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Abstract: Apart from providing user-friendly applications that support digitized healthcare routines,
the use of wearable devices has proven to increase the independence of patients in a healthcare
setting. By applying machine learning techniques to real health-related data, important conclusions
can be drawn for unsolved issues related to disease prognosis. In this paper, various machine
learning techniques are examined and analyzed for the provision of personalized care to COVID-19
patients with mild symptoms based on individual characteristics and the comorbidities they have,
while the connection between the stimuli and predictive results are utilized for the evaluation of
the system’s transparency. The results, jointly analyzing wearable and electronic health record data
for the prediction of a daily dyspnea grade and the duration of fever, are promising in terms of
evaluation metrics even in a specified stratum of patients. The interpretability scheme provides
useful insight concerning factors that greatly influenced the results. Moreover, it is demonstrated
that the use of wearable devices for remote monitoring through cloud platforms is feasible while
providing awareness of a patient’s condition, leading to the early detection of undesired changes and
reduced visits for patient screening.

Keywords: SARS-CoV-2; modified medical research council dyspnea grade; machine learning;
interpretability; ensemble classifiers; time-to-event analysis

1. Introduction

A continuous increase in demands for health services, whether due to overpopulation,
increasing aging, or the emergence of a pandemic, results in an ever-growing need to sup-
port health professionals in making decisions [1] and choosing treatment plans according
to personal characteristics and the health status of individuals [2]. The ultimate goals of
all health systems are to ensure high levels of care and contribute to quality of life [3,4].
The development of computer science and the application of new advancements in the
health sector present solutions that can assist substantially in reaching these goals. Fast
and effective communication infrastructures [5], small and powerful mobile devices and
wearables [6], diffusion of the IoT [7], and the ability to store and handle big data [8]
are some of the technologies that experienced an unexpected boom and set a prosperous
ground for precision and public health medicine. Big data analysis plays an important role
in the provision of user-friendly applications that support digitized healthcare routines
and present information with compact visualizations [9]. This data can be, firstly, analyzed
and explored with plain statistical techniques and, secondly, utilized as part of a machine
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learning (ML) pipeline for the discovery of important patterns. In this context, several
intelligent platforms can be found in the literature that manage the collection and analysis
of health-related data [10–13].

Modern technological solutions help improve the quality of life of people, and, more
specifically, of vulnerable groups who face a reduction in standard of living due to health
issues that concern them. In favor of improved quality of life, the use of mobile de-
vices, wearable devices, activity trackers, and biosignal sensors has proven to increase
the independence of patients with chronic diseases and/or limitations [14,15]. Moreover,
the enhancement of useful personal and automatically generated data in the electronic
health record of a patient provides an extended and multidimensional version of the
original record [16,17].

Traditionally, analysis of clinical data has been an important tool for the science of
medicine and the study of epidemiology and preventive medicine. Today, data analysis has
contributed significantly to decision-making in personalized clinical interventions, treat-
ment plans, and the development of health policies for the prevention of various diseases
after also studying the characteristics of the applied populations. By applying ML tech-
niques to real health-related data, important conclusions can be drawn for unsolved issues
related to disease prognosis and diagnosis, patient risk stratification, precision medicine,
and public health with high predictive accuracy [18]. Graph-based representations are
often considered a significant booster of ML approaches due to their capability to retrieve
information from different data entities and their interconnections [19,20]. However, it
should be noted that interpretability is equally important to the efficiency of ML models.
The acknowledgement that ML models have the ability to reveal to the designated stake-
holders the details of their inner workings and their decision-making mechanism adds
value, transparency, and validity to the predicted outcome [21]. Moreover, it is the basis
upon which trust can be built for healthcare professionals (HCP) and an accelerating factor
for the integration of ML systems in clinical workflow. Despite the obvious necessity for
interpretability, there are still many approaches that are presented without the provision of
an inherent interpretability scheme or the capability for future extension [22]. Therefore,
it is highly recommended that ML systems in the healthcare domain are accompanied by
an interpretability scheme that returns plausible explanations for their decisions and a
straightforward connection between the cause and effect [23,24].

A major challenge of modern medicine is the personalization of healthcare based
on the particularities of each individual at the levels of genes, biomarkers, response to
treatment, environmental influences, personal preferences, and habits [25]. Analysis of all
these combined data can contribute to the improvement of personalized decisions. In recent
years, it has been observed that personalized care is quite popular with oncology patients,
cardiac patients, the elderly, or people with chronic diseases. Achieving a personalized
health service consumption plan requires a deep analysis of all relevant data concerning
the individual and the ability to discriminate important patterns within stratified popu-
lations [26,27]. Therefore, the utilization of thoroughly curated datasets that contain the
samples of a population within a subcategory can highlight more fine-grained patterns
tailor-made to that specific subset.

In this work, the dataset includes COVID-19 patients with mild symptoms who are
receiving remote care at home and undergoing monitoring for post-COVID-19 complica-
tions. It contains information derived from electronic health records and questionnaires
conducted by HCPs. The symptom of fever is a complex physiological response initiated by
the activation of certain cells of the immune system that produce cytokines [28]. During a vi-
ral infection, the host develops an immune response to contain it, and fever is one of the key
diagnostic signs for screening patients potentially infected with COVID-19 [29]. Further-
more, during a viral infection, the febrile response determines the survival advantage [30].
Estimating the duration of fever can play an important role in a specialist’s decision to
discharge a patient from the hospital as well as in their follow-up and treatment plan.
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Although the modified Medical Research Council (mMRC) Dyspnea Scale is subjective
and not used in clinical decisions, the scale can be examined for its potential to reveal
indications for the progression of COVID-19 disease and hence was placed at the forefront
of ML data analysis. Anticipating future trends in a patient’s difficulty to breathe plays an
important role in the discovery of patterns for the timely admission of the patient to the
clinic and the day of discharge from the hospital. A secondary goal is to provide extensive
interpretability results beyond prediction, aiming to determine the factors influencing
analysis of the data. This is achieved by exploiting the internal mechanisms of predictive
algorithms to explore and detect the most meaningful connections between model inputs
and outputs. Although the dataset is significantly imbalanced in terms of the classification
task, the selected classifiers show significant robustness as demonstrated by the compari-
son of accuracy and balanced accuracy metrics. Moreover, interpretability results are in
accordance with human expertise with reference to the most important characteristics that
influence prediction. Since most of them are collected automatically, remote monitoring
by cloud platforms can provide real-time measurements and awareness of the patient’s
condition, leading not only to the early detection and treatment of any undesired change
but also to the reduction of visits to patient screening centers and hospital admissions.

The remainder of the paper is organized as follows: Section 2 describes the col-
lected dataset and applied methods for classification and interpretability results, Section 3
validates the efficiency of the proposed methodology, Section 4 describes the use of imple-
mented systems for data collection and analysis, and Section 5 summarizes key findings.

2. Materials and Methods
2.1. Overview of Data

To support the main use-case scenarios, a dataset of patients with mild COVID-19
symptoms was curated by the HCPs of “Evangelismos Hospital” (National and Kapodis-
trian University of Athens—NKUA). The study was conducted according to the guidelines
of the Declaration of Helsinki and approved by the Ethics Committee of “Evangelismos
Hospital” (473/7-10-2021). The HCPs of the clinic managed the patients’ enrolment in the
whole procedure. They assessed patients’ suitability and chose asymptomatic patients or
patients with mild COVID-19 symptoms to test and evaluate telecare services during the
whole duration they tested positive for SARS-CoV-2. Physicians and other HCPs assessed
the data that were recorded by the patients and remotely monitored the condition of mild
COVID-19 or asymptomatic cases. When a patient tested positive for SARS-CoV-2, a HCP
was informed. After thoroughly reading and signing the informed consent form, the patient
was enrolled in the study. The HCP recorded the following information:

• Age;
• Weight;
• Sex;
• Medical history, including the following:

# Comorbidities (asthma, hypertension, hyperlipidemia, diabetes, chronic obstruc-
tive pulmonary disease (COPD), and coronary heart disease);

# Smoking;
# Medications;

• COVID-19 history, including the following:

# Date of SARS-CoV-2 positive test;
# Onset of COVID-19 symptoms;
# Number of COVID-19 vaccine doses administered if vaccinated;
# Date of last COVID-19 vaccination dose;
# COVID-19 vaccine manufacturer;
# Initial symptoms;
# Previous SARS-CoV-2 infection.
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Demographic and clinical features pertaining to the study population are presented in
Table 1.

Table 1. Demographic and clinical features pertaining to the study population.

Demographic and Clinical Characteristics of Patients

Variable Data

Patients, N 162

Age, years (median, IQR) 51 (42–60)

Sex, N (%)
Male 72 (44.4)

Female 90 (55.6)

Smoking status, N (%)
Yes 87 (53.7)
No 75 (46.3)

Comorbidities, N (%) 35 (21.6)
Hypertension 33

Hyperlipidemia 33
Coronary artery disease 5

Diabetes 4
Thyroid disease 4

Asthma 4
COPD 2

Weight, kg (mean ± SD) 70.57 ± 11.94

Vaccination status, N (%)
4 doses 1 (0.6)
3 doses 113 (69.8)
2 doses 37 (22.8)
1 dose 5 (3.1)

Unvaccinated 6 (3.7)

Vaccine type, N (%)
Pfizer 142 (87.6)

Moderna 5 (3.1)
Johnson & Johnson 5 (3.1)

AstraZeneca 4 (2.5)

Days since the last vaccine dose (median, IQR) 120 (88–160)

Previous infection, N (%) 6 (3.7)

Days from positive test prior to enrolment (median, IQR) 3 (1–11)

Days of symptoms prior to enrolment (median, IQR) 3 (2–5)

Days of monitoring (median, IQR) 14 (13–15)

The timeline for COVID-19 patients’ data collection was decided to be 14 days,
which was deemed appropriate since the hospitalization duration has been reported to be
8–16 days. The patients performed biosignal measurements (vital signs) and self-assessments
(questionnaires and symptom reporting) on a daily basis following their enrolment. The
data that were daily reported by the patients were the following:

• Heart rate;
• Blood pressure;
• Oxygen saturation level;
• Body temperature;
• Respiratory rate;
• Weight;
• Glucose (if appropriate, e.g., diabetic patients).
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Additionally, questionnaires containing information on the patients’ daily dyspnea
grade (using the mMRC Dyspnea Scale) (Table 2) [31] and symptoms were also reported as
part of the patients’ routine. In addition, 25% of the patients, who owned smartphones and
were considered capable of using smart wearables, were equipped with activity trackers
(Huawei Band 6) for continuous monitoring of their biosignals and automated ingestion
of data into a data collection platform during the monitoring period. The total number
of patients who participated in the study with their data is one hundred and sixty-two
(162). The results of our data analysis concern the most common symptoms presented in
COVID-19 mild cases and their duration, as well as analytical models that can predict the
daily mMRC grade, SpO2, and fever duration.

Table 2. mMRC dyspnea scale.

mMRC Scale

Grade Description

1 No shortness of breath or shortness of breath only during strenuous work.

2 Shortness of breath when walking quickly on level ground or a slight incline.

3 You walk more slowly than people of the same age on level ground because of
shortness of breath or stop for breath if you walk alone.

4 Stopping for breath after walking for about 100 m or after a few minutes of walking
on a level surface.

5 Too breathless to leave the house or breathless when dressing/undressing.

2.2. The Proposed Methodology
2.2.1. Data Preparation

It is important to refer to the processes through which the raw data were submitted to
properly format them for analysis. These processes include operations such as transforming
their initial form as well as handling missing values. The transformation of the dataset
was performed to code all symptoms from the forms and daily questionnaires through
the one-hot-encoding technique. The one-hot-encoding technique generates new (binary)
features, indicating the presence of each possible value from the original data to turn them
into categorical variables that can be provided as input to ML algorithms. To impute the
missing values, the K-Nearest Neighbor (KNN) algorithm [32] was applied with a setting
of n = 5 nearest neighbors.

Regarding further data preparation and feature selection, two approaches were fol-
lowed, with two different objectives, as follows:

• Classification of the mMRC Grade;
• Time-To-Event (TTE) analysis of fever remission.

For each patient, multiple questionnaires and measurements were recorded. For this
reason, in the approach aimed at mMRC grade classification on a daily basis, which is
derived from daily questionnaires, the dataset samples were required to correspond to daily
data for each patient. Therefore, the mean value of the daily measurements corresponding
to vital signs was calculated for each day and each patient, and then the data were correlated
with the corresponding daily questionnaires. The final set of data exploited by the system
included 1164 samples from 162 patients due to several sample deletions that did not apply
to the standards. For the experiments, k models were developed, where k was set to eight
to obtain a satisfying number of training samples given that the hospitalization period
ranged from 8–16 days. As we proceeded in days, the number of samples with a range of
8 days later than the day that input data refer to decreases; a fact that is depicted in Table 3.

The target variable (mMRC grade) was predicted by utilizing the measurements from
past days. In a series of k predictive models, where each model referred to the total
architecture, presented in Figure 1, the first model utilized the measurements of the given
day 1 to predict the target value of the given day. The second model used the measurements
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of given day 2 to predict the target value of a given day, and the same practice continued
until the kth model. Attempting to predict the target value for one day away from an earlier
day upon which the measurements were gathered should result in poorer performance.
Each model was independent, and the generated results refer only to the specific model.
As a result, at the end of the training process, k predictive models were generated, with
day + k being a user-defined hyperparameter. In order to describe the health data on which
this analysis is based, information about the target variable is provided in Table 3. As
shown in Table 3, there is a large class imbalance for each case. The number of samples
with an mMRC grade other than one or two is very few or non-existent, resulting in the
binary classification task mMRC grade 1 vs. grade 2.

Table 3. Samples of target value concerning the prediction day.

Day mMRC Grade 1 mMRC Grade 2

0 1018 146
1 938 134
2 861 120
3 791 105
4 721 92
5 647 79
6 574 68
7 520 60
8 430 48
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For the TTE analysis, focused on fever remission, the data preparation was expanded
to include the aggregation of daily collected patient data. This process entailed the creation
of new characteristic variables that captured the cumulative days with various degrees
of dyspnea and different symptoms, and the calculation of average values for biosignal
measurements.
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2.2.2. Classification and Interpretability Methodology

After pre-processing the dataset for classification, the variable feature values were
provided to the classifier. This section describes the methodology for classifying patient
data. The selection of classifiers was based on two main criteria: (a) efficiency against
unbalanced datasets and (b) interpretability properties. For this reason, Extreme Gradient
Boosting [33], AdaBoost [34], and Random Forest [35] classifiers were chosen, as they have
demonstrated the aforementioned skills in the literature.

Extreme Gradient Boosting is a decision tree-based algorithm that has emerged in
the field of applied ML due to its performance and fast execution time. It can be used
for both classification and regression problems. Specifically, the method involves the
sequential creation and addition of decision trees to a set, where each of them corrects
the error of those that preceded it. This is a type of ensemble shape model referred to as
boosting. The models are fitted using a differentiable loss function and a gradient descent
optimization algorithm. The gradient of each base model’s error instructs the model
towards the direction and amplitude of the required modifications in order to increase the
total ensemble accuracy. AdaBoost (Adaptive Boosting) is another very popular ensemble-
boosting technique that aims to combine several weak classifiers to create a strong one
and can be used in combination with other types of learning algorithms to improve their
performance. The output of the other learning algorithms is combined into a weighted sum
that represents the final result of the boosted classifier. AdaBoost has the characteristic of
adaptability in the sense that weak learning models are modified in favor of those samples
misclassified by previous classifiers. The individual classification models may be weak but
as long as each one performs slightly better than a random guess, the final model can be
shown to converge on a strong classifier. For this reason, in some problems, AdaBoost is
less prone to the problem of overfitting than other learning algorithms. The Random Forest
algorithm is a classification and regression method that works by building many decision
trees during its training. Through the technique of an ensemble bagging scheme, it selects
random observations and features to train different decision trees and then combines their
decisions (mainly referred to in the literature as bagging). In classification, the output
of Random Forest is the class selected from the most trees, while in regression, it is the
average prediction of the individual trees. The selection of the above algorithms was
made due to their performance on new data (external validation data), minimizing the
generalization error. Extreme Gradient Boosting and AdaBoost minimize the deviation
error, while Random Forest minimizes the variance error. Also, based on different ensemble
schemes, the three classifiers consist of base learning models that provide transparency
regarding their inner workings, while their combination through the ensemble scheme
improves their performance and achieves state-of-the-art results. The architecture of the
methodology is shown in Figure 1. The basic ensemble model workflow for generating
forecasts consists of the following steps:

• Dataset preparation, where the data are partitioned into subgroups or assimilated as a
whole by each underlying learning model according to the ensemble classifier strategy.

• Ensemble classification, where base classifiers are trained in parallel or serially, and
their predictions are aggregated to produce the output of the ensemble classifier [36].

• Ensemble interpretability, where base classifiers return an importance value for each
individual input feature in the final result, and the importance values for each feature
of the base classifiers are summed following the ensemble model logic.

2.2.3. Time-to-Event Analysis Methodology

To analyze the expected duration of fever, the Cox regression model, also known as
the proportional hazards regression model, was utilized [37,38]. The Cox proportional
hazard model is a regression technique for investigating the effect of several variables on
the time it takes for a particular event to occur. More specifically, the model estimates the
hazard ratio of a given endpoint with a specific risk factor, which can be either a continuous
or categorical variable. In each experiment, the daily questionnaires and measurements
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included in the training dataset were according to a specified monitoring period, and,
therefore, a different prediction model was derived for each period.

3. Experimental Results
3.1. Classification

To evaluate the performance of the classification methods, the metrics of accuracy,
balanced accuracy, precision, and recall were selected, and the dataset was divided into a
10-fold cross-validation scheme (10-fold cross-validation). The results of each classifier for
predicting mMRC grade within a 5-day range are shown below. For each prediction of a
different day, a different model was trained and tested with the corresponding inputs. This
function led to the development of five prediction models. In Figure 2a–c, the value of each
measurement is plotted on the y-axis, while on the x-axis the value represents the day for
which the forecast was made.
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mMRC grade classification. BAcc corresponds to balanced accuracy and Acc to accuracy.

Although the continuous line does not reflect the discrete nature of the day variable,
it is used to better illustrate the trend between each day. In Figure 2a, the Random Forest
classifier results are presented. The difference between accuracy and balanced accuracy
metrics is expected due to class imbalance. Balanced accuracy starts at 0.895 for day 0
and reaches 0.796 for day 5. As the number of days increases, a certain decrease can
be observed in all measurements. Figure 2b depicts the mMRC scoring results from the
Extreme Gradient Boosting classifier. The balanced accuracy starts at 0.9 for day 0 and
reaches 0.85 for day 5. Although the balanced accuracy increased for the Extreme Gradient
Boosting classifier, there is a significant decrease in the recall values, which is undesirable



Mach. Learn. Knowl. Extr. 2024, 6 1331

for healthcare applications. In Figure 2c, the performance metrics of the AdaBoost classifier
are presented in the same way. In this case, the recall metric has the lowest values, and
there is an unexpected increase of all metrics around days 3 and 4. Balanced accuracy starts
at 0.79 and reaches about 0.73 on day 5. Comparing the classification results shows the
Random Forest classifier as the most efficient. Although the Extreme Gradient Boosting
classifier has a slightly better balanced accuracy, Random Forest performed better on the
recall metric, which is a key indicator for unbalanced medical datasets and hence the
decision heavily depends on it.

3.2. Interpretability

In Figures 3–5, the graphical representations of feature variable importance for each
different day for the aforementioned classifiers are presented. The variables with the
highest importance score have the greatest influence in terms of the predictive outcome.
A close examination of all the figures shows that some variables play little to no role in
determining the outcome. These variables are (a) diabetes, (b) coronary heart disease,
(c) Pfizer, (d) Moderna, (e) Johnson & Johnson, (f) AstraZeneca, and (g) “Have you ever
had COVID-19”. The fact that the values of these variables are of minimal importance
suggests that only the selection of the remaining variables is needed to develop a simpler
classification scheme. It is made evident through the comparison of the results that the
importance is spread over more variables for the Random Forest classifier, while for the
Extreme Gradient Boosting classifier, it is concentrated in one or two variables. For the
Random Forest classifier, age, weight, body temperature, diastolic and systolic blood
pressure, heart rate, and days since the last dose are the variables that most influence the
classification result, while for the Extreme Gradient classifier Boosting, it is only asthma. In
the case of AdaBoost, weight, age, and days since the last dose have the biggest effect. The
graphical representations in Figure 6a–c are indicative of the importance of each variable in
relation to days for prediction. In an attempt to distinguish variables that have a long-term
daily perspective effect on the outcome, the trends of each variable are plotted in Figure 6a
for the Random Forest classifier. For the Random Forest classifier, the importance is shared
across multiple feature variables. The effect of systolic pressure and body temperature
decreases as the number of forecast days increases, which means that a predictive model
cannot base prediction for future days on these variables, while hypertension and weight
are in the opposite direction. For the Extreme Gradient Boosting and AdaBoost classifiers,
specific trends are not verified, as the plots are characterized by continuous fluctuations
(Figure 6b,c).

3.3. Improving Models through Feature Variable Selection

As already explained in the previous subsection, the feature importance indices that the
classifiers return discriminate certain features to have more influence on the classification
result than others. By excluding these variables from the training process, we have the
ability to generate lighter and simpler models with fewer characteristics. The excluded
characteristics by means of measuring the feature importance of the Random Forest (RF)
classifier (Figure 3) are the following: (a) diabetes, (b) coronary heart disease, (c) Pfizer,
(d) Moderna, (f) Johnson & Johnson, (e) AstraZeneca, and (g) “Have you ever had COVID-19”
(Ill before). The experiments with the RF classifier are conducted from scratch and led to the
results of Figure 7. The number of selected variables was set to seven by the application of
a Grid search algorithm to determine the best accuracy with a minimum number of input
variables. The most important features of the new predictive models are as follows:

• Days since the last dose;
• Age;
• Asthma;
• Heart rate;
• Diastolic pressure;
• Systolic pressure;
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• Body temperature;
• Weight.
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The classification results are improved compared to those of the original version and
show improvement in balanced precision (starting at 0.905) and recall.

3.4. Time-to-Event Analysis for Fever Remission

To predict fever duration, TTE analysis was applied, focusing on the event of fever
remission. Patients who did not report fever as part of their initial symptoms on forms did
not develop a high body temperature during their follow-up either. For this reason, they
are excluded from this analysis, resulting in a new dataset comprising data from 90 patients.
To address collinearity [39], which is a common issue when estimating linear or generalized
linear models, including Cox regression, and to reduce the dimensionality of the dataset,
baseline and daily symptoms that occurred in fewer than five patients (approximately
5% of the dataset) were included in the “Other symptoms” variable. Additionally, in
each experiment, daily questionnaires and measurements were aligned with a specified
monitoring period, leading to distinct prediction models trained on data filtered to include
only patients with fever throughout the specified duration. Consequently, for a follow-up
period of n days, the analysis was conducted on data of febrile patients obtained from
their admission up to n days later. The Cox regression model applied for a one-day follow-
up analysis was structured as follows: coxph (TTE ~ Demographics + Clinical History +
Symptom Variables + COVID-19 Specific Variables + Average Biosignal Measures).

The dependent variable in the analysis, TTE (Time-to-Event), represents the period
from their admission to the day of fever remission, capturing the time interval until a
patient’s body temperature returns to normal levels. The independent variables included
demographics and clinical history, which encompassed age, sex, smoking status, asthma,
COPD, hypertension, hyperlipidemia, diabetes, coronary artery disease, and medication
status. Symptom variables account for initial symptoms and their duration in days, featur-
ing anorexia, cough, headache, fatigue, myalgia, sore throat, and fever, along with days
recorded with mMRC grades 1 and 2. COVID-19 specific variables cover the number
of vaccine doses received, days since the last vaccine dose, history of prior COVID-19
infection, days since testing positive for COVID-19, and categorization of vaccine manu-
facturers, such as AstraZeneca, Johnson & Johnson, and Pfizer-BioNTech. Lastly, average
biosignal measures include the average values of heart rate, oxygen saturation (SpO2),
body temperature, weight, and diastolic and systolic blood pressure.

From the time-to-event analysis, several noteworthy observations emerged. The days
since testing positive for COVID-19 show a pronounced impact, suggesting that as the
number of days from testing positive increases, the likelihood of achieving a normothermic
state (36.5–37.5 ◦C) also increases considerably. Similarly, recipients of the Johnson &
Johnson vaccine exhibit an increased likelihood of reverting to a normothermic state swiftly.
Another notable finding is a marked increase in the duration of high body temperature with
every additional day exhibiting the symptom of anorexia. The average oxygen saturation
(SpO2 mean) also shows a potentially impactful trend, though it is just above the common
significance threshold. The results from the multivariate Cox regression model applied
to the one-day follow-up dataset are presented in Figure 8, which details the ranking of
variables based on their log-transformed hazard ratios (log HR).

The model with a one-day follow-up period scores a concordance index of 0.77, while
the models with a two-day and three-day follow-up period score a concordance index of
0.82 and 0.94, respectively. The p-value for ‘Days since positive test’ is 0.02 and the hazard
ratio (HR) is 17.81 > 1, suggesting a strong relationship between time since infection and
increased likelihood of fever resolution. The same conclusion can be drawn for the ‘Johnson
& Johnson’ type of vaccine. In contrast, the p-value for ‘Symptom days: anorexia’ is 0.01 and
the proportional hazard (HR) value is 0.32 < 1, suggesting a strong relationship between the
number of days with the anorexia symptom and a reduced possibility of fever subsidence.
The model with the two-day follow-up period trained on data from a total of 72 patients
produced similar results on the characteristic variables days since positive test, Johnson
& Johnson, and days with symptom: anorexia. Furthermore, it demonstrates a strong
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relationship between the variable ‘Medication’ and a reduced likelihood of fever resolution
(p-value = 0.03 and HR = 0.18), as well as a strong relationship between mean systolic
pressure and an increased likelihood of fever remission (p-value = 0.03 and HR = 15.32).
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The model with a three-day follow-up period, however, returns no features with a
p-value ≤ 0.05 and includes data from a total of 51 patients. Models with longer follow-up
periods than the samples available so far do not converge due to high collinearity, as the
number of cases is significantly reduced (fewer than 20 patients).

4. The System in Practice
4.1. Platform for Data Collection

A platform dedicated to the collection of health-related information was utilized in
the scope of the project. The platform is an IoT solution integrating vital signs monitoring
for COVID-19 patients, with Bluetooth-enabled wearables and a mobile app for daily
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biosignal measurements and self-assessments. It includes a helpdesk and stores data in
a Personal Health Record (PHR) accessible to clinicians. The web app supports remote
monitoring using state-of-the-art technology and roles for stakeholders. The provided
benefits include care continuity, easy access to healthcare, and increased efficiency for
providers. The solution leverages smart devices and non-invasive sensors to monitor
physical, physiological, and emotional status, promoting self-management and social
engagement. In Figure 9, the web interface of the platform is presented. The health-related
data of a patient can be shown by various visualizations providing intuitive summaries for
each biosignal.
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Through the platform, healthcare experts were able to view patient data (visualization)
and conduct virtual visits as depicted in Figure 10.
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4.2. Platform for Data Analysis

A different web application was developed to integrate the functionality of the pro-
posed methodologies. This architecture was based on the logic of Service-Oriented Archi-
tecture (SOA). It consisted of a web interface subsystem and a backend subsystem. The
application sends a GET request to the web service, developed in Python through the
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‘flask’ library. The web service can be called at a specific URL. To analyze the mMRC grade
classification, the call sent the hyperparameters to the web service in the following format,
as an example:

GET/daybyday_inference?&cls_type=RF&sex_flag=1.0&days_ahead=3&age_lower_flag=50&age
_upper_flag=80

Hyperparameters ‘days_ahead’ and ‘cls_type’ were required, while hyperparam-
eters ‘sex_flag’, ‘age_lower_flag’, ‘age_upper_flag’, ‘sdatetime_lower_flag’, and ‘sdate-
time_upper_flag’ were optional to perform analysis on the filtered samples.

For time-to-event analysis, the call sent the hyperparameters to the web service in the
following format, as an example:

GET/cox_regression/?follow_up_period_flag=2&sex_flag=1&age_lower_flag=20&initial_positive
_test_date_lower_flag=2020-12-03&initial_positive_test_date_upper_flag=2022-04-30

The backend subsystem received the request and transformed the original dataset
from the hyperparameters into the corresponding data frames. Figure 11 depicts a Cox
regression analysis scenario with an observation period of 2 days on data of male patients
over 20 years old who were infected with COVID-19 between the dates of 3 December 2020
and 30 April 2022.

Mach. Learn. Knowl. Extr. 2024, 6, FOR PEER REVIEW  18 
 

 

For time-to-event analysis, the call sent the hyperparameters to the web service in the 
following format, as an example: 

GET/cox_regression/?follow_up_period_flag=2&sex_flag=1&age_lower_flag=20&ini-
tial_positive_test_date_lower_flag=2020-12-03&initial_positive_test_date_up-
per_flag=2022-04-30 

The backend subsystem received the request and transformed the original dataset 
from the hyperparameters into the corresponding data frames. Figure 11 depicts a Cox 
regression analysis scenario with an observation period of 2 days on data of male patients 
over 20 years old who were infected with COVID-19 between the dates of 3 December 
2020 and 30 April 2022. 

 
Figure 11. Cox regression analysis with an observation period of 2 days on filtered data of male 
patients over 20 years old who were infected with COVID-19 between the dates of 3 December 2020 
and 30 April 2022. 

5. Conclusions 
The paper investigates the possibility of extracting useful knowledge from the data 

of patients with mild COVID-19 symptoms. For this purpose, the use of ML algorithms 
was examined for the classification of patients on the mMRC scale. The classifiers were 
selected based on their performance on noisy data and the explanation of their decision-
making logic. Therefore, classifiers, which are based on ensemble schemes such as 

Figure 11. Cox regression analysis with an observation period of 2 days on filtered data of male
patients over 20 years old who were infected with COVID-19 between the dates of 3 December 2020
and 30 April 2022.



Mach. Learn. Knowl. Extr. 2024, 6 1340

5. Conclusions

The paper investigates the possibility of extracting useful knowledge from the data of
patients with mild COVID-19 symptoms. For this purpose, the use of ML algorithms was
examined for the classification of patients on the mMRC scale. The classifiers were selected
based on their performance on noisy data and the explanation of their decision-making
logic. Therefore, classifiers, which are based on ensemble schemes such as boosting and
bagging with base classifiers, and decision trees were considered ideal candidates. This
is mainly due to the confirmed results in the relevant literature of increased performance
in deviation and dispersion error, and the interpretations of their predictions resulting in
transparency and trust in the results produced. Although the dataset showed a significant
imbalance in terms of mMRC scale classes, the selection classifiers demonstrated significant
robustness as shown by the comparison of metric accuracy and balanced accuracy. At the
same time, the overview of the classification results highlights the possibility of using ML
classifiers for risk assessment even in groups of patients who maintain small differences in
disease progression. However, as can be easily seen, the predictability of the mMRC scale
class decreased with time, which is expected. From thorough analysis of the interpretability
results, useful conclusions are drawn in relation to the factors influencing the determination
of the outcome over time as well as for the filtering of input characteristics. More specif-
ically, classification algorithms agree that factors such as days since the last vaccination,
systolic and diastolic blood pressure, weight, age, and heart rate significantly influence the
classifiers’ decision. In addition, the expected duration of fever is analyzed by applying a
Cox regression model. The multivariate Cox proportional hazard model was chosen with
the main criteria being the ability to evaluate the parallel effect of several variables as well
as the handling of numerical as well as categorical variables. From analysis of the results,
useful conclusions emerged in relation to the factors that affect the reduction of fever. The
analysis was conducted for three different durations of follow-up periods in patients who
manifested an elevated body temperature, and their results showed consistency for two of
them. The fact that the results of the analysis with a 3-day follow-up period differ from
the results of the other two analyses may be related to the limited number of samples and
the problem of overfitting the method to them. Analyses for the one-day and two-day
follow-up periods agree that the factors of time of illness (days since positive test), vaccine
manufacturer, and time with the anorexia symptom significantly affect the length of time to
return to normal body temperature. The results of the classification and regression methods
are consistent with the experience of experts, which will work positively in the process
of integrating automated risk assessment systems into the daily routine of healthcare
delivery structures.

To better inform healthcare professionals and provide personalized healthcare to pa-
tients, statistical and ML analysis on tabular data can be successfully applied. Initial data
assessment and preparation are a cornerstone for the application of ML techniques that can
contribute to personalized information and personalized patient care. More specifically,
the use of calibrated scales, such as the mMRC scale, appears to greatly assist in training
analysis models and deriving objective results. Additionally, the classification methodology
tested showed very good results in terms of classification efficiency against unbalanced
datasets and their interpretability properties. Furthermore, the Cox proportional hazards
model was applied to estimate the duration of symptoms in patients with infection, pro-
ducing interesting insights for determining crucial factors for fever remission. Finally, the
integration of all of the above into pilot software seems to be feasible and necessary for the
automated analysis of health data in order to provide personalized care to patients. Future
work focuses on developing and evaluating the effectiveness of a pilot informatics tool that
can be integrated into health data analysis systems, providing repeatable, objective, and
trustworthy predictions for the progression of mild COVID-19 patients remotely.
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