following parameters: batch size of 200,
learning rate of 0.0002, MSE loss function and adaptive momentum (Adam) optimizer with
a weight decay of 1 × 10−5. In order to prevent the problem of overfitting, an early stopping
criterion that guarantees generalization has been adopted [33]. Pytorch (version 1.11), a
deep learning library that is based on Python, is used in both the construction and training
of the DT models. The entire process of the methodology pipeline was implemented using
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a local computer (Dell OptiPlex 7070) with the following configuration: device type, CPU
(4.6 GHz); processor, core 6 intel i7 8700; memory-16 GB; and OS, Windows 10. Figure 12
shows the training progression of the DT models.
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5.3. Comparison of DT Models

After the DT model construction and training, the performance of the models was
compared. There are two relevant criteria that were set: the first was how accurately the
model transformed the FE-simulated data to the experimental domain, and the second was
to check the effectiveness of the transformed dataset. Here, effectiveness is defined as the
ability of the transformed dataset to give better prediction accuracy in damage assessment.

The first criterion is evaluated by comparing the average root mean square error
(RMSE) between the damaged-specimen experimental data and the damaged-specimen
FE simulation data after transformation for each damaged experimental specimen. The
model with the lowest RMSE is considered the best. Here, it is important to mention the
experimental damage data preparation procedure. We collected 15 sets of experimental
data for each damaged specimen by performing 15 experiments on the LDV lab setup. Then,
a procedure was followed similar to that used for the undamaged-structure experimental
data pre-processing, as discussed in Section 5.1. Finally, 50 data points were generated for
each damaged-specimen case. Figure 13a shows the average RMSE of the DT models while
transforming FE-simulated damaged-specimen data to the experimental domain for each
point of experimental damaged-specimen data. The figure clearly shows that DT model 3
produces the least RMSE in transforming the FE data to the experimental domain.
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To check the second criteria, i.e., the effectiveness of the transformed dataset, first, the
FE-simulated damaged-specimen database was transformed into an experimental domain
using the DT models. Then, feature dimensions of the transformed datasets were reduced
using PCA. The number of PCA components was determined by checking the cumulative
sum of variance and then using the number of components which capture 98% variance in
the dataset. Then, this PCA of the transformed dataset was split into training and testing
datasets, followed by the training of an ML model with the training dataset and testing
with the testing dataset. The target label for the damaged location is the debonding zone in
the stiffened panel. Table 6 lists the division of debonding zones according to debonding
location. Four types of testing were performed with the testing dataset, being 10, 15, 20 and
25 percent of the original dataset. The ML model used was a support vector machine (SVM).
Figure 13 shows the performance of the SVM model in debonding zone identification
at various train–test split ratios with the dataset transformed by DT models 1, 2 and 3,
respectively. From the figure, it can be seen that SVM gives the best accuracy score for
debonding zone identification when the FE data is transformed using DT Model 3.

Based on the two criteria and the respective performance levels of the DT models in
fulfilling these criteria, it can be concluded that model 3 is the best choice to proceed with.
Figure 12b also shows that the DT models with more trainable parameters perform better
compared to the model with fewer trainable parameters. The visual comparison between
FE-simulated and experimental vibration mode shape displacement data for debonding
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length 50 mm at 265 mm is shown in Figure 14a before transformation and Figure 14b
after transformation using DT model 3. The figure clearly shows that the transformed
FE-simulated data is very close to the experimental data.

Table 6. Debonding zone divisions.

Debonding
Location (X)

105, 125,
145 165, 185, 205 225, 245, 265,

285, 305 325, 345, 365 385, 405, 425

Debonding
Zone Zone-1 Zone-2 Zone-3 Zone-4 Zone-5
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5.4. Damage Assessment
5.4.1. Feature Sensitivity Analysis

This section discusses the preprocessing of the transformed dataset and the debonding
evaluation procedure. The data preprocessing procedure begins with feature-sensitive
analysis, also known as feature extraction. The goal of feature extraction is to extract lower-
dimensional features and more-susceptible-to-damage features from high-dimensional raw
data. For the feature extraction process, a procedure based on Mahalanobis square distance
(MSD) was adopted. MSD is a statistical measure used for assessing discrepancies between
different datasets. Its use in damage detection is described in detail by Worden et al. [34].
The MSD of a multivariate dataset consists of n observations in p variables. The MSD is
employed to estimate any observed data’s discordance. Mathematically, for multivariate
data, the MSD is defined as

MSDζ =
(
Xζ − X

)TS−1(Xζ − X
)

(6)

where X is the sample mean of observation, Xζ is an outlier, and S is the sample covariance
matrix. In our exercise, the MSD estimation started with the creation of 2000 copies of an
undamaged dataset by adding 0.2% of Gaussian noise to it. Then, MSD was estimated
for each damaged case. It was observed that, for debonding locations away from the
center location (i.e., away from location 265 mm), the MSD value was higher for the same
debonding size. The MSD value was lowest for the debonding situated at the center location
(at 265 mm). Also, it was observed that the MSD values were monotonically increasing
with the size of debonding at the same debonding location. So, to set the threshold limit of
the MSD value, it was required to study the MSD value for each debonding size located at
the center (at 265 mm). An additional 100 copies of the dataset for each debonding size
were created by adding 0.2 percent of Gaussian noise. In Figure 15, the estimated MSD
value for the created dataset is shown for the corresponding debonding size, located at
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265 mm. The mean difference between the MSD value for undamaged-specimen data and
15 mm of debonding gives a statistically significant result. Therefore, to set the threshold
MSD value, the combination of 15 mm debonding at the 265 mm location was picked.
Figure 16a displays the cumulative sum of the calculated MSD for each feature index
number for the 15 mm debonding size in ascending order. The threshold MSD value is
set as shown in the figure with the vertical line. Subsequently, the MSD values for all
feature indices for each debonding case were calculated. Then, the calculated MSD was
passed through the filter designed according to the threshold MSD value. The feature index
number is preserved for values greater than the threshold MSD value. Finally, the set with
the preserved index number is selected as the debonding sensitive feature vector. A total
of 108 sets of feature indices passed the threshold MSD value. Hence the initial feature
dimension of size 208 is reduced to 108 after this feature-sensitive analysis.
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5.4.2. Feature Dimension Reduction

The high-dimensional feature vector as an input to ML algorithms frequently results
in overfitting and high computational costs, which limits the generalizability of the model.
Keeping vital information concerning feature vectors in a lower-dimensional subspace aids
in solving these problems. Among the many dimensional reduction techniques available,
principal component analysis (PCA) is one that is widely used in ML, because it is the most
basic and straightforward method of dimensionality reduction. In the present study, the
first seven PCA components have been used, since they are able to cover 98% of the total
variance in the dataset.
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5.4.3. Dataset for Damaged Assessment

A total of 493 damaged cases were modelled in the FE simulation. There are
17 damaged locations, ranging from 105 mm to 425 mm along the stiffener length with
a step size of 20 mm, and at each location, 29 debonding sizes, ranging from 10 mm to
150 mm with a step size of 5 mm. These FE datasets were transformed into the experimental
domain using the DT model. The transformed FE datasets were used for the training and
validation of ML models in damage assessment. Initially, all damage cases were labeled
with their corresponding debonding location and debonding size. However, in the initial
trial, it was observed that the prediction accuracy for debonding location and size were
not reasonable. Therefore, the labels of debonding location and size were changed to
debonding location zone and debonding size group. Table 7 lists the debonding location
zones, and Table 8 lists the debonding size groups.

Table 7. Debonding location zones.

Debonding
Location (X)

105, 125,
145

165, 185,
205

225, 245, 265,
285, 305

325, 345,
365

385, 405,
425

Debonding Zone Zone-1 Zone-2 Zone-3 Zone-4 Zone-5

Table 8. Debonding size groups.

Debonding Size (mm) Size Group

10, 15, 20, 25, 30 Group-1
35, 40, 45, 50, 55 Group-2

60, 65, 70, 75 Group-3
80, 85, 90, 95 Group-4

100, 105, 110, 115 Group-5
120, 125, 130, 135 Group-6

140, 145, 150 Group-7

5.4.4. Performance Evaluation of ML Models in Damage Assessment

The proposed methodology for assessing debonding includes location zone and size
group prediction as a classification problem. Five ML algorithms, namely, SVM [35], Gradi-
ent Boosting (GB), Random Forest (RF) [36], Nearest Neighbors Classification (K-NN) [37]
and Adaptive Boosting (ABC) were used as base learning models for a stacked model. The
stacked model is an ensemble model that employs a two-stage training procedure. In the
initial stage, the base learning model is trained, and in the subsequent stage, the outcome of
the base model is used as an input feature for training the meta-model in order to produce
the final prediction [38]. In general, the stacked model approach has been reported to
provide better prediction accuracy, as compared to base-leaning models [39–43].

Two stacked models were created with the same base learner as mentioned above and
logistic regression (LR) as a meta-learner (second level learner). One was for debonding
location zone prediction and another for debonding size group prediction. The stacked
models were trained with FE-transformed data, as input and location zone and size group
as targets, respectively. The hyper-parameters of the base learners for the two stacked
models were optimized using random grid search algorithms. In random grid search, a
predefined range of values for each hyperparameter is specified, and the method picks
random combinations of hyperparameters within those ranges for evaluation. The optimal
set of hyperparameters is determined by training and evaluating the model for each
set of hyperparameters and selecting the combination of parameters that results in the
best performance.

Several performance matrices, including accuracy, sensitivity, specificity, F1 score, area
under the curve (AUC) of the receiver operating characteristic (ROC) curve, and AUC
of the precision recall curve, are commonly used to assess the performance of machine-
learning models. These performance metrics, however, lack comprehensive information.
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For instance, the AUC of the precision recall curve and the ROC curve are excessively
broad, as they assess all decision criteria, even irrational ones. On the other hand, it is
unfair to quantify metrics like accuracy, sensitivity, specificity, positive predictive value
and F1 score at a single threshold that works well in certain situations but not others. To
overcome these issues, Carrington et al., 2023 has proposed a novel performance evaluation
technique called deepROC [44]. The deepROC evaluates performance across several
projected risk categories. Deep ROC calculates the averages of sensitivity, specificity,
positive and negative predictive values, and likelihood ratios (both positive and negative)
for each group, as well as the group AUC and the normalized group AUC. In-depth
information by group is provided by the deep ROC analysis, which often enhances model
assessment over the regular ROC. For further information, readers are advised to read the
work of Corrington et al. (2020) [44] and Corrington et al. (2023) [45]. In present study,
we have employed the deepROC for the evaluation of the performance of ML models by
estimating the AUC of the ROC.

5.4.5. Results with FE-Transformed Data

The entirety of the FE-transformed data was divided into a training dataset (85%)
and a test dataset (15%). Then, the hyperparameters of each ML model were optimized
with the training dataset using a random grid search algorithm with ten iterations and
six cross-validations (CV). Once the hyperparameters of the ML models were tuned, the
models were trained with training data and tested with the test datasets. Figure 17a,b show
the confusion matrix for debonding location zone and size group predicted by the stacked
model with test dataset. In the confusion matrix figure, the value in each square along
the diagonal represents the number of true predicted labels and the value in the round
bracket shows the fraction of true class labels predicted accurately for particular class labels.
The figure shows that the prediction precision for a location zone varies from 0.92 to 0.62.
For debonding size group prediction, the precision varied from 0.27 to 0.86. The overall
performance of ML models in terms of the AUC of DeepROC is listed in Table 9. The values
in the table help in reiterating the conclusion that the stacked model is better, as compared
to the base ML models, in both debonding zone localization and size group prediction. It
also shows again that location zone is better-predicted than location size group. Overall,
the ML models give a reasonable accuracy in both debonding location zone and size group
predictions with FE-transformed data.
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Table 9. AUC for DeepROC for ML models.

ML Model Location
AUC (DeepROC)

Size
AUC (DeepROC)

SVM 0.717 0.720
RF 0.785 0.905

ABC 0.549 0.6823
GBC 0.588 0.907
k-nn 0.632 0.887
Stack 0.920 0.952

SVM, Support Vector Machine; RF, Random Forest; ABC, Adaptive Boosting, GBC, Gradient Boosting, K-NN,
k-nearest neighbor; Stack, Stacked model.

5.4.6. Results with Experimental Data

After obtaining satisfactory results in debonding location zones and size group predic-
tions with FE-transformed data using the ML model, the next task was to test the efficacy of
the methodology with experimental data. Only the stacked model was considered for the
experimental dataset. The two stacked models which were trained with FE-transformed
data for the debonding location zone and size group dataset were tested with the experi-
mental datasets for location zone and size group prediction, respectively. There were three
damaged experimental specimens. Fifty experimental datasets were generated for each
of them. These datasets were used as inputs for the trained stacked models. Figure 18a,b
show the prediction results for debonding location zone and size group, respectively. The
x-axes of the figures are the damage labels, the y-axes are the counts (i.e., the number of
times a particular damage label has been predicted), and the yellow lines in the figure
show the actual damage labels. From these figures, it can be seen that, for the debonding
zone location and size group, the predicted labels are populated around the actual class
label. However, for debonding size groups, the maximum counts of predicted and actual
labels are the same, which is not the case for location zone prediction. However, for the
stacked model trained with FE-transformed data with two-percent added Gaussian noise,
the prediction accuracy with experimental data considerably improved for both debonding
size group and debonding location zone, as shown in Figure 19.
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6. Conclusions and Future Work

This work presents a new method of generating an FE database for SHM which
is very close to an experimental database. The method used is a deep-learning-based
domain-transfer model which transforms the FE domain data into experimental data and
minimizes the differences between them. The methodology is implemented for debonding
localization and size estimation for metallic stiffened panels for vibration-based damage
assessment. A bootstrapping technique was used to generate sufficient experimental
data from a few samples of data collected from experiments using an LDV set-up. For
FE-simulated data, a sufficient number of copies of data were created by adding noise
to individual instances. The FE-simulated data was used as the input and experimental
data was used as the target in the DL-based DT model. This pretrained DT model (with
undamaged-specimen experimental and FE-simulated databases) was used to transform the
FE-simulated damaged-specimen database to the experimental domain. Three DT models
were designed, and a comparative study showed that a stacked DT model with a larger
number of trainable parameters transformed the data into the experimental domain more
effectively. This transformed FE dataset was used to train and evaluate ML models. Then,
the trained ML model was tested with the experimentally obtained damaged-specimen
dataset. The results are satisfactory for predicting the debonding location zones and size
groups in stiffened panels.

The key contribution of this work is the establishment of a method of creation of a
domain-transfer model for generation of large databases from finite-element-based models
which are very close to actual experimental results in their statistical distribution. Though
this has been demonstrated with the specific example of debonding locations and size
predictions of stiffened panels using vibration signals, the technique has a much wider
scope of application. It can be extended to other categories of structural-health monitoring
problems and even to other domains encountering the shared difficulty of generating a
large number of experimental data points for training machine-learning models.
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Appendix A

Table A1. The architectural details of the DT models.

Model-1

Layer (Type) Output Shape

Input (208)
Linear-1 (Tanh) (1024)
Linear-2 (Tanh) (512)

Output (208)
Total parameters 845,520

Model-2

Layer (Type) Output Shape

Input (208)
Conv1D-1 (Tanh) (BN) (16, 103)
Conv1D-2 (Tanh) (BN) (32, 50)
Conv1D-3 (Tanh) (BN) (64, 24)
Conv1D-4 (Tanh) (BN) (128, 11)

Linear-1 (Tanh) (1024)
Linear-2 (Tanh) (512)

Output (208)
Total parameters 2,118,112

Model-3

Layer (type) Output Shape

Input (208)
Conv1D-1 (Tanh) (BN) (16, 103)
Conv1D-2 (Tanh) (BN) (32, 50)
Conv1D-3 (Tanh) (BN) (64, 24)
Conv1D-4 (Tanh) (BN) (128, 11)

Linear-1 (Tanh) (1024)
Linear-2 (Tanh) (1408)

TransConv1D-1 (Tanh) (BN) (64, 24)
TransConv1D-2 (Tanh) (BN) (32, 50)
TransConv1D-3 (Tanh) (BN) (16, 102)

Output (208)
Total parameters 2,905,641

BN = batch normalization, Conv1D = 1D-convolution channel.
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