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Abstract: Effective data reduction must retain the greatest possible amount of informative content
of the data under examination. Feature selection is the default for dimensionality reduction, as
the relevant features of a dataset are usually retained through this method. In this study, we used
unsupervised learning to discover the top-k discriminative features present in the large multivariate
IoT dataset used. We used the statistics of principal component analysis to filter the relevant features
based on the ranks of the features along the principal directions while also considering the coefficients
of the components. The selected number of principal components was used to decide the number of
features to be selected in the SVD process. A number of experiments were conducted using different
benchmark datasets, and the effectiveness of the proposed method was evaluated based on the
reconstruction error. The potency of the results was verified by subjecting the algorithm to a large
IoT dataset, and we compared the performance based on accuracy and reconstruction error to the
results of the benchmark datasets. The performance evaluation showed consistency with the results
obtained with the benchmark datasets, which were of high accuracy and low reconstruction error.

Keywords: feature selection; feature reduction; principal component analysis (PCA); singular
value decomposition

1. Introduction

Data have become ubiquitous with the advances in technology, leading to the collection
of heterogeneous big data in every field imaginable. This makes it difficult for pattern
discoveries to be made due to the presence of noise and redundant data. For effective data
exploration, one must find a way to reduce noise and redundant data and be able to select
relevant features for pattern discovery and analysis [1]. This experiment has applications
in the pursuit of smart cities and edge computing that rely on the IoT and edge devices
that generate big data but have low computing resources for data processing. Therefore,
one must find ways to reduce the data volume to a size that is suitable for these devices
without compromising efficiency and accuracy.

Most dimensionality reduction algorithms and experiments rely on feature selection
and feature extraction to discover underlying patterns in data [2,3]. This preserves the
underlying framework of the original data while generating a new or reduced dataset.
Although both feature extraction and feature selection reduce the size of the data, their
methodologies differ. While feature selection attempts to identify relevant features in a
dataset using methods such as entropy, information gain, univariate/multivariate feature
selection, etc., feature extraction attempts to build a new set of features from the original
dataset in a new feature space that will yield low dimensions, and this helps the applicable
algorithms to fit better [4]. Both methods are necessary to reduce the challenges associated
with memory and computing costs, which are a real concern in the IoT environment.

In conducting this research, our intent is to enhance the ability of edge devices to store
and analyze big data by reducing the data volume they handle while not compromising
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quality. The need for edge computing resources to meet the needs of low-latency edge
services is driving firms toward the extensive deployment of edge and fog computing
resources. With self-driving vehicle adoption and smart city inevitability, scientists must
find ways to process edge-generated data at the edge, and this means finding ways to reduce
the volume of edge-generated data without compromising efficiency and the underlying
information needed for analysis and decision-making.

Our proposed method uses both feature selection and feature extraction. We leveraged
the statistical work of principal component analysis (PCA) to identify the feature ranks
along the principal direction, considering the values of the coefficient of the principal
direction [5]. We used singular value decomposition (SVD) for feature extraction, having
selected a good percentage of the features that efficiently represent the original data. The
beauty of this work is that no feature is dropped per se, as all of the components are
considered in PCA, which is a data reduction algorithm. Feature selection considers
the feature weight score of the class and makes decisions to drop a feature based on a
chosen threshold.

The work carried out in this study adapted the research work of Aminata Kane et al. [6].
By building on their work, we investigated what number of principal components (PCs)
would suit the data reduction needs of IoT devices, and we subjected the model to a large
real industry dataset to test its effectiveness. Most businesses adapting PCA for reduction
and analysis purposes usually choose the top five PCs. However, this may not work best
for many datasets, depending on the insights, level of accuracy desired, and characteristics
of the data.

Some of the pros of dimensionality reduction include the benefit of less computation
and training time [7]. The same benefit also accrues as redundancy is removed. Other
benefits include less storage space being required. The dataset becomes flexible for 2D and
3D plotting and also improves for ease of interpretation. Dimensionality reduction also
helps to filter out the most significant features, leaving the less significant.

2. Literature Review

Significant research has been carried out in the field of feature selection and dimen-
sionality reduction [8–11] in the search for different algorithms that can preprocess data for
a reduced, content-rich dataset that will be useful for different analytical purposes. This,
however, has not solved all of the challenges that exist in the field of data reduction.

A closely adapted research work by Aminata Kane et al. [6] involved the application
of PCA and SVD similarly on many benchmark datasets, and the authors compared their
results to the results of other experiments on the same datasets, making a case for their
method. In their work, they compared their PCA-selected number of components to other
feature selection experiments and compared their SVD results to the results of the other
experiments examined.

Understanding the factors on which feature selection is built is important in developing
a good feature selection algorithm. Herve Nkiama et al., in their work [12], employed a
recursive feature selection algorithm that is based on a tree classifier to uncover relevant
features. The tree classifier tries to remove non-relevant features by weighing the score of
each feature to the class label. The results improved the intrusion detection capabilities of
the system based on the NSL-KDD dataset.

In [13], Lukman Hakim et al. also examined the influence of feature selection on
network intrusion detection using the NSL-KDD dataset. It was duly noted that the
presence of irrelevant features in a dataset decreases the accuracy and performance of the
system. In their work, the feature selection algorithms used were based on information
gain, gain ratio, chi-squared, and relief selection using known algorithms that include
J48, Random Forest, KNN, and Naïve Bayes. While they observed an improvement in the
detection system, there was a slight decrease in accuracy.

Feature selection methods can be grouped into two classes: supervised and unsuper-
vised. Fisher score [5] or ReliefF [14] methods evaluate feature importance by exploring
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the dependence that exists between features and the label class. These methods assume
class labels as data. The difficulty with this is that it becomes very difficult to enforce this
assumption with high-dimensional data, which makes it is very difficult to obtain the labels.
Methods such as leverage score sampling [6], which falls into the unsupervised method of
feature selection, use all of the features to uncover the hidden relationships or patterns that
exist within the dataset and leverage them to classify the data.

In [15], the considered techniques depended on locality-preserving features. This
type of method seeks to classify data by grouping them into k-nearest neighbors to retain
features that represent the tree structure.

Another set of methods was examined to select features that most represent the dataset.
The most representative features would contain most of the information present in the
dataset. One such method is the PCA algorithm, which Joliffe, in [16], utilized in analyzing
different algorithms. This method is based on statistical calculations that show that the
selection of features is associated with their principal components and the absolute value
of their coefficients. This is partly the method adopted in this work.

Some machine learning algorithms have also been effectively used in feature selection,
with them using different metrics for decision-making. The authors of [17] used the JRip
machine learning algorithm, which is performance-based, to implement feature selection
in their dimensionality reduction experiment to improve the effectiveness of their system.

Abhishek et al. [18], in their evaluation of the KDD dataset, explored different methods
in the evaluation of the effectiveness of the KDD dataset for anomaly-based intrusion de-
tection. They used different machine learning algorithms in their evaluation and compared
their results to the performance of the UNSW-NB15 dataset, proposing the latter as a better
alternative for NID experiments. The focus of their work highlights the importance of
proper feature distribution in a dataset for good model performance. The authors of [13],
performing their own experiments on the KDD dataset, observed that feature selection
significantly improved the performance of the NIDS system, though with a slight reduction
in accuracy.

3. Study Background

This section explains the dataset used, the research concepts, and the problem statement.

3.1. Brief Overview of the Datasets

The relevant background information about the datasets used in this work is explained
in this section. This includes a brief overview of the datasets, principal component analysis
(PCA), and singular value decomposition (SVD).

Datasets

Five benchmark datasets were used in this experiment to evaluate the performance of
the proposed methodologies. Additional real-time big data from the IoT were included
in the experiment to evaluate the response of the method to real data from the industrial
space.

The benchmark datasets include:

i. The Arrhythmia Dataset: This dataset was generated to predict the presence or absence
of cardiac arrhythmia and classify the cardiac arrhythmia within the 16 classes of the
dataset [19].

ii. The Madelon Dataset: The Madelon Dataset was generated as AI data that contains
data points that are grouped into 32 clusters that are placed on the vertices of hy-
percubes with five dimensions and are labeled randomly as +1 or −1. These five
dimensions represent features with information, while 15 additional linear combi-
nations of the informative features were added to make this number 20, with the
15 being redundant. The goal of the experiment is to classify the 20 features into +1
and−1. Probe features were added to the dataset as distractions, with them holding no
prediction power. They served as distractions to test the power of the algorithm [20].
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iii. The Gissette Dataset: This is one of the five datasets that was used in the NIPS 2003
challenge for feature selection. The dataset is made up of a fixed-sized dimensional
image of 28 × 28 containing digits that are size-normalized and that are placed at the
center of the image. The images contain pixel features that were sampled randomly
at the middle–top of the features that contain the necessary information to identify
four from nine, and higher dimensional features were created from these features
to cast the challenge to a higher dimensional feature space. Features that serve as
a distraction were added, with them being called probes and having no power in
prediction [21].

iv. The Ionosphere Dataset: This is a radar dataset with targets as free electrons present
in the ionosphere. The class is such that ‘good’ radar should return some evidence
that contains a specific kind of structure in the ionosphere, while ‘bad’ radar does not
return such structural evidence [22].

v. The IoT Intrusion Data: This is a large proprietary IoT dataset, with intrusions having
115 features. A fraction was used due to volume and computing speed constraints,
giving a subset of 80,037 samples and 115 features.

The features of the datasets are expressed in the Table 1.

Table 1. Dataset features and samples.

Dataset N_Samples N_Features Class

Arrhythmia 452 279 16
Ionosphere 351 34 2
Madelon 2000 502 2
Gissette 5999 5000 2

IoT Intrusion 80,037 115 5

3.2. Principal Component Analysis (PCA)

The emergence of big data collection in every sector of industry presents difficulties
in interpretation. This is where PCA [2,4,8] comes to the rescue by reducing the dimen-
sionality of datasets without sacrificing information. This enhances the interpretability of
the dataset, including all of the benefits of dimensionality reduction. Principal component
analysis builds new features by projecting the features to new planes that are orthogonal to
each other. The distributions of the features in planes enhance the interpretability of the
relationship between the features.

Some key terminologies regarding PCA that aid its comprehension include the following:

View—The perspective (angle of sight) through which the data points are viewed (observed).
Dimension—The columns in a dataset. This is the same as the feature.
Projections—This is the perpendicular distance that exists between the data points and the
principal components.
Principal Components—These are the new variables that are constructed as linear combi-
nations or mixtures of the supplied initial variables.

Therefore, it becomes clear that the number of principal components will always be
less than or equal to the number of initial variables. The principal components are always
orthogonal, and the priority of the PCs decreases as their number increases from PC1 to PCN.
When given a dataset, principal component analysis performs the following operations on
the dataset in the following correct order—standardization, covariance matrix computation,
eigenvector, and eigenvalue computation—and generates feature vectors [6,16].

Standardization manipulates the data points to fall within similar boundaries [23].

Z = (x − ẋ)/std.

In the covariance matrix computation [24], the correlation between any two or more
attributes in a multidimensional dataset is expressed. The matrix entries are the covariance
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and variance of the feature values. Figures 1 and 2 shows the covariance matrix of two
features and n features respectively.
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3.3. Singular Value Decomposition (SVD)

The singular value decomposition of any given matrix A is the decomposition of that
matrix into a product of three different matrices expressed as A = UDVT, where D is a
diagonal matrix with positive real values and U and V have columns that are orthonormal.

One of the applications of SVD is in the approximation of data where a data matrix
A is expressed as a matrix of low ranks, and we found the low-rank matrix that is a good
approximation of the data matrix. That is, with a data matrix A, we can find a low-rank
matrix B, which is a perfect approximation of the data matrix A. In the expression above, U
and V are the left and right singular vectors, while D is a diagonal matrix. Matrix A can be
expressed as below [25] in Figure 3.

A = U∑i VT
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In this expression, i ≤min{m, n} denotes the rank of A, Ui ∈ Rm×ρ is an orthonormal
matrix, Di is an i × i diagonal matrix, and Vi ∈ Rn×i is an orthonormal matrix.

3.4. Problem Statement

A multivariate time series data An,m of n instances with m variables, Figure 4, may be
presented as an n × m matrix A having ti; j is the value of the variable vj measured at time
i, with it having 1 ≤ i ≤ n, 1 ≤ j ≤ m [6].
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The goal at this point is to find and select the most informative features within the
data matrix of n instances and m features while preserving the intrinsic structure of the
dataset using unsupervised feature selection methods [27]. The selected features should be
able to represent the original dataset with the subset features [28].

Let A be a matrix of n × m, with n instances and m features. We search for a subset S
of n× k, where k < m (column selection), which will retain the characteristics of the original
dataset [6]. A column subset selection will uncover the most k informative columns of A in
such a way that the |A − CCTA| will be minimized over all possible combinations k for C
that can be obtained from m of A. CCT will represent the projection of K-dimensional space
that is amassed by the columns of C, ξ = {2, F} will denote the spectral norm and Frobenius
norm, respectively, and the Moore–Penrose pseudo-inverse of C will be CT [16,29].

4. Proposed Methodology

The goal in this case is to find a subset matrix Cn,k from An,m such that k < m. Let Vk
be the singular vector containing the top-k features of A, with r = rank(A), r <= {n, m}, and
k < r. The algorithm for the top-k feature selection and the generation of a new dataset is
given below.

The system diagram for the proposed methodology is shown below in Figure 5.
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Algorithm

• Data exploration—explore the data to check their features and balance.
• Data preprocessing—perform data cleaning and train/test set division.
• PCA implementation—perform PCA transformation, selecting N-components such

that the dataset An,m >> Xk,m.
• Test the accuracy with a model and repeat until the best N-components (top-K features)

are realized.
• Implement SVD using the chosen N-component numbers.
• A new dataset is produced.
• Test the new dataset with a model to test the accuracy.
• Calculate the reconstruction error.

The steps above define all of the steps in the proposed method. The method relies
on statistical deductions of principal component analysis [29] to select principal compo-
nents with high priority that represent the dataset to a good degree. This representation
is verified using different machine learning algorithms to test the accuracy of the repre-
sentation against the class. The top-k selected principal components become the guide to
selecting the feature vectors from the SVD algorithm, hence the use of feature reduction
and selection methods.

The method is used on benchmark datasets and then a real-life big dataset to test the
performance of the proposed method.

5. Performance Evaluation, Results, and Discussion

This section discusses the metrics used to evaluate the performance of the experiment,
the results of the experiment, and a brief discussion of the results.

5.1. Performance Evaluation

The performance of the proposed method is evaluated using accuracy and reconstruc-
tion error. The performance of the proposed method was great, effective, and efficient
regarding time of execution, storage, and accuracy.

Accuracy is evaluated as follows [30]:

Accuracy =
TP + TN

TP + FP + TN + FN
,

where TP—true positive, FP—false positive, TN—true negative, and FN—false negative.
The reconstruction error gives a deep insight into the performance of the systems, as it

is a measure of the level of information contained in the low-rank matrix representation of
the data matrix A. The better (smaller) the reconstruction error is, the more confidence in
the algorithm and the system.

The reconstruction error is evaluated using the square of the Frobenius norm of the
original matrix X minus its truncated value [6,16].

MinA:rank(A)=k||X − A||2
F = ||X − Xk||2

F

5.2. Result

The Table 2 below shows the test accuracy, reconstruction error, and top-k components
as obtained in our experiment. These metrics are used to evaluate the performance of the
experiment. The following table, Table 3, shows the ratio of SVD selected features to the
original features. Figure 6 below shows the plot of reconstruction error and number of
samples trained for each of the datasets used.
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Table 2. Test accuracy and reconstruction error.

Dataset
SVD

Reconstruction
Error

Test Accuracy Inference_Time (s) N_Samples N_Features Top-k
Components

Arrhythmia 0.715595 0.604396 0.012478 452 279 13
Ionosphere 0.364809 0.971831 0.013278 351 34 15
Madelon 0.978347 0.785000 0.020385 2000 502 5
Gissette 0.828217 0.971972 0.035977 5999 5000 89

IoT Intrusion 0.068727 0.974825 0.671137 80037 115 29

Table 3. Test accuracy, reconstruction error, and the ratio of SVD selected features to original features.

Dataset
SVD

Reconstruction
Error

Test Accuracy N_Features Top-k
Components

Ratio of SVD Selected
Features to Original Features

Arrhythmia 0.715595 0.604396 279 13 0.0466
Ionosphere 0.364809 0.971831 34 15 0.4412
Madelon 0.978347 0.785000 502 5 0.0100
Gissette 0.828217 0.971972 5000 89 0.0178

IoT Intrusion 0.068727 0.974825 115 29 0.2522
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5.3. Discussion

The conceptualization of the experiment began with the search for an efficient data
reduction method that could be used to reduce large IoT and network data generated
through attack experiments. The quest was to find an appropriate method that could be
used for data reduction without compromising the quality of the data.

The PCA/SVD method discussed earlier leverages the statistical feature of PCA to
identify the top feature to select that holds greater information about the dataset. This
value, top-k features, is passed to the SVD process to retain that number of values. For
instance, using PCA, we discovered that by retaining the first top 29 of the 115 features that
are obtained from SVD decomposition, there is a minimal loss of information, as can be
seen with the reconstruction error of 0.068. What this means is that you can reconstruct the
original data from the newly generated dataset of 29 features with negligible information
loss. This process was performed on different dataset types to evaluate its performance on
different datasets while keeping in mind the original intention, which was IoT/network
dataset reduction. The datasets, as introduced earlier, include image data, radar data,
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AI-generated data, and then IoT data. We chose a different number of top-k features to
retain to evaluate the model.

The result of the experiment shows that PCA can be used to determine the number of
features to retain in the SVD decomposition. The performance of the result was consistent
across different datasets because we observed that the greater the ratio of SVD-selected
features to the original features, the lower the reconstruction error, and vice versa. The
accuracy was directly proportional to the ratio of the SVD-retained feature to the original
features and inversely proportional to the reconstruction error. In other words, the higher
the number of features retained from SVD decomposition, the greater the accuracy and the
lower the reconstruction error. The results show that this model can be applied to different
datasets and to large datasets. The results shown with the large IoT dataset showed that
the experiment performed well with a large dataset, as can be seen from the high accuracy
of 0.975 and low reconstruction error of 0.069.

6. Conclusions

IoT networks, coupled with the advent of 5G networks, have led to an explosion
in big data generated from IoT devices. Unfortunately, IoT networks have insufficient
computing and storage capacity for processing these data. In this study, we set out to
identify methods that can be used to effectively reduce the size of these data without
losing essential attributes. The new dataset should be feature-rich and small enough to
be run on IoT networks and other edge networks with miniature computing and storage
capacities. This led to the adoption of the data reduction methodologies proposed by [6],
with application to a much larger dataset.

In doing so, we analyzed the effectiveness of the methods proposed by [6], which
involved a feature reduction technique that uses principal component analysis and singular
value decomposition. The research leverages the statistics of the principal components to
identify the features that retain the maximum variability of the data, helping to reduce the
reconstruction error, as listed in Table 2. The top-k components, obtained as part of the
results of our experiment, are the number of new features retained in the derived dataset.
The purpose of this work, as shown by our results, is to subject the method used in [6] to a
large dataset to evaluate its performance when deployed to real-time big data for industrial
purposes and evaluate what the best value for top-k discriminative feature selection could
be. The experiments conducted on various smaller public datasets show that the method
picks the topmost representative k features validated by the accuracy of the results in
accordance with [6]. The reconstruction error values show that not much information is lost
in the transformation process, and the evaluation of the model on large IoT data indicates
that the algorithm performed well; the objective of generating a new miniature feature-rich
dataset to represent the original large data was met.

The number of principal components to retain should be carefully decided, as we
discovered that the higher the number of principal components retained, the lower the
reconstruction error and the higher the accuracy. However, the margin of selection lies
in the region where a significant increase in the number of PCs has little effect on the
accuracy and reconstruction error. This makes the case for the industry-wide adoption of
the methodology and the development of an automation process for the selection of top-k
features based on the system specifications and characteristics.
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