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Abstract: This is a systematic literature review of the application of machine learning (ML) algorithms
in geosciences, with a focus on environmental monitoring applications. ML algorithms, with their
ability to analyze vast quantities of data, decipher complex relationships, and predict future events,
and they offer promising capabilities to implement technologies based on more precise and reliable
data processing. This review considers several vulnerable and particularly at-risk themes as landfills,
mining activities, the protection of coastal dunes, illegal discharges into water bodies, and the
pollution and degradation of soil and water matrices in large industrial complexes. These case
studies about environmental monitoring provide an opportunity to better examine the impact
of human activities on the environment, with a specific focus on water and soil matrices. The
recent literature underscores the increasing importance of ML in these contexts, highlighting a
preference for adapted classic models: random forest (RF) (the most widely used), decision trees
(DTs), support vector machines (SVMs), artificial neural networks (ANNs), convolutional neural
networks (CNNs), principal component analysis (PCA), and much more. In the field of environmental
management, the following methodologies offer invaluable insights that can steer strategic planning
and decision-making based on more accurate image classification, prediction models, object detection
and recognition, map classification, data classification, and environmental variable predictions.

Keywords: machine learning; environmental monitoring; geosciences

1. Introduction

Machine learning (ML) has significantly revolutionized scientific methodology in geo-
science applications by introducing automation, enhancing efficiency, enabling adaptability,
ensuring security, and facilitating extensive data analytics [1]. Artificial intelligence (AI),
machine learning, and deep learning (DL), highly cited contemporary technologies, are
interconnected but distinct disciplines [2,3]. AI is a wider field that integrates various
approaches to create intelligent systems. ML is a branch of AI that emphasizes learning
from data and human-imitating algorithms, and DL is a further specialized subset of
ML, focusing on the use of deep neural networks for pattern recognition [4]. This review
exclusively focuses on the applications of ML within the field of geosciences.

The history of ML begins with cybernetics and the computer sciences in the early
1950s with the idea of using machines to simulate human learning processes. The primary
stages between the 1950s and 1960s created the prototype of early neural networks [5]. The
evolution of ML has progressed through distinct phases: rule-based systems (1960s–1970s),
connectionism and backpropagation (1980s), a renaissance in the 1990s, and a deep learning
resurgence in the 2010s [6]. Each phase marked significant advancements, diversification,
and broader practical applications. The ML field collected substantial relevance and
investment, evident in its transition from a limited number of global conferences to a
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proliferation of both national and international events. This shift underscores its increasing
significance and widespread interest within the scholarly community.

The application of ML covers four principal domains: prediction, feature importance
extraction, anomaly detection, and discovering new materials. These categories collectively
exemplify the multifaceted utility of ML methodologies in assorted analytical pursuits [7].
All predominant applications follow a uniform procedural framework: encompassing
model preparation, model development, and post-model creation stages, inclusive of the
interpretation and determination of applicability domains. This approach is well suited for
addressing the intricate challenges in environmental monitoring. Comprehensively, envi-
ronmental monitoring in geosciences contemplated the convergence of multiple disciplines
in very complex data management. These disciplines are physics, geology, meteorology
and atmospheric sciences, oceanography, environmental science, geomorphology, seismol-
ogy, paleontology, mineralogy and petrology, geophysics, glaciology, hydrology, chemistry,
biology, ecology, and anthropology.

On the global stage, scientific investigations into geosciences based on ML applications
are predominantly guided by the utilization of supervised ML algorithms. The research
was carried out utilizing the Clarivate site [8] by setting the following as filters: the last
four-year open access scientific articles, sorted according to the first ten results by relevance,
from the principal academic publishing companies specializing in scientific articles (e.g.,
Elsevier, Springer Nature, MDPI, IEEE, and Frontiers Media Sa) in the four geoscience fields
(geophysics, geomorphology, hydrogeology, and applied geology). Upon the analysis of
scientific articles, it is found that a notable 56.3% of the content originates from Asia, 12.4%
from Europe, 10.4 from Australia, and 8.3% from North America, with equal results of 6.3%
from South America and Africa. A substantial proportion of articles employ the supervised
learning algorithm of random forest (RF), an ensemble method [9–11], a support vector
machine (SVM) [12,13], logistic regression (LR) a linear model [14,15], an artificial neural
network (ANN) [16–18], a decision tree (DT) [19,20], K-nearest neighbors (KNN) [21–23],
and a Bayesian neural network (BNN) [24,25]. The investigation revealed an average
utilization of four ML techniques reflecting the dynamic landscape of machine learning
applications (Figure 1). The complete results of the frequencies and number of publications
are reported in Table S1.
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Figure 1. Word cloud graphics (on the left) displays an ML technique in order of importance (based
on the font size) based on the four fields of geology (hydrology, geophysics, geomorphology, and
applied geology). The word graph (on the right) represents the frequency of machine learning in
geologic world publications.
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The structure of the paper can be outlined as follows: Section 2 is an overview of the
limits and challenges of geosciences in machine learning algorithms, while Section 3 pro-
vides a specific geoscience environmental monitoring application including quarries and
discharge phenomena, coastal dunes safeguarding monitoring, illicit sea discharges, and
pollution in different matrices from several sources in industrial complexes. In Section 4,
the conclusion is presented and Section 5 offers a forward-looking perspective, anticipating
strategic developments and innovation. The present comprehensive review systemati-
cally explores the application of machine learning (ML) algorithms within the realm of
geosciences. Particular emphasis is placed on their use in environmental monitoring ap-
plications. The focus of the subsequent chapter will be to delve deeper into this specific
area of application. The following table reports the nomenclature used internationally to
distinguish the various ML algorithms (Table 1).

Table 1. Algorithms’ nomenclature.

Abbreviation Meaning Abbreviation Meaning

Adaboost Adaptive Boosting LSSVM Vector Support Machines for
Least Squares

ANN Artificial Neural Network LSTM Long Short-Term Memory

BNN Bayesian Neural Network MARS Multivariate Adaptive
Regression Splines

CA Cluster Analysis ML Machine Learning

CC-NMI
Cluster Confusion

Normalized Mutual
Information

mp-CNN Multipath Convolutional
Neural Network

CNN Convolutional Neural
Network MPL Multilayer Perceptron

DL Deep Learning NC Nearest Centroid

DOT Discrete Orthogonal
Transformations NN Neural Network

DR Dimensionality Reduction OD Object Detection

DT Decision Tree PCA Principal Component
Analysis

Extra-Trees Extremely Randomized Trees PKR Polynomial Kernel Regression

FF Futures Filtering PU Positive-Unlabeled Learning
Algorithm

FPN Feature Pyramid Network RF Random Forest
FST Fuzzy Set Theory RNN Recurrent Neural Network

GA Genetic Algorithm RUSBoost Random Under-Sampling
Boosting

GNB Gaussian Naive Bayes SHAP Shapley Additive
Explanations

GANs Generative Adversarial
Networks SLR Stepwise Linear Regression

GPR Gaussian Process Regression SSD Single Shot Detector
Algorithm

ISODATA method Iterative Self-Organizing Data
Analysis Technique SVM Support Vector Machine

kNN k-Nearest Neighbors U-Net
Unique Architecture of the

Network is a “U” Shape
(CNN)

LIME Local Interpretable
Model-Agnostic Explanations XAI eXplainable Artificial

Intelligence

LLMs Large Language Models YOLOv3 You Only Look Once, Version
3
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2. Overview of the Limits and Challenges of Geosciences in Machine
Learning Algorithms

In the field of geoscience environmental monitoring, conventional methodologies in-
clude a range of specified methods such as field surveys and measurements, soil–rock–water
sampling and geochemical analysis, geodetic and remote sensing, and climate monitoring.
These methodologies are fundamental tools for assessing and understanding environmental
dynamics, providing crucial insights into various geological and ecological processes.

Traditional sampling methods still have fundamental significance, although the
promising ML techniques offer notable enhancements across six distinct domains: en-
hanced accuracy and spatial coverage [26,27], efficiency in time and resource utilization, an
improved understanding of complex models [28–30], adaptability and continual updates,
automation and reduced human dependence, reliability, and validation challenges [31,32].

The implementation of ML methodologies into geosciences offers numerous potential
advantages in data analysis, and ML enables the efficient analysis of large volumes of
data. Before executing ML, a substantial portion of the effort is dedicated to preprocessing
and data transformations, entailing tasks such as eliminating redundancy, inconsistency,
noise, and heterogeneity, as well as transforming and labeling data. Dealing with big
data turns out to be very advantageous, creating the opportunity to diminish reliance
on human supervision by learning directly from the three key concepts characterizing
these data such as volume, variety, and velocity [33,34]. Analyzing extensive datasets
enhances scalability through the proficient management of large data volumes, augments
adaptability by refining accuracy iteratively, and facilitates the effective management of
data veracity [35]. The ability to model, optimize, and integrate multi-source data, auto-
mate complex tasks, and provide forecasts facilitates land management by providing a
complete view of the processes. ML algorithms are grouped into four main applications:
detecting objects and events, estimating variables, long-term forecasting variable problems,
and mining relationship data [36]. In geo-monitoring, advanced methods for estimating
landslide movement using drone data (UAV) have been developed, improving accuracy by
8% compared to traditional methods. In parallel, wireless sensor networks (WSNs) have
been used to monitor the structural health of homes in areas at risk of ground movement.
These technologies, which use artificial intelligence and the Internet of Things, represent
the vanguard in remote monitoring, contributing to the prevention of harm and the safety
of people [37,38]. In geoscience, machine learning methodologies outlined by Dramsch et al.
(2020) are primarily categorized into developing alternative models to optimize computa-
tional efficiency, crafting models to supplement or replace human intervention, enabling
previously unattainable geoscientific activities [39]. Machine learning (ML) methodologies
involve supervised, unsupervised, reinforcement learning (LR), semi-supervised learning,
deep learning, explainable AI, and other algorithms (Figure 2) [40].
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Figure 2. Classification of artificial intelligence algorithms (AI). This figure illustrates the broad
spectrum of AI algorithms, with a particular focus on machine learning (ML) methods. It is important
to note that numerous methodologies span across multiple categories (for instance, the deep learning
methodology). This overlap signifies the versatility and adaptability of these algorithms in various
research and application domains.

2.1. Supervised ML Algorithms

Supervised learning encompasses various problem categories and techniques, in-
cluding classification, regression, neural network-based approaches, ensemble methods,
optimization-based techniques, object detection, feature filtering, and dimensionality reduc-
tion [40,41]. Specific algorithms and methods, such as boosting methods, neural networks,
tree-based methods, regression methods, Bayesian methods, instance-based methods, sup-
port vector machines, and deep learning, are employed to address these problems.

The first supervised ML algorithm methods are boosting methods, which include
adaptive boosting (AdaBoost), and random under-sampling boosting (RUSBoost). The
Adaboost algorithm improves the model’s performance, and RUSBoost uses random under-
sampling to resolve the class imbalance.

Neural network methods include artificial neural networks (ANNs), multilayer per-
ceptron (MPL), convolutional neural networks (CNNs), recurrent neural networks (RNNs),
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long short-term memory (LSTM), and Bayesian neural networks (BNNs). Neural network-
based algorithms simulate the biological neural networks of the human brain. In artificial
neural network (ANN) methods, the “neurons” act to solve some complex problems to
extract trends or detect patterns [42]. In addition, convolutional neural networks (CNNs)
are primarily used for image classification and recurrent neural networks (RNNs) for
sequential data, such as natural language and time series, and long short-term memory
(LSTM) is used to handle the gradient problem that vanishes in recurring neural networks.

The tree-based methods include decision trees (DTs), extremely randomized trees
(extra-trees), and random forest (RF). A decision tree (DT) is an algorithm used for regres-
sion and classification [43]. The principal idea is to divide a dataset into smaller subsets,
and it is widely used for its interpretability features and ease of viewing. The extremely
randomized trees (extra-trees) are a decision tree adaptation that randomly selects dividing
points for each node in the tree. Despite lower accuracy, they prove to be quicker to train
than traditional decision trees [9].

Regression algorithms aim to take the relationship between a variable output target
and input features, facilitating the prediction of new data [40] like Gaussian process re-
gression (GPR), stepwise linear regression (SLR), and polynomial kernel regression (PKR).
GPR models input and output variable distributions using Gaussian processes. A regres-
sion model based on a genetic algorithm (GA) optimizes parameters through iterative
generations, generating potential solutions and iteratively refining them to identify the
optimal solution.

Gaussian naive Bayes (GNB), which pertains to Bayesian methods, assumes that
features have a bell-shaped distribution, making it easier to calculate probabilities and
classify data efficiently.

In the category of instance-based methods, one of the most simple and popular
classifications of nonparametric variables is k-nearest neighbors (kNN) [9]. It is employed
to perform mainly classifications or predictions on data grouping based on the proximity
(neighborhood) of training points. The nearest centroid (NC) calculates the centroids for
each class and classifies the new points based on their distance from the centroids.

Support vector machines (SVMs) are active in high-dimensional spaces by finding
the optimal hyperplane that maximizes the margin between classes in the feature space
robust against overfitting [44]. Vector support machines for least squares (LSSVM) integrate
SVMs with least squares principles to minimize error by finding a function approximating
the data.

Deep learning is recognized as belonging to the domain of supervised learning algo-
rithms. Moreover, due to its distinctive architecture and methodology, deep learning also
constitutes a distinct category within the broader landscape of machine learning techniques.

2.2. Unsupervised, Semi-Supervised, and Reinforcement Learning ML Algorithms

Unsupervised algorithms are used for data analysis without specific labels or targets
to predict. These algorithms search for patterns or structures in the data without outward-
reliant variable information and can be further subdivided into several categories including
clustering algorithms, size reduction, and optimization based on set theory. The models
use previously learned features to recognize the new data class entered [45,46].

Clustering algorithms are a set of techniques employed to group similar objects based
on certain similarity or dissimilarity metrics, e.g., cluster analysis (CA), the iterative self-
organizing data analysis technique (ISODATA) and cluster confusion normalized mutual
information (CC-NMI). The ISODATA method “Iterative Self-Organizing Data Analysis
Technique” is a clustering-specific algorithm that divides data into clusters built on their
statistical properties, iteratively updating centroids and cluster members. CC-NMI is
a measure of similarity between two cluster partitions, which considers the confusion
between clusters and normalizes the result using mutual information.
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In the dimensionality reduction algorithms, there is principal component analysis
(PCA) and dimensionality reduction (DR). PCA is a method to reduce the dimensionality
of the data while maintaining maximum variance in the original data.

A further type of optimization-based algorithm is the self-optimizing machine learning
algorithm. This is an algorithm that independently gives its parameters to optimize a given
performance metric. For algorithms based on set theory, there is the fuzzy set theory (FST),
an extension of the classical theory. This theory assigns a grade of belonging between 0
(indicates no affinity) and 1 (indicates full affinity).

In transformation methods, the discrete orthogonal transformation (DOT) methods
transform data using discrete orthogonal transformations to improve model analysis
or training.

An example of a neural network is U-Net, a unique “U-shaped” neural network
architecture, often used in convolutional neural networks (CNNs), designed for image
segmentation and reconstruction problems.

In the domain of semi-supervised learning algorithms, the positive-unlabeled learning
algorithm (PU) stands out. This approach leverages a combined dataset comprising both
labeled and unlabeled data to enhance model performance. It operates under the assump-
tion that the unlabeled data pool may encompass both positive and negative examples.
This learning methodology proves particularly beneficial in scenarios characterized by an
extensive repository of unlabeled data alongside a limited subset of positively labeled data.

Lastly, reinforcement learning is a paradigm of machine learning in which an agent
learns to perform actions in an environment, receiving feedback through rewards or penal-
ties, to maximize a specific goal (e.g., policy gradient methods, Q-learning, SARSA (state–
action–reward–state–action), and deep Q-networks (DQNs)).

2.3. Deep Learning

Deep learning (DL) is a subset of machine learning that employs algorithms modeled
after the brain’s structure and function. It excels in processing large datasets and uncov-
ering complex relationships through multiple levels of abstraction. Specific algorithms
and methods, such as artificial neural networks (ANNs), convolutional neural networks
(CNNs), recurrent neural networks (RNNs), generative models, large language models,
and multipath convolutional neural networks, are employed to address these problems.

Within convolutional neural networks (CNNs), a multitude of sophisticated tech-
niques are employed to enhance performance and accuracy such us feature pyramid
networks (FPNs), U-Net, you only look once, version 3 (YOLOv3), and single-shot detector
(SSD) algorithms. U-Net carries a contraction path and an expansive path to improve
its performance and accuracy in image segmentation tasks. You only look once (YOLO)
is a state-of-the-art real-time object detection system. It predicts class probabilities and
bounding boxes for objects directly from full images in a single pass. Utilizing a 53-layer
convolutional neural network, YOLO balances speed and precision. It features bounding
box prediction, multi-scale prediction, and class prediction.

Large language models (LLMs) are advanced artificial intelligence systems designed
to comprehend and generate human language. They play a crucial role in numerous
applications, including chatbots, virtual assistants, and sophisticated search tools.

2.4. Explainable AI and Other Algorithms

Explainable AI encompasses methodologies aimed at enhancing interpretability in
decision-making processes within artificial intelligence systems. Techniques such as LIME
and SHAP provide local and individual model prediction explanations, respectively. LIME
offers local interpretability, while SHAP leverages game theory principles for comprehensive
insights. Regression methods, like multivariate adaptive regression splines (MARS), model
relationships between variables, enhancing the understanding of complex data structures. In
computer vision, object detection, exemplified by the single-shot detector (SSD) algorithms,
entails identifying and localizing objects within visual data, enabling diverse applications.
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3. Environmental Monitoring Applications in Geosciences

Environmental monitoring in geosciences is fundamental to understanding and miti-
gating the impacts of human activities on the environment. It encompasses methodologies
and strategies for identifying, analyzing, and establishing environmental parameters to
gauge and quantify environmental impacts. This process relies on various testing and
evaluation methodologies to furnish crucial insights into environmental conditions and
potential hazard levels. This article focuses on select issues within environmental monitor-
ing for several reasons. Firstly, it underscores the urgency and gravity of environmental
concerns, given their profound implications for planetary health and human well-being.
Additionally, data availability from sources such as satellites, environmental sensors, in-
dustrial registries, and other tools has facilitated the choice of pertinent environmental
issues for examination. Lastly, considering the practical and socio-economic implications,
the potential for substantial enhancements and the promotion of sustainable solutions
contribute to tackling genuine social challenges.

The methodologies of machine learning (ML) discussed in this article will be imple-
mented in environmental monitoring endeavors to focus on key environments, including
landfills, quarries, coastal dune protection, sea discharge, and complex industrial settings
(Table 2, Figure 3).
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that leverage ML techniques. The categories include map and image classification, object detection
and identification, prediction models, data classification, risk and performance metrics, and soil and
water quality assessments.
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3.1. Quarry and Landfill Monitoring ML Application

The problem of waste management, including unauthorized dumpsites, is a global
concern [47,48]. Despite regulatory efforts, landfills have harmful effects on soil, air, water,
and biodiversity [49]. The global population is expanding, resulting in a rise in waste
generation [50]. The exponential escalation in waste generation has required an increased
dependence on and proliferation of landfills for disposal, whether lawful or illicit [51].
Recent publications have highlighted the utilization of machine learning (ML), deep learn-
ing (DL), and heuristic models. Awadh, M. Al and Mallick J [52] merged multi-criteria
decision making (MCDM), fuzzy set theory, GIS, and eXplainable Artificial Intelligence
(XAI). The models provide a landfill site potential zone (LSPZ) map classification. The
model employs geospatial and environmental datasets to discern candidate locations for
landfill establishment. It leverages machine learning methodologies, with a focus on an
optimized ensemble bagging model, to categorize various regions as prospective landfill
sites [53,54]. The study utilizes SHAP (SHapley Additive exPlanations) and LIME (local
interpretable model-agnostic explanations) analyses to elucidate machine learning models
and enhance the comprehension of model predictions. A recent investigation introduced a
machine learning model employing the positive-unlabeled (PU) learning algorithm within
an ensemble framework. This model has undergone validation utilizing the PU-based
random forest technique for monitoring and preventing the illegal disposal of hazardous
waste (HW) [55]. Furthermore, cluster analysis [56], a statistical technique, facilitates the
unsupervised grouping of set elements into classes for grouping similar classifications for
regional water resource protection. An additional proposed methodology uses a machine
learning method called a multipath convolutional neural network (mp-CNN), and it is
used to locate waste piles in roads and roadsides. In the test phase, the model with an
image classification showed excellent performance, usable in developing countries [57].
A novel method is proposed by Torres, R. N. and Fraternali with a convolutional neural
network (CNN) combination of ResNet50 and feature pyramid network (FPN) methods for
a risk map result [58,59]. Illegal landfill detection is formulated as a multi-scale scene classi-
fication problem, with datasets of about 3000 images with an accuracy of 88%. Leveraging
the single-shot detector (SSD) algorithm, in conjunction with deep learning methodologies
and remote sensing techniques, facilitates the real-time detection of objects within video
streams, thereby enhancing the efficacy of dumping detection [60]. This amalgamation of
advanced technologies underscores the potential for significant advancements in waste
management. Moreover, a machine learning technique based on discrete orthogonal trans-
formations (DOTs) is used. This technique is used to identify waste disposal facilities from
high-resolution spatial images [61]. Lastly, YOLOv3 (you only look once, version 3) enables
the real-time detection of specific objects in videos, live feeds, or images [62].

Monitoring activities as regards quarries, mines, and excavations for material ex-
traction cause environmental problems, with potential implications for environmental
degradation and a high risk of environmental damage. Below are some examples of the ap-
plication of ML techniques. Larrea-Gallegos et al. 2023 presented an ML approach with an
unsupervised learning algorithm (X-means) and a random forest (RF) classification model
to improve strategic planning [63]. Furthermore, Fernández-Alonso et al. 2023 proposed
a convolutional neural network (CNN) for the identification of mining remains [64]. The
study conducted by Fissha et al. (2023) used a Bayesian neural network (BNN) and other
models like gradient boosting, K-neighbors, decision trees, and random forest to predict
the blast-induced ground vibration [65]. The article evaluates additional machine learning
methods such as the nearest centroid, random forest, decision trees, and Gaussian naive
Bayes. Moreover, discloses a decision tree algorithm based on the parametric analysis
of tunneling-induced ground settlements to understand the tunneling-induced ground
subsidence [66]. This methodology can aid in the identification of historical subterranean
quarries, even when their spatial coordinates have been obscured within highly urbanized
locales. In a further study, a CNN, a type of deep learning model, is employed to identify
deformations within a national-scale velocity field. The primary objective of the model is
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to accurately detect and classify various forms of deformation. These include subsidence
resulting also from coal mining activities, deformations in slate quarries, and alterations
due to tunnel engineering works [67]. Another machine learning research is focused on
predicting the peak particle velocity (PPV) values with a DT model. PPT is a measure of
ground vibration amplitude due to blasting operations in limestone quarries by the use of
the explosive charge weight per delay and the distance from the blast [68].

In conclusion, the advantages of implementing ML and AI in landfill and quarry
management include enhanced accuracy, predictive capabilities, and real-time detection
capabilities. Advanced ML models, such as SHAP, LIME, and PU-based random forest,
offer precise classification and monitoring, while algorithms like YOLOv3 and SSD pro-
vide real-time object detection. However, the disadvantages include the complexity of
implementing and interpreting sophisticated models and the dependency on high-quality,
extensive datasets.

3.2. Coastal Dunes Preservation ML Application

The preservation of coastal dunes is paramount for safeguarding our shorelines. Coastal
dunes are pivotal in combating erosion and conserving marine ecosystems [69–71]. ML
techniques are employed for dune reinforcement, forecasting, monitoring, and sustainable
governance. In the study conducted by Pinton et al. 2023, a regression model based on
a genetic algorithm (GA) and a random forest algorithm (RF) were utilized to estimate
ground elevation in coastal dunes [72]. A further exploration considers the coastal dunes
along Lake Michigan’s eastern shoreline to obtain an image classification from aerial images
with the ISODATA classification method [73]. A further exploration uses three distinct
algorithms, ANN, SVM, and RF, to employ high-resolution mapping [74]. Mohammadpoor,
M. and Eshghizadeh, M. 2021 present an advanced algorithm designed for the precise
extraction of dunes from Landsat satellite imagery in both terrestrial and coastal settings.
K-nearest neighbors, decision trees, AdaBoost, RUS Boost, and SVM algorithms leverage
intelligent techniques to accurately identify and delineate dune features [75]. Finally, there
is an example of assessing wave runup and coastal dune erosion through the use of the
Gaussian process (GP), a nonparametric supervised learning method [76].

Summing up, the advantages of using ML and AI in coastal dune protection include
precise mapping and erosion prediction with Gaussian process models. However, the
disadvantages involve challenges in adapting to environmental variability and high com-
putational costs.

3.3. Water Discharges into the Sea ML Application

ML for the analysis, prediction, and comprehension of water discharges into the sea
facilitates efficient marine management and environmental conservation efforts. Under-
standing the impact of discharges, such as wastewater, pollutants, or runoff, on marine
ecosystems is imperative. The models enable the prediction of discharges, aiding in wa-
ter resource planning, disaster prevention, and environmental protection. Through the
study of discharges, the optimization of water usage, the prevention of shortages, and the
maintenance of ecosystem balance can be achieved. ML models can accurately predict
water quality parameters even with limited data, crucial for pollution control, ecosystem
health, and human well-being. In their study published in 2023, Liao et al. utilized the
DeepLabv3+ semantic segmentation architecture for monitoring oil spill risk in coastal
areas. Their approach relied on polarimetric synthetic aperture radar (SAR) satellite im-
agery [77]. Magrì, S. et al. 2023 developed machine learning techniques utilizing two
distinct generalized linear models: stepwise linear regression (SLR) and polynomial kernel
regression (PKR). These models were employed to infer seawater turbidity from Sentinel-2
imagery [78]. In an alternate investigation, various machine learning algorithms, including
a support vector machine (SVMs), random forest (RF), an artificial neural network (ANN),
and combined algorithms, were employed for the detection of sediment discharge in rivers
using Sentinel-2 satellite imagery [79]. A recent study employed machine learning method-
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ologies to reconstruct daily sea discharge. Six distinct machine learning algorithms were
utilized in the analysis (RF, GPR, SVR, decision tree (DT), least squares support vector
machine LSSVM, and multivariate adaptive regression spline MARS). The research aimed
to accurately model and predict daily discharge patterns at sea [80]. Granata et al. 2018
developed three ML models (M5P regression tree, random forest, and support vector re-
gression) for spring discharge forecasting. These prototypes were constructed only using
historical discharge data and cumulative rainfall information [81].

The advantages of using ML and AI in sea discharge include comprehensive moni-
toring and improved pollution control. Models such as DeepLabv3+ and random forest
accurately monitor and predict water quality parameters. Nonetheless, disadvantages
include data scarcity and the complexity of modeling in diverse environments.

3.4. Contaminated Industrial Water and Soil Matrix ML Application

The utilization of machine learning in pollution monitoring within contaminated
industrial complexes holds substantial promise for enhancing pollution monitoring and
management, thereby fostering environmental sustainability. Through machine learning
algorithms, the capability to forecast forthcoming pollution levels and categorize pollution
sources based on gathered data is facilitated, facilitating precise intervention strategies.
The remediation of polluted areas occurs in both aquatic and terrestrial environments.
Machine learning (ML) techniques play a pivotal role in enhancing remediation efforts in
both contexts.

Emerging technologies have showcased their capacity to enhance, simulate, and auto-
mate water treatment methodologies, surveillance, and ecological system administration.
The objective is to safeguard aquatic ecosystems through the observation and identification
of contaminants. With the exponential surge in aquatic environmental data, ML has emerged
as a pivotal instrument for data scrutiny, categorization, and prognostication [82–85]. The
eutrophication and the proliferation of chlorophyll algae in water frequently result from
inadequate wastewater management and unsustainable agricultural practices. Huang,
H. and Zhang, J. 2024 employed four distinct methodologies to ascertain the significant
factors influencing chlorophyll-a (Chl-a) content, the support vector regression (SVR) model
demonstrating superior accuracy and precise predictions [86]. A new investigation ex-
amines urban river water quality monitoring through the utilization of a self-optimizing
machine learning algorithm applied to multi-source remote sensing data (satellite images,
UAV images, and water samples) [87]. In addition, in Zhi, W. et al.’s study (2021), a re-
current neural network (RNN) known as long short-term memory (LSTM) is employed
to forecast levels of dissolved oxygen (DO) within riverine environments [88]. Moreover,
an article conducted a comparative analysis utilizing big data to assess the prediction
performance and identify key water parameters in surface water quality. The study com-
pared seven traditional and three ensemble learning models, including a decision tree (DT),
random forest (RF), and deep cascade forest (DCF) [89]. Furthermore, another article aims
to improve the classification of water images with a neural attention network [90]. Finally,
an Indian study utilizes cluster analysis (CA) and principal component analysis (PCA) to
evaluate heavy metal contamination in aquatic environments [91].

Several scholarly publications have extensively examined the application of ML tech-
niques for the monitoring of pollutants within soil ecosystems in industrial urbanization
contamination. Zhao, W. et al. 2023 present a precise prognostication framework for soil
heavy metal contamination, utilizing an enhanced amalgamation of three distinct machine
learning methodologies: extreme gradient boosting (XGB), random forest (RF), and an arti-
ficial neural network (ANN) [92]. A further investigation has elucidated the considerable
efficacy of machine learning techniques, notably RF and cubist techniques, in leveraging
environmental datasets to forecast concentrations of heavy metals in soil [93]. Moreover,
a study employs RF simulations in conjunction with spatial bivariate analysis to discern
the presence of heavy metal pollution in agricultural land. Spatial bivariate analysis is
utilized to investigate the interplay between soil metal contamination and predominant
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human activities [94]. In additional research aimed at delineating soil pollution within an
arsenic-contaminated agricultural domain, four distinct automated apprehension method-
ologies were employed. These methodologies encompassed the support vector machine
(SVM), multi-layer perceptron (MLP), random forest (RF), and extreme random forest (ERF)
models. Notably, the extreme random forest (ERF) model exhibited superior performance
among the studied methodologies [95,96]. And last, in Zhang, H. et al. 2020, three models,
RF, ANN, and SVM, allow the source identification and spatial prediction of heavy metals
in soil in a rapid urbanization area [97].

Taken together, the advantages of using ML-AI in complex industrial settings include
enhanced monitoring and accurate classification. Models including extreme gradient
boosting and random forest provide high accuracy in identifying contamination sources.
Notwithstanding, the disadvantages include the requirement for technical expertise, high
computational power, and extensive datasets.

Table 2. Machine learning environmental monitoring applications. This table categorizes various
environmental monitoring applications (e.g., landfill, quarry, safeguarding the coastal dune, discharge
into the sea, and complex industrial soil and water contamination) where ML methodologies have
been utilized.

Fields Reference Year Input Data Methods Output Model

Landfill

[53] 2024 Spatial and
environmental data

MCDM, fuzzy set
theory, XAI

Map classification
(landfill site potential

zones (LSPZ))
ML

[56] 2023 Spatial numerical
and categorical data SHAP, LIME, PU Risk maps, model

performance metrics ML

[57] 2023

Data extracted from
GIS

mapped with data
from different

sources

CA
Group similar
characteristics
classification

ML

[58] 2022 Online sources and
camera images mp-CNN Image classification DL

[59]
[60] 2021 Satellite and imagery

date CNN, RsNet50, FPN Image classification DL

[61] 2021 Unmanned aerial
vehicle images SSD, DL Object detection DL

[62] 2020
Remote sensing (RS)

high-resolution
satellite images

DOT
Location

identification and
classification

Heuristic

[63] 2020
Real-time video
stream from a

surveillance camera
YOLOv3 Object detection and

recognition DL

Quarries—
mines

[64] 2023 Public georeferenced
data X-means, RF

Geospatial
probability map to
improve strategic

planning

ML

[65] 2023 Drone database
imagines

CNN
+ (NC, RF, DT, GNB) Object identification DL

[66] 2023 Environmental data BNN
+ (GB, K-N, DT, RF)

Predicting the peak
particle velocity

(PPV) values
ML
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Table 2. Cont.

Fields Reference Year Input Data Methods Output Model

Quarries—
mines

[67] 2022 Subsidence
environmental data DT

Feature importance
(relationship between

tunneling-induced
ground subsidence

and correlated factors)

ML

[68] 2021
Sentinel 1 data,
velocity maps

spanning
CNN Detection of

deformation areas DL

[69] 2021
Explosive charge weight

per delay and the
distance from the blast

DT
Predicting the peak

particle velocity
(PPV) values

ML

Safeguarding
coastal dunes

[73] 2023
Georeferenced

data (UAV–LIDAR
and UAV–DAP point

clouds)

Regression model
based on GA

Equation for ground
elevation, relative

importance of
predictors,

interpretability

GA

RF Predicted ground
elevation ML

[74] 2023 Aerial imagines ISODATA Image classification ML

[75] 2021 Multispectral data ANN, SVM, RF High-resolution
mapping ML

[76] 2021 Satellite data K-NN, DT, AdaBoost,
RUSBoost, SVM Land cover map ML

[77] 2019 Aerial imagines GP
Probabilistic

parameterization of
wave runup

ML

Discharges into
the sea

[78] 2023 Satellite data Deeplabv3+- Object detection DL

[79] 2023 Satellite data SLR, PKR Surface turbidity ML

[80] 2022 Satellite data SVM, RF, ANN
Time-series

suspended sediment
discharge

ML

[81] 2022
Upstream–

downstream
multi-station data

RF, GPR, SVR, DT,
LSSVM, MARS

Daily averaged
discharge ML

[82] 2018

Monthly averages of
flows and monthly

cumulative rainfall in
the aquifer basin

M5P RT, RF, SVR Prediction of the flow
rate ML

Complex
industrial

contamination—
Water

[87] 2024 Chlorophyll water
content

CC-NMI, PCA, DT,
RF-RFE, MLR, MLP,

SVR

Eutrophication
prediction and risk

assessments
ML

[88] 2023 Multi-source remote
sensing data

Self-optimizing
algorithm

Prediction
performance of water

quality parameters
ML

[89] 2021 Dissolved oxygen LSTM, RNN Prediction model ML

[90] 2020 Water parameter sets DT, RF, DCF Perdition water
quality ML

[91] 2020 Water images CNN Water image
classification ML

[92] 2020 Water parameter sets CA, PCA Data classification ML
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Table 2. Cont.

Fields Reference Year Input Data Methods Output Model

Complex
industrial

contamination—
Soil

[93] 2023 Heavy metal content,
spatial information ANNs, RF, XGboost

Predicting soil heavy
metal (HM) pollution

assessment
ML

[94] 2022 Environmental
variables RF, cubist Prediction of heavy

metals in soils ML

[95] 2021 Environmental
variables RF Environmental

variables predictions ML

[96] 2020 Environmental
parameters SVM, MLP, RF, ERF The risk map level in

the soil ML

[97] 2020 Soil concentrations,
land use types RF, ANN, SVM Map spatial pattern

concentration ML

4. Conclusions

In contemporary environmental monitoring, numerous ML algorithms are employed,
with a preference for adapted classic models. Supervised ML methods have been predomi-
nantly favored over unsupervised approaches in recent scholarly works. RF is currently
the most widely used method in this field of research. RF is favored in machine learning
for its adaptability to classification and regression tasks. Its resilience against overfitting
is notable, attributed to the construction of each tree using random data subsets. RF’s
simplicity facilitates its application and allows for ensemble integration, enhancing model
efficacy in solving intricate problems and improving predictive accuracy [9–11]. The arti-
cle is employed for geospatial strategic planning probability maps, object identification,
and general prediction models. In various previously mentioned geoscience applications,
it is predominantly utilized for monitoring water discharges and in complex industrial
urbanization contamination [64,74,79,81,86,96,98,99]. The DT, following the RF methods,
stands as a prevalent ML approach esteemed for its user-friendly interpretability, adapt-
able nature across both classification and regression tasks, and adept handling of diverse
data types, including numerical and categorical variables [20]. Noteworthy for its capa-
bility to elucidate decision pathways and accommodate various data complexities, the
DT consistently demonstrates robust predictive performance, often rivaling or surpass-
ing more sophisticated methodologies such as RF. In the numerous geoscientific contexts
previously cited, its primary application lies in the water industrial urbanization and asso-
ciated contamination for water quality prediction [64,66,75,80,86,89]. The support vector
machine (SVM) is highly esteemed in the field of machine learning due to its capacity
for optimal data classification, exceptional versatility, and efficiency, all achieved without
necessitating extensive parameter tuning or adjustments [74,75]. Conversely, the ANN
offers the capability to approximate any computable function, facilitate pattern recogni-
tion, and address common troubleshooting challenges, leveraging the advancements in
computational prowess [79,97]. SVM and ANN are largely used in concentration maps of
spatial patterns for complex industrial urbanization contamination. CNN [57,64,90] and
PCA [86,91] methodologies are prominently featured among the preeminent analytical
approaches employed in contemporary research endeavors.

5. Outlook and Future Research

Future advancements in the AI-ML domain involve improving existing models such
as RF, DT, SVM, ANN, CNN, and PCA to elevate their accuracy and efficiency for adapted
tasks. Simultaneously, pioneering algorithms could emerge to tackle specific environmen-
tal monitoring challenges, potentially outperforming conventional methods. Integrating
diverse methodologies stands as an essential avenue for increasing model efficacy. Ensem-
ble methods, for instance, guarantee further exploration, leveraging the complementary
strengths of different techniques. The advanced sensor integration equipped with AI-ML
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processing capabilities will enable collection and real-time environmental data analysis,
providing a broader and more detailed coverage of monitored areas. The development of
software platforms dedicated to collecting, storing, and analyzing geoscientific data, along
with creating user-friendly software interfaces, will facilitate end users’ effective use of
these technologies.

The ML model integration and Internet of Things (IoT) sensors are paving the way
for future landfill development. This combination facilitates continuous monitoring and
real-time decision making, aiding policymakers in devising more effective waste man-
agement regulations. In quarry fields, using UAV and satellite imagery with ML models
enables automated and comprehensive monitoring. The development of hybrid models,
which amalgamate multiple ML techniques, is enhancing the accuracy and reliability of
predictive models. Moreover, climate change adaptation and community involvement
are revolutionizing coastal dune protection. Models are being developed to predict and
adapt to the impacts of climate change on coastal dunes. Simultaneously, user-friendly
tools are being created for local communities to monitor and protect their coastal areas.
Sea discharge management is being employed through real-time analysis and integra-
tion with environmental policies. In complex industrial settings, smart remediation and
cross-disciplinary approaches are being employed. These advancements are contributing
significantly to environmental conservation and protection.

Prospective research endeavors might examine novel applications, particularly in
domains where conventional methods encounter limitations. Prioritizing the develop-
ment of models resilient to overfitting while maintaining interpretability could spearhead
future innovations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/make6020059/s1, Table S1: The frequency of the machine learning
algorithms in consulted geoscience literature.
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