Graph Convolutional Networks for Predicting Cancer Outcomes and Stage: A Focus on cGAS-STING Pathway Activation
Abstract
:1. Introduction
2. Methods
2.1. Samples and Training Data
2.2. cGAS—STING Pathway Definition
2.3. Use Cases Included in the Study
- DSS, a binary variable representing disease-specific survival of a patient;
- OS, a binary variable representing the overall survival of a patient;
- Stage is split as a binary variable where “early” is defined as stages 0, I, and II, while “late” is defined as stages III and IV.
2.4. Graph Convolutional Neural Network Architecture
2.5. Optimization of Graph Structure Topology
2.6. Using Integrated Gradients to Evaluate cGAS-STING Pathway Activation
2.7. Computational Requirements
2.8. Code Availability
3. Results
3.1. Finding Optimal Graph Structure
3.2. Training Classification Model
3.3. Integrated Gradients Show Important Genes in the cGAS–STING Pathway
3.4. Integrated Gradients Distinguish between Non-Canonical and Canonical Sting Activation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef]
- Jain, M. Next-generation sequencing technologies for gene expression profiling in plants. Briefings Funct. Genom. 2011, 11, 63–70. [Google Scholar] [CrossRef]
- Muir, P.; Li, S.; Lou, S.; Wang, D.; Spakowicz, D.J.; Salichos, L.; Zhang, J.; Weinstock, G.M.; Isaacs, F.; Rozowsky, J.; et al. The real cost of sequencing: Scaling computation to keep pace with data generation. Genome Biol. 2016, 17, 53. [Google Scholar]
- Cost of NGS. Available online: https://emea.illumina.com/science/technology/next-generation-sequencing/beginners/ngs-cost.html (accessed on 16 February 2024).
- Dong, Y.; Sun, F.; Ping, Z.; Ouyang, Q.; Qian, L. DNA storage: Research landscape and future prospects. Natl. Sci. Rev. 2020, 7, 1092–1107. [Google Scholar] [CrossRef] [PubMed]
- Libbrecht, M.W. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef]
- Yi, N.; Xu, S.; Lou, X.-Y.; Mallick, H. Multiple Comparisons in Genetic Association Studies: A Hierarchical Modeling Approach. Stat. Appl. Genet. Mol. Biol. 2014, 13, 35. [Google Scholar] [CrossRef]
- Groenwold, R.H.H.; Goeman, J.J.; Cessie, S.L.; Dekkers, O.M. Multiple testing: When is many too much? Eur. J. Endocrinol. 2021, 184, E11–E14. [Google Scholar] [CrossRef]
- Zou, J.; Huss, M.; Abid, A.; Mohammadi, P.; Torkamani, A.; Telenti, A. A primer on deep learning in genomics. Nat. Genet. 2018, 51, 12–18. [Google Scholar] [CrossRef]
- Geraci, F.; Saha, I.; Bianchini, M. RNA-Seq Analysis: Methods, Applications and Challenges. Front. Genet. 2020, 11, 220. [Google Scholar] [CrossRef]
- Toro-Domínguez, D.; Villatoro-García, J.A.; Martorell-Marugán, J.; Román-Montoya, Y.; Alarcón-Riquelme, M.E.; Carmona-Sáez, P. A survey of gene expression meta-analysis: Methods and applications. Brief. Bioinform. 2021, 22, 1694–1705. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Ahn, A.; Rodger, E.J.; Stockwell, P.A.; Eccles, M.R. A Guide for Designing and Analyzing RNA-Seq Data. Methods Mol. Biol. 2018, 1783, 35–80. [Google Scholar] [PubMed]
- Song, M.; Greenbaum, J.; Luttrell, J., IV; Zhou, W.; Wu, C.; Shen, H.; Gong, P.; Zhang, C.; Deng, H.W. A Review of Integrative Imputation for Multi-Omics Datasets. Front. Genet. 2020, 11, 570255. [Google Scholar] [CrossRef]
- Dong, X.; Liu, C.; Dozmorov, M. Review of multi-omics data resources and integrative analysis for human brain disorders. Brief. Funct. Genomics. 2021, 20, 223–234. [Google Scholar] [CrossRef]
- Hardiman, G. Systems Analytics and Integration of Big Omics Data; MDPI: Basel, Switzerland, 2020. [Google Scholar]
- Sokač, M.; Kjær, A.; Dyrskjøt, L.; Haibe-Kains, B.; Jwl Aerts, H.; Birkbak, N.J. Spatial transformation of multi-omics data unlocks novel insights into cancer biology. Elife 2023, 12, RP87133. [Google Scholar] [CrossRef]
- Sokač, M.; Ahrenfeldt, J.; Litchfield, K.; Watkins, T.B.; Knudsen, M.; Dyrskjøt, L.; Jakobsen, M.R.; Birkbak, N.J. Classifying cGAS-STING Activity Links Chromosomal Instability with Immunotherapy Response in Metastatic Bladder Cancer. Cancer Res. Commun. 2022, 2, 762–771. [Google Scholar] [CrossRef]
- Brandon, M.C.; Wallace, D.C.; Baldi, P. Data structures and compression algorithms for genomic sequence data. Bioinformatics 2009, 25, 1731–1738. [Google Scholar] [CrossRef] [PubMed]
- Baaijens, J.A.; Bonizzoni, P.; Boucher, C.; Della Vedova, G.; Pirola, Y.; Rizzi, R.; Sirén, J. Computational graph pangenomics: A tutorial on data structures and their applications. Nat. Comput. 2022, 21, 81–108. [Google Scholar] [CrossRef]
- Andreace, F.; Lechat, P.; Dufresne, Y.; Chikhi, R. Comparing methods for constructing and representing human pangenome graphs. Genome. Biol. 2023, 24, 274. [Google Scholar] [CrossRef]
- Woolson, R.F.; Clarke, W.R. Statistical Methods for the Analysis of Biomedical Data; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Pavlopoulos, G.A.; Secrier, M.; Moschopoulos, C.N.; Soldatos, T.G.; Kossida, S.; Aerts, J.; Schneider, R.; Bagos, P.G. Using graph theory to analyze biological networks. BioData Min. 2011, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Sedgwick, P. Pitfalls of statistical hypothesis testing: Multiple testing. BMJ 2014, 349, g5310. [Google Scholar] [CrossRef]
- Milano, M.; Agapito, G.; Cannataro, M. Challenges and Limitations of Biological Network Analysis. BioTech 2022, 11, 24. [Google Scholar] [CrossRef]
- Koutrouli, M.; Karatzas, E.; Paez-Espino, D.; Pavlopoulos, G.A. A Guide to Conquer the Biological Network Era Using Graph Theory. Front. Bioeng. Biotechnol. 2020, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic Attribution for Deep. Networks. 2017. Available online: http://arxiv.org/abs/1703.01365 (accessed on 23 June 2024).
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Available online: https://ieeexplore.ieee.org/document/8237336 (accessed on 3 September 2024).
- Lundberg, S.; Lee, S.-I.A. Unified Approach to Interpreting Model Predictions. 2017. Available online: http://arxiv.org/abs/1705.07874 (accessed on 23 July 2024).
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust. You?”: Explaining the Predictions of Any Classifier. 2016. Available online: http://arxiv.org/abs/1602.04938 (accessed on 24 June 2024).
- Johnson, K.B.; Wei, W.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Sahu, M.; Gupta, R.; Ambasta, R.K.; Kumar, P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Prog. Mol. Biol. Transl. Sci. 2022, 190, 57–100. [Google Scholar] [PubMed]
- Paten, B.; Novak, A.M.; Eizenga, J.M.; Garrison, E. Genome graphs and the evolution of genome inference. Genome Res. 2017, 27, 665. [Google Scholar] [CrossRef]
- Du, J.-M.; Qian, M.-J.; Yuan, T.; Chen, R.-H.; He, Q.-J.; Yang, B.; Ling, Q.; Zhu, H. cGAS and cancer therapy: A double-edged sword. Acta Pharmacol. Sin. 2022, 43, 2202–2211. [Google Scholar] [CrossRef]
- Wang, M.M.; Zhao, Y.; Liu, J.; Fan, R.R.; Tang, Y.Q.; Guo, Z.Y.; Li, T. The role of the cGAS-STING signaling pathway in viral infections, inflammatory and autoimmune diseases. Acta Pharmacol. Sin. 2024, 1–14. [Google Scholar] [CrossRef]
- Cheng, Z.; Dai, T.; He, X.; Zhang, Z.; Xie, F.; Wang, S.; Zhang, L.; Zhou, F. The interactions between cGAS-STING pathway and pathogens. Signal Transduct. Target. Ther. 2020, 5, 1–15. [Google Scholar] [CrossRef]
- Ou, L.; Zhang, A.; Cheng, Y.; Chen, Y. The cGAS-STING Pathway: A Promising Immunotherapy Target. Front. Immunol. 2021, 12, 795048. [Google Scholar] [CrossRef]
- He, W.; Mu, X.; Wu, X.; Liu, Y.; Deng, J.; Liu, Y.; Han, F.; Nie, X. The cGAS-STING pathway: A therapeutic target in diabetes and its complications. Burns Trauma. 2024, 12, tkad050. [Google Scholar] [CrossRef]
- Hong, C.; Tijhuis, A.E.; Foijer, F. The cGAS Paradox: Contrasting Roles for cGAS-STING Pathway in Chromosomal Instability. Cells 2019, 8, 1228. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Li, X.; Han, S.; Liang, Q.; Ma, X.; Rong, P.; Wang, W.; Li, W. The cGAS/STING Pathway: A Novel Target for Cancer Therapy. Front. Immunol. 2021, 12, 795401. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-J.-Y.; Qu, J.-R.; Zhang, Y.-H.; Liu, R.-P. The dual function of cGAS-STING signaling axis in liver diseases. Acta Pharmacol. Sin. 2024, 45, 1115–1129. [Google Scholar] [CrossRef]
- Khoo, L.T.; Chen, L. Role of the cGAS–STING pathway in cancer development and oncotherapeutic approaches. EMBO Rep. 2018, 19, e46935. [Google Scholar] [CrossRef]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef]
- Vivian, J.; Rao, A.A.; Nothaft, F.A.; Ketchum, C.; Armstrong, J.; Novak, A.; Pfeil, J.; Narkizian, J.; Deran, A.D.; Musselman-Brown, A.; et al. Toil enables reproducible, open source, big biomedical data analyses. Nat. Biotechnol. 2017, 35, 314–316. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, B.; Sinha, S.C.; Amin, S.; Gan, L. Mechanism and therapeutic potential of targeting cGAS-STING signaling in neurological disorders. Mol. Neurodegener. 2023, 18, 79. [Google Scholar] [CrossRef]
- Bai, J.; Liu, F. The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism. Diabetes 2019, 68, 1099. [Google Scholar] [CrossRef]
- Patel, D.J.; Yu, Y.; Xie, W. cGAMP-activated cGAS–STING signaling: Its bacterial origins and evolutionary adaptation by metazoans. Nat. Struct. Mol. Biol. 2023, 30, 245–260. [Google Scholar] [CrossRef]
- Decout, A.; Katz, J.D.; Venkatraman, S.; Ablasser, A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 2021, 21, 548–569. [Google Scholar] [CrossRef]
- Hopfner, K.-P.; Hornung, V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat. Rev. Mol. Cell. Biol. 2020, 21, 501–521. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Fei, C.-J.; Hu, Y.; Wu, X.-Y.; Nie, L.; Chen, J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool. Res. 2023, 44, 183. [Google Scholar] [CrossRef]
- Withers, S.S.; Moeller, C.E.; Quick, C.N.; Liu, C.-C.; Baham, S.M.; Looper, J.S.; Subramanian, R.; Kousoulas, K.G. Effect of stimulator of interferon genes (STING) signaling on radiation-induced chemokine expression in human osteosarcoma cells. PLoS ONE 2023, 18, e0284645. [Google Scholar] [CrossRef]
- Motwani, M.; Pesiridis, S.; Fitzgerald, K.A. DNA sensing by the cGAS–STING pathway in health and disease. Nat. Rev. Genet. 2019, 20, 657–674. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Langberg, K.; Abbas, S.; Odermatt, E.; Yerramothu, P.; Volaric, M.; Reidenbach, M.A.; Krentz, K.J.; Rubinstein, C.D.; Brautigan, D.L.; et al. A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling. Nat. Commun. 2021, 12, 1–24. [Google Scholar] [CrossRef]
- Dunphy, G.; Flannery, S.M.; Almine, J.F.; Connolly, D.J.; Paulus, C.; Jønsson, K.L.; Jakobsen, M.R.; Nevels, M.M.; Bowie, A.G.; Unterholzner, L. Non-canonical Activation of the DNA Sensing Adaptor STING by ATM and IFI16 Mediates NF-κB Signaling after Nuclear DNA Damage. Mol. Cell. 2018, 71, 745–760.e5. [Google Scholar] [CrossRef]
- Lim, S.M.; Hong, M.H.; Kim, H.R. Immunotherapy for Non-small Cell Lung Cancer: Current Landscape and Future Perspectives. Immune Netw. 2020, 20, e10. [Google Scholar] [CrossRef]
- Taluri, S.; Oza, V.H.; Soelter, T.M.; Fisher, J.L.; Lasseigne, B.N. Inferring chromosomal instability from copy number aberrations as a measure of chromosomal instability across human cancers. Cancer Rep. 2023, 6, e1902. [Google Scholar] [CrossRef]
- Acosta, J.C.; O’Loghlen, A.; Banito, A.; Guijarro, M.V.; Augert, A.; Raguz, S.; Fumagalli, M.; Da Costa, M.; Brown, C.; Popov, N.; et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008, 133, 1006–1018. [Google Scholar] [CrossRef] [PubMed]
- Kuilman, T.; Michaloglou, C.; Vredeveld, L.C.; Douma, S.; van Doorn, R.; Desmet, C.J.; Aarden, L.A.; Mooi, W.J.; Peeper, D.S. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008, 133, 1019–1031. [Google Scholar] [CrossRef]
- Dou, Z.; Ghosh, K.; Vizioli, M.G.; Zhu, J.; Sen, P.; Wangensteen, K.J.; Simithy, J.; Lan, Y.; Lin, Y.; Zhou, Z.; et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 2017, 550, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.-W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Shrikumar, A.; Greenside, P.; Kundaje, A. Learning Important Features Through Propagating Activation Differences. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017. [Google Scholar]
Cancer | Name | Count |
---|---|---|
TOP 10 | Top 10 cancer datasets merged | 5982 |
TOP 5 | Top 5 cancer datasets merged | 3682 |
BRCA | Breast cancer | 1095 |
LUNG | Lung cancer | 1017 |
KIRC | Kidney renal clear cell carcinoma | 533 |
HNSC | Neck squamous cell carcinoma | 521 |
LUAD | Lung adenocarcinoma cancer | 516 |
THCA | Thyroid cancer | 505 |
LUSC | Lung squamous cell carcinoma | 501 |
SKCM | Skin cutaneous melanoma | 469 |
STAD | Stomach adenocarcinoma | 418 |
BLCA | Bladder urothelial carcinoma | 407 |
Cancers | OS (F1) | DSS (F1) | Stage (F1) |
---|---|---|---|
Top 10 | 0.6213 | 0.6892 | 0.4876 |
Top 5 | 0.6395 | 0.747 | 0.3875 |
SKCM | 0.544 | 0.5378 | 0.5417 |
HNSC | 0.7 | 0.7598 | 0.8154 |
STAD | 0.4619 | 0.5234 | 0.2755 |
LUSC | 0.5658 | 0.6485 | 0.7872 |
THCA | 0.9921 | 0.9008 | 0.697 |
LUAD | 0.698 | 0.8388 | 0.8087 |
KIRC | 0.6406 | 0.7289 | 0.5461 |
LUNG | 0.6564 | 0.8268 | 0.7781 |
BRCA | 0.9035 | 0.9445 | 0.7508 |
BLCA | 0.506 | 0.5716 | 0.7337 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokač, M.; Skračić, B.; Kučak, D.; Mršić, L. Graph Convolutional Networks for Predicting Cancer Outcomes and Stage: A Focus on cGAS-STING Pathway Activation. Mach. Learn. Knowl. Extr. 2024, 6, 2033-2048. https://doi.org/10.3390/make6030100
Sokač M, Skračić B, Kučak D, Mršić L. Graph Convolutional Networks for Predicting Cancer Outcomes and Stage: A Focus on cGAS-STING Pathway Activation. Machine Learning and Knowledge Extraction. 2024; 6(3):2033-2048. https://doi.org/10.3390/make6030100
Chicago/Turabian StyleSokač, Mateo, Borna Skračić, Danijel Kučak, and Leo Mršić. 2024. "Graph Convolutional Networks for Predicting Cancer Outcomes and Stage: A Focus on cGAS-STING Pathway Activation" Machine Learning and Knowledge Extraction 6, no. 3: 2033-2048. https://doi.org/10.3390/make6030100
APA StyleSokač, M., Skračić, B., Kučak, D., & Mršić, L. (2024). Graph Convolutional Networks for Predicting Cancer Outcomes and Stage: A Focus on cGAS-STING Pathway Activation. Machine Learning and Knowledge Extraction, 6(3), 2033-2048. https://doi.org/10.3390/make6030100