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Abstract: This study investigates the application of different ML methods for predicting pest out-
breaks in Kazakhstan for grain crops. Comprehensive data spanning from 2005 to 2022, including
pest population metrics, meteorological data, and geographical parameters, were employed to train
the neural network for forecasting the population dynamics of Phyllotreta vittula pests in Kazakhstan.
By evaluating various network configurations and hyperparameters, this research considers the ap-
plication of MLP, MT-ANN, LSTM, transformer, and SVR. The transformer consistently demonstrates
superior predictive accuracy in terms of MSE. Additionally, this work highlights the impact of several
training hyperparameters such as epochs and batch size on predictive accuracy. Interestingly, the
second season exhibits unique responses, stressing the effect of some features on model performance.
By advancing our understanding of fine-tuning ANNs for accurate pest prediction in grain crops,
this research contributes to the development of more precise and efficient pest control strategies. In
addition, the consistent dominance of the transformer model makes it suitable for its implementa-
tion in practical applications. Finally, this work contributes to sustainable agricultural practices by
promoting targeted interventions and potentially reducing reliance on chemical pesticides.

Keywords: artificial neural networks; bread striped flea; agriculture; forecasting

1. Introduction

Accurate pest prediction is a crucial issue in agriculture, empowering farmers to
proactively manage and mitigate pest infestations, minimize crop damage, and enhance
yields. The origin of precision agriculture, which incorporates advanced technologies such
as remote sensing, data analytics, and integrated pest management systems, is instrumental
in facilitating early pest detection. This equips farmers with the capability to make informed,
data-driven decisions. By integrating pest data with other relevant sources such as weather
conditions and soil moisture, farmers can develop predictive models to anticipate pest
outbreaks and implement timely interventions, thereby reducing the reliance on chemical
pesticides and embracing more sustainable solutions [1,2]. Additionally, precision farming
technologies, including decision support systems, are instrumental in predicting potential
pest outbreaks and optimizing the use of equipment, further emphasizing the significance of
effective pest prediction in agriculture [3,4]. The substantial benefits of precision agriculture
extend beyond mere pest mitigation as it promotes data-driven decision making and
seamlessly integrates pest management into broader farm management strategies.

The importance of effective pest prediction in agriculture is strongly related to the
pivotal role that grain crops play in global food security. Grain crops, including cereals,
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legumes, and oilseeds, serve as essential food sources for a substantial portion of the
world’s population [5]. However, the threat posed by pest infestations to these crops is
significant, resulting in considerable economic losses and jeopardizing global food security.
Estimates suggest that between 20% and 40% of global crop production is annually lost to
pests, imposing staggering economic costs [6]. Plus, pests such as aphids and the viruses
they transmit can inflict severe damage to wheat, causing substantial economic losses for
growers. Moreover, beyond direct crop damage, pest infestations in stored grains lead to
significant losses, impacting the nutritional value and quality of the food supply.

Among the challenges faced by pests in farming, there is a need to explore new
technological and intelligent solutions. Thus, technologies such as artificial neural networks
(ANNs), remote sensing, and data analytics provide a fresh way to deal with pest issues
in grain crops [7–9]. These cutting-edge technologies not only enhance early detection
capabilities but also enable farmers to make informed decisions based on comprehensive
data analyses. As we step into it, using these tools becomes a strong approach to changing
how we predict and manage pests, making farming more sustainable and effective.

In this context, ANNs have emerged as powerful tools for addressing complex prob-
lems, including pest prediction in agriculture [7,10]. ANNs are widely adopted for pre-
dicting crop pest risks because of their ability to effectively model and analyze intricate
relationships within large datasets. Research has demonstrated the high prediction ac-
curacy of ANNs in forecasting pest populations and quantifying their risks in various
crops, such as rice [11]. In addition, ANNs have been applied in intelligent agent-based
prediction systems for pest detection and alert mechanisms, leveraging technologies such
as acoustic approaches and video processing techniques to enable early pest discovery and
classification [12].

In Kazakhstan, where grain crops hold immense economic importance as the largest
grain producer in Central Asia [13,14], a connection between the vital role of agriculture and
the imperative for effective pest management becomes evident. Since farming, especially
growing grains, is a big part of the country’s economy, society, and environment, more
than a third of the people depend on agriculture for their jobs and way of life. While wheat
dominates as the primary crop, constituting 80% of Kazakhstan’s grain production and
serving as a key contributor to economic growth and trade, the sector faces challenges due
to limited modernization and vulnerability to weather conditions [15]. The significance
of grain crops for food security and the economy in Kazakhstan underscores the need for
effective pest management strategies to safeguard production and mitigate the potential
economic impact of pest infestations.

As a consequence, the motivation behind focusing on fine-tuning ANNs for pest
prediction in grain crops lies in the pursuit of optimizing predictive accuracy and enhancing
the applicability of these advanced models [11,16]. ANNs, known for their ability to
capture complex patterns within data, offer a promising tool to address the difficulty of
pest dynamics. Fine-tuning, in this context, becomes essential to systematically adjust the
model’s hyperparameters, such as the number of layers and neurons, to achieve an optimal
configuration. By adapting the architecture of ANNs, we aim to uncover the most effective
configuration that maximizes predictive performance [17], ensuring that the models are
finely tuned to the unique characteristics of pest data in grain crops. This research has a two-
fold objective: to refine pest prediction methods and to promote sustainable agriculture by
enabling more precise interventions, thereby reducing dependence on chemical pesticides.

Literature Review

In the realm of agriculture, the use of ANN significantly enhances the efficiency of
plant cultivation. The application of these technologies enables the monitoring of plants,
forecasting crop yields, predicting weather and climate changes, optimizing resource
utilization, and combating diseases and pests. For instance, researchers from the University
of Barishal (Bangladesh) employed deep convolutional neural networks (CNN) to detect
tomato leaf diseases [18]. Gaussian and median filters were applied, two color models (HSI
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and CMYK) were utilized, and images were processed in four different ways. CNNs have
also been integrated into the work of other researchers from the University of Ségou in
Mali [19]. They proposed a method for detecting and identifying insect pests in crops using
a CNN. The network parameters were reduced by 58.90%, making it effective in agricultural
crop diagnostics. Similar promising results with CNN have been achieved by researchers
from China in their study for recognizing diseases and pests in strawberries [20]. They
employed pre-trained parameters from the original AlexNet model and adopted the Adam
optimization algorithm for parameter updates to expedite the training process, achieving
an accuracy of 97.35%.

To swiftly identify prevalent pests in agricultural and forestry settings, a technique
leveraging a deep CNN was introduced in [21]. The authors used image processing
methods, including flipping, rotation, and scaling, as well as the incorporation of Gaussian
noise and unconventional principal component analysis (PCA) to enhance the effectiveness
of the approach.

ANNs have proven to be versatile tools not only in image classification but also
useful for tackling other different kinds of problems. For example, scientists have used a
combination of CNN and recurrent neural networks (RNN) to predict crop yield [22]. In
this study, a CNN-RNN framework was employed to forecast corn and soybean yields
across the entire Corn Belt in the United States. Another popular predictive model, long
short-term memory (LSTM), was used in [23] to predict future occurrences of pests and
diseases in cotton based on weather conditions. In this study, the Apriori algorithm was
used to reveal relationships between weather factors and the emergence of cotton pests. The
authors developed an LSTM-based method to tackle challenges in time series forecasting.
LSTM exhibited proficiency in predicting the occurrence of pests and diseases in cotton
fields. Scientists from Guangxi University in China have developed a model for predicting
the pressing process index of sugarcane based on an ANN [19]. This model integrates deep
learning with the pressing mechanism and is constructed using a physics-based neural
network to forecast the sugarcane pressing process index.

Another lesser-known model is the Multi-Task Neural Network (MTNN). It is a deep
learning technique that can perform multiple tasks simultaneously, such as semantic seg-
mentation and edge detection. MTNN has been applied to various agricultural problems,
such as fruit freshness classification, field boundary extraction, and crop disease detection.
Luo et al. [24] proposed a multi-task learning network with an attention-guided mecha-
nism for segmenting agricultural fields from high-resolution remote sensing images. Their
method achieved high accuracy and improved the completeness of field boundaries. Kang
and Gwak [25] developed an ensemble model that combines the bottleneck features of
two MTNNs with different architectures for fruit freshness classification. Their model
outperformed other transfer learning-based models and showed effectiveness in distin-
guishing fresh and rotten fruits. Another example can be found in [26], where the authors
introduced a semantic edge-aware MTNN to obtain closed boundaries when delineating
agricultural parcels from remote sensing images. Their method improved conventional
semantic segmentation methods and handled small and irregular parcels better.

Literature analysis reveals a notable gap in the exploration of neural networks for
pest detection in the agricultural sector. This area calls for more comprehensive research,
particularly in addressing pests such as the wheat stripe flea beetle. The wheat stripe flea
beetle stands out as the primary pest affecting crops in the northern and central regions
of Kazakhstan (Phyllotreta vittula), causing substantial damage to all grain crops, and
impacting overall yield. In agriculture, the timely identification of pests is a significant
challenge exacerbated by seasonal variations, extreme weather conditions, and global
climate change, all of which contribute to the risk of pest outbreaks.

This research aims to fill this gap by developing an ANN-based model dedicated to
predicting the dynamics of grain crop pests, ultimately enhancing crop yield. To accomplish
this objective, two primary tasks have been outlined: (a) selecting the optimal ANN
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architecture for predicting pest dynamics, and (b) determining the optimal hyperparameters
for the chosen neural network architectures.

2. Methodology

This section introduces the proposed methodology to predict the dynamics of the
number of pests on grain crops in Kazakhstan. We describe here the dataset with some
statistics and the preprocessing methods applied, including normalization and missing
value imputation. Finally, the three models implemented are briefly introduced: MLP,
MTNN, and LSTM.

2.1. Dataset

To train a neural network for forecasting the population dynamics of pests, specifically
Phyllotreta vittula in Kazakhstan, comprehensive data spanning from 2005 to 2022 were em-
ployed. The dataset incorporates crucial information, encompassing both pest population
metrics and meteorological data. The chosen input features encompass diverse parameters:
The year (year), geographical location (location), and soil surface temperature from April
to September (tapr, tmay, tjun, tjul , taug, tsep). Additionally, precipitation data from April to
September (papr, pmay, pjun, pjul , paug, psep) and surveyed area during spring, summer,
and autumn (asp, asu, aau) are integrated as input features. The neural network is trained
to predict infestation levels by cereal leaf beetles during spring, summer, and autumn
(isp, isu, iau) as the target variables. Some statistical metrics can be found in Table 1.

Table 1. Descriptive statistics of the dataset, encompassing pest population dynamics (Phyllotreta
vittula) and meteorological factors from 2005 to 2022 in Kazakhstan.

Variable Mean Std Min 25% 50% 75% Max

tapr 7.2 3.9 −0.6 4.5 6.7 9.3 19.4
tmay 16.8 5.7 1.2 15.6 17.5 19.8 28.3
tjun 23 6.1 2.2 22 24.2 26.4 32.9
tjul 25 4.8 2.8 23.8 25.5 27.2 34.8
taug 21.2 7.1 2.1 21.2 22.9 25.4 31.9
tsep 14.3 3.4 1.3 12.8 14.4 16 23.8
papr 0.4 0.3 0.1 0.1 0.3 0.6 1
pmay 0.4 0.3 0.1 0.2 0.3 0.6 1
pjun 0.4 0.2 0.1 0.2 0.3 0.5 1
pjul 0.4 0.2 0.1 0.2 0.3 0.5 1.3
paug 0.4 0.2 0.1 0.2 0.3 0.5 1
psep 0.4 0.3 0.1 0.2 0.3 0.6 1
asp 1.5 3.8 0.1 0.2 0.5 52.6 52.6
asu 9.2 13.8 0.1 0.2 14.3 14.3 113.5
aau 7.1 11.6 0.1 0.2 1.1 11.2 131.5
isp 0.8 1.2 0.1 0.2 0.5 1 9.3
isu 6.5 10.9 0.1 0.2 1 56.8 56.8
iau 4.6 7.3 0.1 0.2 0.7 6.4 32.4

The information presented in Table 1 is fundamental to gaining insights into the
dataset used to train the ANN models. The table shows that the variables have diverse
ranges, for instance, with areas in autumn and summer, aau and asu respectively, having
higher maximum values, while the temperature in April, tapr has a lower minimum value.
The distribution of each variable is presented in the table, providing a comprehensive
overview of the dataset’s characteristics. These trends and variations are further visualized
in Figure 1, where the statistical ranges, represented by the maximum and minimum values,
provide a clear visual representation of the dataset’s distribution. This combination of
tabular and visual representations enhances our understanding of the dataset’s dynamics.
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Figure 1. Distribution of minimum (a) and maximum (b) values for each variable in the dataset.

The intricate and multifaceted nature of the pest population data in Kazakhstan
requires the use of robust models. To address this challenge, we have chosen three well-
established ANN architectures: Multi-layer perceptron (MLP), multi-task neural network
(MTNN), long short-term memory (LSTM), and transformer. These models are renowned
for their adaptability and proficiency in capturing complex data patterns, making them
ideal for forecasting pest population dynamics in this region.

2.2. Preprocessing

Before applying any machine learning (ML) techniques, we performed two prepro-
cessing methods to guarantee the quality and validity of the data. The first method was to
apply the Standard Scaler transformation to normalize the numerical features and reduce
the effect of outliers. The second method was to handle the missing values in the dataset
by imputing them with appropriate values based on the feature type and distribution.

First, the data were standardized using the Standard-Scaler method before performing
any statistical analysis. This preprocessing step ensured that the different features in the
dataset had a consistent and comparable scale. The StandardScaler method adjusted the
data distribution to have a zero mean and a unit standard deviation, thus minimizing the
influence of outliers and scale differences among different features. By standardizing the
data, the model training process became more stable and efficient, as the optimization
algorithm could converge faster and better. Moreover, standardization often helps to
improve the performance of certain machine learning algorithms, leading to more accurate
parameter estimation and better prediction results.

The missing data were replaced with the median value due to its robustness to outliers
and its ability to preserve the central tendency of the data distribution. Using the median
helps mitigate the impact of extreme values or outliers present in the dataset, which could
disproportionately influence the mean value. By replacing missing values with the median,
the integrity of the dataset is maintained, and the risk of introducing bias into the analysis
is reduced.

2.3. Predictive Models

Our primary focus is on developing and analyzing various ANN models for pest
detection and forecasting. However, we also incorporated support vector regression (SVR)
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into our analysis. We consider this model because SVR has distinct characteristics and
strengths that make it useful in handling different types of data and patterns. Specifically,
SVR performs well in situations where the relationship between inputs and outputs is
nonlinear or when working with smaller datasets. By including SVR in our comparison,
we provide a wider glimpse of different machine learning techniques and assess their
suitability for the given task.

A. Support Vector Regression

SVR, a machine learning technique based on support vector machines, is adapted for
predicting continuous values rather than class labels. SVR works by finding the hyperplane
that best fits the data, while maximizing the margin, to minimize the error between the
predicted and actual values. This approach makes SVR particularly effective for tasks
where the number of features is much greater than the number of samples [27].

B. Multi-Layer Perceptron

MLP is a type of ANN that has at least three layers of nodes that are connected to
each other: An input layer, an output layer, and one or more hidden layers in between [28].
MLP can learn complex patterns in data by using a process of forward and backward
propagation, where it passes the data through the layers and adjusts the weights of the
connections based on the errors. MLP is useful for solving problems that require nonlinear
transformations of the input data.

C. Multi-Task Neural Network

Multi-task learning is a subfield of ML that aims to improve the performance of
multiple learning tasks by exploiting their commonalities and differences [25]. It can be
seen as a form of inductive transfer, where the knowledge learned from one or more related
tasks can help generalize better on a new task. It can also provide regularization and data
augmentation benefits, as well as enable fast adaptation to new domains and tasks. Unlike
traditional neural networks with a single output layer, MTNN incorporates multiple output
layers, each dedicated to a distinct task. This architecture facilitates the simultaneous
learning of multiple tasks, enhancing efficiency and performance in scenarios where tasks
are interrelated or complementary.

D. Long Short-Term Memory Neural Network

LSTM [29,30] is a type of RNN that can learn long-term dependencies in sequential
data. Unlike standard RNNs, LSTM has a memory cell that can store and update infor-
mation over time, avoiding the problem of vanishing or exploding gradients. LSTM can
handle complex tasks such as machine translation, speech recognition, and text generation,
among others. LSTM consists of three gates: input, output, and forget, that control how
information flows in and out of the memory cell.

As an example, the architecture of the LSTM model is depicted in Figure 2. Within an
input layer, neurons encode various features such as year, location, soil surface temperature,
and precipitation, along with the surveyed area in spring, summer, and autumn, respec-
tively. The rectified linear unit (ReLU) activation function, f , is utilized in both the LSTM
and dense layers. The outputs of these layers are subsequently channeled into specific lay-
ers designated for each season (spring, summer, and autumn). Following transformation,
the outputs are forwarded to the corresponding output layers.
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E. Transformer

The transformer is a type of neural network architecture (see Figure 3) widely used in
natural language processing and sequential data tasks. Unlike traditional neural networks,
Transformers rely on self-attention mechanisms to weigh the importance of different parts
of the input data, enabling them to capture long-range dependencies more effectively. This
mechanism allows transformers to process sequences of varying lengths in parallel, making
them computationally efficient. Transformers have demonstrated superior performance in
tasks such as language translation, text generation, and sequential data analysis, thanks to
their ability to model complex relationships and dependencies within sequences [31].
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The multi-head self-attention layer implements the attention mechanism used in
transformers. It computes attention weights between each element in the sequence, incor-
porating sub-layers for query, key, and value projections, and consolidates the results into
a single output. Following this, the transformer block layer performs various operations,
including feature transformation, dropout to prevent overfitting, and normalization to
stabilize training. The input layer is where the model receives the time series data, while
the position embedding layer adds crucial information about the sequence’s order. Finally,
the output layer represents the model’s prediction for the input sequence.

ReLU offers several advantages, such as computational simplicity and mitigation of
the vanishing gradient problem. It contributes to the effective training of deep neural
networks. Graphically, the ReLU function can be represented as a line passing through
the origin and then rising to the right. It stands out as one of the most popular activation
functions in deep learning.

2.4. Hyperparameter Tuning

Grid search cross-validation [32] is a widely utilized tool in the field of ML, specifically
designed for the crucial task of hyperparameter tuning. Hyperparameters, which exert
control over a model’s learning process, encompass variables such as the number of
layers in a neural network, learning rate, or regularization parameter. Selecting optimal
values for these parameters holds paramount importance in maximizing a model’s overall
performance.
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The operational framework of grid search cross-validation follows a systematic ap-
proach. Initially, a grid of hyperparameter values is defined, specifying potential ranges for
each parameter to be tuned. Subsequently, the method iterates through this grid, systemati-
cally evaluating various combinations of hyperparameter values. For each combination,
it generates a new instance of the model, conducts training on data subsets using cross-
validation, and assesses performance metrics based on a chosen evaluation criterion. After
assessing all combinations, the method identifies the set of hyperparameters that result in
the most optimal performance.

For our specific dataset, GridSearchCV is a more suitable method for hyperparam-
eter tuning compared to evolutionary computation [33], swarm algorithms [34], and the
combined approach using artificial bee colony and differential evolution algorithms [35].

The motivation lies in the relatively small size of the dataset and the limited number of
hyperparameters, enabling us to conduct an exhaustive search of hyperparameter combina-
tions using GridSearchCV without significant computational costs. This approach ensures
coverage of the entire search space and can provide precise results for optimal model tuning
on this dataset. While evolutionary and swarm algorithms may be more efficient for larger
or more complex datasets with larger hyperparameter spaces, GridSearchCV remains the
preferred choice in this context.

3. Experiments

The selection of hyperparameters is crucial for the success of training ANN. Random
search for hyperparameters in neural networks can take a considerable amount of time to
converge and yield good results, given the substantial time required for training networks
with many parameters.

Determining optimal hyperparameters for the final architecture involved careful
experimentation with different configurations, covering various layer numbers and neuron
counts. Parameters such as the number of layers and neurons, the number of training
epochs, batch size, and the choice of optimizer are crucial when tuning neural network
hyperparameters. These parameters significantly influence the model’s ability to learn and
generalize to new data.

To formulate network architectures, it is necessary to determine the optimal number
of layers and neurons in each layer. Insufficient or excessive layer count has corresponding
consequences: It may fail to capture important patterns or lead to overfitting. Thus, a
balance between learning and preventing overfitting needs to be achieved. Insufficient
training epochs may result in inadequate training, while an excessive number of epochs
can increase training time without substantial performance improvement.

The general process followed to train our models can be seen in Figure 4. The input
data—temperature, precipitation, location, year, and surveyed area—are processed and
properly prepared. Then a set of hyperparameters is selected to be optimized: number
of layers, neurons, epochs, and batch size. There are many ways to automatically select
hyperparameters. The most natural way to select hyperparameters is to iterate over a grid
with sliding control. During the experimental stage, hyperparameter tuning was conducted
by integrating grid search cross-validation. The input data were split into training and
testing sets, comprising 80% and 20% of the data, respectively. Thus, the training set is used
as input for training the ANN model, while the test set is utilized to evaluate the model’s
performance on unseen data.
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All the models implemented were based on the high-level API for building and
training deep learning models in the Tensorflow Keras library.

In this study, the model’s performance on the training and testing datasets was as-
sessed using statistical parameters, including mean squared error. Compared with other
error measures, MSE is differentiable and effective using mathematical methods [36].

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, (1)

where n—the number of observations, yi—the actual value of the dependent variable for the
ith observation, ŷi—the predicted value of the dependent variable for the ith observation.

In our context, MSE holds significance in evaluating model performance, particularly
in regression problems. MSE prioritizes accurate forecasts by penalizing larger errors more
heavily. This results in a single, easy-to-understand metric for the models’ comparison.
Moreover, its mathematical form allows for efficient optimization algorithms to fine-tune
models and achieve the best possible performance.

It is important to note that our experiments are not carried out in isolation but rather
are interrelated. Each experiment relies on the best outcomes of the previous one. Our
methodology results in choosing the most effective parameters in one experiment and
subsequently applying them in successive iterations. This iterative cycle enables us to
enhance our outcomes incrementally.

4. Results

This section includes the MSE analysis of diverse predictive models under several
experiments. The adjusted hyperparameters are the number of neurons, layers, epochs,
and batch size. The MSE analysis is displayed in tables organized by season, with each
season featuring three columns dedicated to each predictive model for easy performance
comparison. We would like to mention that while statistical tests are important to evalu-
ate the significance of differences between results, in our study, we did not include any
statistical tests. This decision was based on the observation that the results obtained from
the different models exhibited significant variations, indicating obvious differences in
performance among them. As such, conducting statistical tests to compare these results
would not have yielded meaningful insights, as the differences were already apparent.

Table 2 presents the results of the experiment with different neurons. Importantly,
season 3 yielded the most favorable outcomes, especially with the transformer model,
which achieved the lowest error rate across all seasons. Season 2, however, proved to be
the most challenging for modeling, as evidenced by its highest error rate. The transformer
model consistently performed well, achieving the lowest error rates in all seasons. In
addition, the table did not reveal a clear trend of improvement in model performance
with increasing the number of neurons across all seasons. Notably, only the LSTM model
in season 2 and transformer in season 3 showed some improvement with more neurons.
Interestingly, the MTNN model achieved its best performance with the lowest number of
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neurons (2) in both season 2 and season 3. While MTNN consistently produced reliable
results with low variability within each experiment, its overall MSE performance did not
surpass that of other models. Finally, comparing MLP and LSTM models, their results
were very similar, with LSTM generally achieving a slightly lower MSE. This proximity in
performance suggests their competitiveness, but the transformer emerged as the slightly
more favorable choice based on predictive accuracy in this case.

Table 3 shows the error obtained by varying the number of layers and neurons per
layer in each model. The goal is to analyze how the network architecture affects the
prediction accuracy. As can be seen from the table, season 3 consistently exhibits lower MSE
values across various layer configurations, and season 2 has higher errors, as happened in
the previous table. The lowest configuration is obtained with a three-layered transformer
with 2 neurons in the first and second layers and 8 neurons in the last one. And again,
the transformer trends to outperform LSTM, MLP, and MTNN. MTNN shows consistent
performance with lower variability within each row. Finally, the {5, 2, 5} configuration
for MLP achieves a lower error in season 1, though there is not a clear improvement in
increasing the number of layers. Interestingly, the previous experiment (see Table 2) showed
that all three models performed consistently better when using only one layer.

The outcomes of the third experiment are presented in Table 4, explaining the influ-
ence of varying the number of epochs. Notably, a discernible trend emerges across most
models, wherein an increase in the number of epochs tends to yield poorer results. While
certain specific instances display improved outcomes, the predominant pattern suggests
a negative impact as the epochs increase. Remarkably, the optimal performance, once
again, is attributed to the transformer model, particularly when configured with 400 epochs.
Nevertheless, three notable exceptions exist, where the most favorable results are achieved
with 100 epochs: MTNN in season 1, LSTM in season 2, and MTNN in season 3.

The final Table 5 illustrates the MSE variations with changes in batch size. Up to a
batch size of 8, a discernible improvement is observed across nearly all models and seasons.
However, this improvement breaks when changing to a batch size of 10. However, an
exception occurs in season 2, where both LSTM and MTNN exhibit enhanced performance
with batch sizes of 10 and 6, respectively. It appears that a batch size of 8 stands out as the
optimal choice, as it consistently yields favorable outcomes for most models and seasons.
Season 3 distinguishes itself with the least variability among the three models, while season
1 displays the highest variability. Throughout, season 2 consistently maintains the highest
error rates.

To assess for a visual representation of the evolution of the experiment conducted, we
can check Figure 5. The figure depicts the evolution of our experiments, divided into three
parts corresponding to each season. These figures show the progression and enhancement
of our models’ performance. Thus, the figure highlights some discernible improvements
and fluctuations in the model’s error rates. Thus, it offers a visual understanding of how
well the iterative refinement process works throughout the study.

An additional experiment was conducted employing SVR, Table 6, known for its
proficiency in regression problems. Despite its reputation, the results from SVR showed a
higher MSE compared to the ANN models. Among the different kernel functions tested
(radial-basis, linear, polynomial, and sigmoid), the linear kernel exhibited the best perfor-
mance. Subsequent tests with the regularization parameter (C value) revealed that the
models could be improved with optimal parameter tuning, providing MSE values of 781.74,
1514.41, and 655.92 for Seasons 1, 2, and 3, respectively. These findings suggest that while
SVR holds promise for regression tasks, the ANN models outperformed SVR in our specific
application, highlighting the importance of model selection and parameter optimization.
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Table 2. MSE analysis across several neuron configurations.

Season 1 Season 2 Season 3

Neurons MLP MTNN LSTM Transformer MLP MTNN LSTM Transformer MLP MTNN LSTM Transformer

2 727.0703 812.8749 648.0278 612.5543 1210.8792 1156.6104 1461.7490 905.1211 633.1957 631.6688 445.8131 403.6778
4 761.5453 812.7620 815.7919 582.4524 1167.7273 1461.6046 1195.8651 873.7854 633.1788 633.2068 433.7654 391.1211
8 651.7265 812.7345 608.7301 474.1287 1461.4097 1461.5884 1199.1933 791.2334 633.1748 633.1878 380.1075 336.5321

16 748.0907 811.8649 625.7525 433.2341 1461.5638 1179.0231 1201.5912 821.3321 633.2013 632.1489 368.7934 312.5677
32 651.9003 812.7378 629.8475 405.1323 1461.6357 1461.6150 1274.4498 811.4523 633.1728 633.2039 601.5950 289.2412
64 651.9463 812.7468 639.9440 412.7656 1273.4418 1461.5961 1187.7895 853.1234 633.4088 633.2004 395.3399 245.6544

Table 3. MSE analysis across several layer configurations.

Season 1 Season 2 Season 3

Layers MLP MTNN LSTM Transformer MLP MTNN LSTM Transformer MLP MTNN LSTM Transformer

{4, 12} 660.1096 812.7489 829.5544 673.8134 1461.6023 1461.5814 1191.8903 823.6743 633.2051 633.1778 453.3603 408.7865
{8, 8} 671.7164 812.7472 774.2298 534.9843 1191.2417 1461.6384 1197.9731 801.1234 633.1966 633.1970 372.4158 412.5643
{12, 4} 702.1545 689.8484 812.5779 487.2371 1461.6185 1461.6663 1206.4655 856.8754 633.1993 633.1836 449.3485 375.3423
{4, 4, 4} 812.7486 812.7317 599.4713 456.7862 1461.5789 1461.6094 1207.8741 901.8734 633.1622 633.1984 373.0441 288.1237
{2, 8, 2} 812.7453 812.7363 586.7957 395.7643 1461.6858 1461.5979 1461.6719 932.8712 633.1897 633.1935 376.0373 278.9456
{2, 2, 8} 812.7401 630.9656 812.7364 691.9439 1461.5786 1461.6091 1202.8581 956.5623 633.1951 633.1845 373.4460 248.2332
{8, 2, 2} 812.7320 812.7477 812.7448 703.6512 1461.5914 1461.6101 1461.6394 978.1945 633.2031 633.1999 633.1851 434.5674
{5, 2, 5} 635.1971 812.7465 812.8038 724.0543 1461.6101 1461.6579 1188.7855 897.1432 633.2075 633.1956 633.1572 434.6712

Table 4. MSE analysis across several epoch configurations.

Season 1 Season 2 Season 3

Epochs MLP MTNN LSTM Transformer MLP MTNN LSTM Transformer MLP MTNN LSTM Transformer

100 660.1096 630.9656 586.7957 395.7643 1191.2417 1461.6091 1187.7895 801.1234 633.1622 633.1845 372.4158 248.2332
200 642.5931 812.7413 633.9173 413.9488 1461.6623 1461.7607 1217.5633 1027.1459 633.1974 633.2054 359.0523 267.9834
400 812.8193 812.7432 575.2028 405.8734 1219.6749 1461.7106 1501.5736 998.7845 633.1817 633.1931 371.6288 239.1234
600 624.5416 812.7351 594.6237 384.8435 1218.6727 1461.7054 1746.0869 905.3975 633.3051 633.1935 373.8825 297.3412
800 659.6547 812.7394 812.7356 567.8577 1461.6884 1068.4161 1203.4065 886.8734 633.1629 633.2008 425.4872 359.6745
1000 626.7629 812.7319 812.7508 592.8734 1178.8728 1461.7648 1189.0123 802.1432 633.0796 633.1981 418.5740 413.7624
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Table 5. MSE analysis across several batch size configurations.

Season 1 Season 2 Season 3

Batch MLP MTNN LSTM Transformer MLP MTNN LSTM Transformer MLP MTNN LSTM Transformer

4 634.6581 812.7487 627.3410 596.4537 1228.1390 1461.6653 1489.3365 987.3421 633.2126 633.2084 367.4893 295.6759
6 624.5908 812.7526 812.7392 489.5679 1182.3158 1461.6688 1187.1071 965.8466 633.1971 633.1965 370.3734 279.5634
8 624.5416 630.9656 575.2028 395.7643 1178.8728 1461.6091 1187.7895 801.1234 633.0796 633.1845 359.0523 248.2332

10 812.7350 812.7386 812.7370 478.6945 1461.7332 1461.4590 1230.9931 1032.8745 633.1934 633.1947 386.7438 288.6504
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Table 6. MSE analysis across several SVR configurations.

Kernel Season 1 Season 2 Season 3

Radial-basis 855.56 1672.18 677.61
Linear 808.62 1606.52 644.65

Polynomial 855.65 1672.63 677.72
Sigmoid 855.74 1672.27 677.65

5. Discussion

Our analysis revealed interesting patterns across different seasons. Particularly, season
3 consistently outperformed other seasons, with the transformer model showcasing the
lowest error rates. On the other hand, season 2 presented the most significant modeling
challenges, as evidenced by its consistently high error rates. This might be due to the
increased precipitation and temperature during this season, which provide an optimal
environment for pest existence and reproduction. Interestingly, no clear trend emerged
across all models regarding improved performance with increasing neurons. The MTNN
model stood out in this regard, achieving optimal performance with just 2 neurons in both
season 2 and season 3.

The second experiment explored the impact of varying layers and neurons. Similar
to the previous experiment, season 3 exhibited consistently lower MSE values across
various configurations, while season 2 maintained higher errors. Within this context,
a three-layered transformer model with 2, 2, and 8 neurons per layer emerged as the
optimal configuration, indicating its superiority over MLP and MTNN models. Notably,
MTNN displayed consistent performance with lower variability within each configuration,
reinforcing its reliability. This finding, along with the one from the previous experiment,
highlights the potential effectiveness of simpler architectures, suggesting that complexity
does not always equate to better predictions.

Exploring the influence of epochs and batch size revealed additional knowledge. In
general, increasing the number of epochs beyond a certain point led to poorer performance
for most models. This finding emphasizes the importance of considering optimal epoch
numbers for different models and scenarios to prevent overfitting. Similarly, increasing
the batch size up to 8 generally led to improvements, but this effect stopped at a size of 10.
Interestingly, season 2 displayed irregular responses, with batch sizes of 10 and 6 offering
the best results for LSTM and MTNN, respectively. Additionally, season 3 displayed the
least variability in performance across different batch sizes, while season 1 showed the
highest. Thus, season 2 continued to demonstrate the highest error rates, suggesting
persistent modeling challenges in this specific case.
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An experiment was conducted using SVR, which did not demonstrate superior perfor-
mance compared to other models.

Based on the visual trends observed in the experiment evolution, we can identify
some improvements across various architectures. MLP and LSTM models demonstrate
positive advances in certain cases. However, the MTNN model only showed a significant
improvement from the first to the second experiment. The optimal model was transformer
for all three seasons.

6. Conclusions

This study provides a thorough exploration of ANN configurations and hyperparame-
ters, uncovering valuable insights into the modeling process to predict pest numbers in
grain crops in Kazakhstan. The experiments with varying neurons revealed the importance
of seasonality, with season 3 consistently producing the most favorable outcomes. Note
that, in this context, there are distinct periods with different environmental and agricultural
conditions throughout the year. These are known as seasons. Our models were designed
to consider these variations, which means their performance can differ across seasons.
Interestingly, our experiments showed higher MSE in the second season. This suggests a
larger amount of varied data during this time. We believe factors such as increased rainfall
and favorable conditions for pests during this season might explain these trends. This
highlights the impact of seasons on how well our models perform.

Remarkably, the transformer model proved to be a strong performer, displaying the
lowest error rates across multiple seasons. The simplicity of architecture proved to be
effective, as models with fewer layers demonstrated superior predictions, emphasizing the
potential advantages of streamlined structures.

The optimal number of epochs proved to be crucial, as an indiscriminate increase
beyond a certain threshold led to diminishing returns for most models. The transformer
model got the best performance with 400 epochs. The relationship with batch size showed
a general improvement up to a size of 8, beyond which the gains stopped. The exception
in season 2, where particular responses were observed, underscores the importance of
specific tuning.

Throughout the experiments, the transformer model consistently outperformed LSTM,
MLP, and MTNN in terms of predictive accuracy.

For future work, we suggest developing an analytical system to predict pest numbers
in grain crops in Kazakhstan. In addition, further exploration and comparison between
hyperparameter tuning methods could serve as a promising avenue for future research.
While our findings indicate that GridSearchCV is a suitable method for hyperparameter
tuning on our specific dataset, it would be valuable to conduct a comparison with other
techniques such as evolutionary computation and swarm algorithms. This comparative
analysis could shed light on the relative strengths and weaknesses of each method across a
wider range of datasets and model architectures.

Finally, we plan to explore the theoretical aspects of developing methods based on
ANNs for agricultural applications. While our current paper focuses on practical applica-
tions, we recognize the value of exploring theoretical foundations. This exploration would
involve investigating algorithmic design, optimization techniques, and mathematical prin-
ciples leading to ANN architectures.
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