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Abstract: The study presented in this paper evaluated gene expression profiles from The Cancer
Genome Atlas (TCGA). To reduce complexity, we focused on genes in the cGAS–STING pathway,
crucial for cytosolic DNA detection and immune response. The study analyzes three clinical variables:
disease-specific survival (DSS), overall survival (OS), and tumor stage. To effectively utilize the
high-dimensional gene expression data, we needed to find a way to project these data meaningfully.
Since gene pathways can be represented as graphs, a novel method of presenting genomics data using
graph data structure was employed, rather than the conventional tabular format. To leverage the gene
expression data represented as graphs, we utilized a graph convolutional network (GCN) machine
learning model in conjunction with the genetic algorithm optimization technique. This allowed for
obtaining an optimal graph representation topology and capturing important activations within
the pathway for each use case, enabling a more insightful analysis of the cGAS–STING pathway
and its activations across different cancer types and clinical variables. To tackle the problem of
unexplainable AI, graph visualization alongside the integrated gradients method was employed to
explain the GCN model’s decision-making process, identifying key nodes (genes) in the cGAS–STING
pathway. This approach revealed distinct molecular mechanisms, enhancing interpretability. This
study demonstrates the potential of GCNs combined with explainable AI to analyze gene expression,
providing insights into cancer progression. Further research with more data is needed to validate
these findings.

Keywords: cGAS–STING; graph-convolutional-network; graphs; cancer; pan-cancer; machine learning;
NGS

1. Introduction

The recent advancements in next-generation sequencing (NGS) have brought about
a paradigm shift in research, particularly in the realm of gene expression analysis [1,2].
This technology has enabled researchers to delve deeply into the intricate mechanisms
governing gene regulation and expression. With the decreasing cost of sequencing, it
has become commonplace to employ NGS techniques to explore the various facets of
biological processes within the same samples [3,4]. However, this comes at cost of the
total storage required for a single whole-genome sequence can range from 100 GB to 1 TB,
including backup and redundancy requirements [5]. Furthermore, traditional statistical
methods often struggle to fully utilize the vast and complex data generated by NGS
due to several inherent limitations. NGS data are characterized by high dimensionality,
noise, and heterogeneity, presenting challenges for classical statistical approaches, which
typically rely on predefined hypotheses and linear relationships. These methods often
require simplifying assumptions, such as the normal distribution of data or independence
of features, which do not hold in the intricate biological systems captured by NGS [6].
Additionally, the need for multiple testing corrections in traditional statistical analyses
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can lead to a loss of statistical power, resulting in the dismissal of potentially significant
findings [7,8]. As a result, traditional statistics may fail to capture the full spectrum of
biological variation and subtle interactions present in NGS data [9]. This includes delving
into DNA sequencing to unravel genomic architecture and detect single-nucleotide variants,
analyzing RNA to decipher gene expression patterns, and investigating methylation to
unveil gene regulation dynamics and chromatin structure [10–12]. Multi-omics datasets
are rich in information, allowing for integrated analyses that consider multiple layers of
biological data simultaneously. However, traditional storage and commonly used methods
often rely on data in tabular formats, fail to capture the inherent spatial organization of the
genome, and lose crucial connectivity information [5]. As a consequence, the full potential
of these rich data remains untapped [13–15].

Alternative data structures are essential to address this challenge effectively. Ide-
ally, data structures that preserve the spatial organization of the genome should be em-
ployed [16,17]. This could involve utilizing graph-based representations that maintain the
genomic architecture and allow efficient traversal and analysis [16,18–20]. Additionally,
considering the vast feature space inherent in genomic data, specialized data structures
capable of handling high-dimensional data are warranted. These may include sparse
matrices or compressed data representations that optimize storage and computation [21].
Currently, there is a great effort in developing machine learning models that will capture
the relationships of gene interactions used to predict the variables of interest regarding
cancer development and treatment [16]. However, more complex models tend to have
less initial interpretability which is a crucial aspect of model development since effective
interpretations lead to discoveries of novel biomarkers and a better understanding of
biological processes.

The convolutional method proved to be a strong and influential improvement over
existing methods that were based on tabular data. Based on the previously mentioned
intuition of representing genes as images to use convolutional neural networks (CNNs) to
capture their spatial dependency, a new method of presenting genetic data is presented [16].
The novel approach to presenting data would be to project them as graphs, which should in
turn be able to capture complex and non-linear relationships in biological gene interaction
networks. Furthermore, using message passing as a basis of the inner workings of neural
network models based on graph neural networks (GNNs) should be able to mimic pathway
signaling found in gene pathways. This approach should enhance prediction precision,
improving the inference and feature discovery of cancer biomarkers [22]. In essence,
the analysis of multi-omics data demands a paradigm shift towards more sophisticated
data structures and analytical frameworks that acknowledge the spatial complexity of the
genome and mitigate the pitfalls associated with multiple hypothesis testing [23]. Recent
studies also managed to utilize graphs as mathematical data structures to model biological
pathways [22,24,25]. Thus, machine learning models that exploit such premises can be used.
Graph convolutional network (GCN) architecture was chosen for its strong expressive
power when equivalent graph topology is used for each data point representation.

While these models offer substantial advancements in predictive accuracy and the
ability to model complex biological processes, their interpretability remains a significant
challenge. The intricate nature of advanced machine learning techniques often results
in a “black-box” scenario where the internal workings and decision-making processes
are hidden from the users. This lack of transparency can be problematic in the medical
field, where understanding the rationale behind predictions is crucial for clinical trust and
application. Therefore, developing methods or relying on methods that elucidate how these
models process and prioritize different features are needed. Tools like Integrated Gradients
by Captum [26], DeepLIFT [27,28], SHAP (SHapley Additive exPlanations) [27,28], LIME
(Local Interpretable Model-agnostic Explanations) [29], and Grad-CAM (Gradient-weighted
Class Activation Mapping) [27] provide a non-parametric assessment of input importance.
Such approaches can help demystify the decision pathways within the model, making it
possible to identify and validate key biomarkers and gene interactions, ultimately bridging
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the gap between high predictive power and actionable biological insights, leading towards
precision medicine application [30,31]. When combined with topological inference and the
visualization of a gene interaction network, this approach can highlight the most influential
nodes and connections within a specific use case’s model.

To tackle the complexities of genomic data, graphs provide an intuitive and novel
approach for representing and analyzing gene interactions [32]. By projecting genomic data
onto graph structures, we can capture the intricate dependencies and signaling pathways
inherent in biological systems (Figure 1A). The cGAS–STING pathway serves as an exem-
plary case due to its pivotal and dual role in cancer biology [33]. As a crucial component
of the innate immune system, it functions to detect the presence of cytosolic DNA and
trigger the expression of immune genes [18]. This pathway also plays a critical role in
mediating immune defense against viruses [34,35]. In the context of cancer research, the
cGAS–STING pathway has been identified as a promising target for cancer research [36].
It participates in regulating cancer, autoimmune and inflammatory diseases, microbial
and parasitic infectious diseases, and other diseases [37]. However, the cGAS–STING
pathway is often referred to as a double-edged sword in cancer research [33,38]. On one
hand, it plays a tumor-suppressive function. On the other hand, cGAS is often associated
with high genomic instability, a well-known hallmark of cancerogenesis [39]. Therefore,
understanding the dual role of the cGAS–STING pathway is crucial for developing effective
cancer therapies [39–41].
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Figure 1. Study overview. (A) Projecting gene expression data across cancer cohorts as graphs.
(B) Heuristic search using the genetic algorithm optimization technique for each use case.
(C) Training the models and visualizing inference by highlighting the most important gene acti-
vations in the pathway.

In this paper, we present a novel method of projecting gene pathway expression data
using graphs as well as a complete framework for finding an optimal graph representation
of gene interactions in the cGAS–STING gene pathway, named GENIE (Graph gEnetic
Network Inference and Evaluation). After projecting the data as graphs, a heuristic ap-
proach was used to find the optimal hyperparameters for machine learning models, most
notably, graph topology for specific use cases (Figure 1B). After the identification of op-
timal graph topology for each use case in selected cancers, the GCN model was trained
with the appropriate genomic data with gene expressions being the feature of interest. By
utilizing the integrated gradients method, we were able to discover important nodes in the
decision-making model for each use case. By utilizing the intuitive expressive power of
visualized graph topology alongside integrated gradient inference, the interpretability of
our method was compared and enhanced (Figure 1C). This enhancement provided clearer
insights into important gene interactions in the cGAS–STING pathway as key biomarkers.

2. Methods
2.1. Samples and Training Data

The gene expression of cancer types was from The Cancer Genome Atlas (TCGA)
(https://www.cancer.gov/tcga, accessed on 3 March 2024) [39]. Based on the sample
count, the top 10 cancer datasets were chosen. Based on a preliminary analysis of the gene
expression dataset, we observed that certain cancer datasets lacked adequate information
regarding pathological or clinical stages. Consequently, these samples were excluded from
further analysis. To ensure the robustness of our study, we replaced these incomplete sam-
ples with those from other leading cancer types that provided comprehensive pathological
and clinical data. The mentioned approach resulted in the top 10 cancers being chosen as
described in the table. Besides those datasets, two datasets were created for the purpose of
this study by merging the top 5 and top 10 cancer datasets, respectively. All TCGA sample
data used in the study were obtained from Xena Browser [42], which were processed by the
UCSC (University of California, Santa Cruz) Toil pipeline [43], and RNAseq summarized
transcript per million (TPM) on the gene level (Table 1, Supplementary Figure S1).

https://www.cancer.gov/tcga
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Table 1. Cancer types included in the study and their corresponding number of samples.

Cancer Name Count

TOP 10 Top 10 cancer datasets merged 5982

TOP 5 Top 5 cancer datasets merged 3682

BRCA Breast cancer 1095

LUNG Lung cancer 1017

KIRC Kidney renal clear cell carcinoma 533

HNSC Neck squamous cell carcinoma 521

LUAD Lung adenocarcinoma cancer 516

THCA Thyroid cancer 505

LUSC Lung squamous cell carcinoma 501

SKCM Skin cutaneous melanoma 469

STAD Stomach adenocarcinoma 418

BLCA Bladder urothelial carcinoma 407

2.2. cGAS—STING Pathway Definition

Since datasets contain expressions of all sequence genes, to reduce computational
complexity, we defined the list of genes in the cGAS–STING pathway based on the available
literature. These genes encode proteins that play critical roles in the detection of cytosolic
DNA, signal transduction, and the resulting immune responses. C6orf150 encodes cGAS, a
DNA sensor that produces cGAMP upon binding to cytosolic DNA, thereby initiating the
cGAS–STING pathway [44]. The CGAS gene detects not only cytosolic DNA from viruses
but also double-stranded DNA found in micronuclei, small extra-nuclear structures that
contain whole chromosomes, or chromosome fragments that did not integrate into the
main nucleus after mitosis [45–47]. When chromosomal instability causes the micronucleus
membrane to rupture, the double-stranded DNA becomes exposed, enabling cGAS to
bind to it and trigger pathway activation [38]. IRF3 is a transcription factor activated by
the cGAS–STING pathway that induces the expression of type I interferons and other
antiviral genes. TMEM173 encodes STING, a central adaptor protein that, upon activa-
tion by cGAMP, activates IRF3 and NF-κB, leading to the production of type I interferons
and proinflammatory cytokines (IL6 and IL8) [48,49]. NFKB1 and IKBKE are integral to
NF-κB signaling, which drives the expression of inflammatory cytokines such as IL6 and
IL8 (CXCL8), which are crucial for immune response modulation [44,49]. CCL5, CXCL9,
CXCL10, and CXCL11 are chemokines that are regulated by NF-κB and play roles in recruit-
ing immune cells to infection sites, thus enhancing the immune response [47,50]. TREX1
and ATM are involved in the DNA damage response and repair mechanisms, with TREX1
degrading cytosolic DNA to prevent unwarranted activation of the immune response, and
ATM signaling DNA damage to promote repair and modulate immune signaling [51]. In
the cancer microenvironment under the burden of high chromosomal instability, cGAS
is associated with ATM, however, this connection is not clearly understood [52,53]. In
summary, based on the literature research, C6orf150 (cGAS), CCL5, CXCL10, TMEM173
(STING), CXCL9, CXCL11, NFKB1, IKBKE, IRF3, TREX1, ATM, IL6, and IL8 (CXCL8)
were chosen as representative genes of the cGAS–STING pathway to be used in the study
(Figure 1A).
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2.3. Use Cases Included in the Study

To describe the difference between canonical and non-canonical activation of the
cGAS–STING pathway in different patients, three variables of interest were chosen: disease-
specific survival (DSS), overall survival (OS), and clinical tumor stage. Overall survival
describes whether the patient survived or not, not necessarily related to their tumor disease.
DSS, on the other hand, describes if the patient died from the specific tumor or not. Stage
describes the current stage of the cancer for the specified patient: stage I, stage II, stage III,
and stage IV, as well as various substages and variations that were grouped under one of
the four main stages. Since the distribution of stage classes was not balanced, stage I and
stage II were grouped under the ‘early’ class while stage III and stage IV were grouped
under the ‘late’ class. In our analysis, the OS use case exhibited the poorest distribution
in THCA and BRCA datasets. Similarly, for the DSS use case, the distribution was most
unfavorable in THCA and BRCA. Furthermore, the stage-specific analysis revealed that the
LUNG, LUSC, and HNSC cohorts demonstrated the worst distribution (Supplementary
Figure S2).

The following summarizes the use cases evaluated in this study:

• DSS, a binary variable representing disease-specific survival of a patient;
• OS, a binary variable representing the overall survival of a patient;
• Stage is split as a binary variable where “early” is defined as stages 0, I, and II, while

“late” is defined as stages III and IV.

2.4. Graph Convolutional Neural Network Architecture

The GCN multi-layer model used in this study is designed to leverage the power
of graph neural networks to analyze gene expression data. The implementation of this
model was written in Python (version 3.10.13); more specifically, the model was generally
defined as an inherited Module class, which is a part of the PyTorch (version 2.1.2) library.
The model’s input consisted of gene expression features, which were processed through
a graph structure defined by an adjacency matrix. This matrix captured the connections
between genes, allowing the model to aggregate information based on gene interactions.
The first layer of the model was a graph convolutional network layer, implemented using
the GCNConv class as a part of the PyTorch Geometric library (version 2.4.0). This layer
performs convolution operations on the graph, transforming node features into a higher
dimensional space. The hidden size of 64 denoted hidden channels, which determined
the output dimensionality of this layer. The graph convolution operation utilized the
edge indices derived from the adjacency matrix, enabling the model to gather and process
information from neighboring nodes. The output from the graph convolution layer was
passed through a ReLU (Rectified Linear Unit) activation function. Following this, the
transformed features were fed into a linear layer, which mapped the features to the two
possible classes, allowing for binary classification. This final layer served as the classifier,
producing predictions for each data point (Supplementary Figure S3). The model was
trained on the train set and validated on the test set, split in the 75:25 ratio, respectively,
using the binary cross-entropy loss function, which is well-suited for binary classification
tasks. Adam optimizer was employed to adjust the model’s weights with a learning rate of
0.0001 and weight decay of 0.1. The model was trained for 10 epochs for objective function
evaluation in the genetic algorithms heuristic search process and 100 epochs for final model
training. Before training the classification model for each use case, hyperparameters (layers,
node count, and batch size) of such models were optimized using Optuna (version 3.4.0).
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2.5. Optimization of Graph Structure Topology

A specific hyperparameter applicable to the GCN scenario was the graph adjacency
matrix representing graph topology, or in other words, the order of gene interactions
based on their protein expression values. The optimization process in this work essentially
involved hyperparameter tuning of a classification model that must be applied for each
model based on the specific cancer cohort and target variable combination, resulting in
36 different models and optimization processes. To optimize this specific parameter, a
heuristic method known as genetic algorithms (GAs) was chosen. Due to the versatile
nature of the objective function rules for this algorithm and the discrete nature of the prob-
lem’s search space, genetic algorithms were used. Using genetic algorithms, we designed
a heuristic optimization for each of the tasks/scenarios. In summary, possible adjacency
matrices were initially encoded and generated as a population that evolves over multiple
generations. The objective function is defined as the F1 metric of the GCN model trained
using the solution as an adjacency matrix hyperparameter (Figure 2B, Supplementary
Figure S4). The GA search was performed using the PyGad library (version 3.2.0). The
rationale for choosing GAs over other heuristic search algorithms lies in their ability to
effectively explore complex and high-dimensional search spaces, which are often charac-
terized by non-linear relationships and numerous local optima. Furthermore, the choice
of GA was driven by the flexibility of the algorithm but also the flexibility of the PyGad
framework. The GA can handle various types of data representations, including binary,
real-valued, and permutations, which makes them applicable to a wide range of problems,
which was important for this project. The inherent flexibility of GAs allows researchers
to easily integrate additional modalities or types of data into the framework, making it a
versatile tool for future applications.

Upon completing the GA optimization for each use case, the resulting optimal graph
topology, represented as an adjacency matrix, was used as a hyperparameter to train the
final classification model for the corresponding cancer and variable combination. This
model will be used in obtaining inference based on the graph visualization and integrated
gradients method. 
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Figure 2. Models’ heuristic search and training. The figure illustrates the optimization process and
training performance of the models. (A) The panel displays the fitness values over generations during
the heuristic search, indicating an improvement in model performance as the search progresses.
(B) The panel presents the categorical cross-entropy loss over training epochs, demonstrating how
the loss decreases as the model trains, signifying better model fitting to the data.

2.6. Using Integrated Gradients to Evaluate cGAS-STING Pathway Activation

The integrated gradients method leverages the gradients of a trained model with
fixed weights to ascertain the significance of each node in the graph convolutional network
(GCN) for the classification process. By computing the gradients while keeping the model’s
weights constant, this approach quantifies the contribution of each node to the final pre-
diction, thereby identifying the most influential nodes in the GCN network. To compute
integrated gradients for networks, captum (version 0.7.0) was used.

2.7. Computational Requirements

For the simpler use cases in this study, computations were conducted using a setup
comprising an Intel i5 8300H (4 cores) processor, Nvidia GeForce GTX 1050Ti with 4 GB
of VRAM, and 8 GB of RAM. To handle more computationally complex use cases, Cuda
(version 12.1) parallelization was executed on the HPC with the following specifications:
Intel Xeon Silver 4216 CPU (64 cores) CPU alongside NVIDIA Quadro RTX 6000 (24 GB
VRAM) GPU and 200GB RAM.

2.8. Code Availability

The source code for implementation used in this study is openly available as a GitHub
repository at https://github.com/bskracic/genie-nextflow (accessed on 20 August 2024).
The repository contains jobs implemented as a Nextflow (version 23.10.1.5891) pipeline
which allows for reproducible runs across different computational environments.

3. Results
3.1. Finding Optimal Graph Structure

The genetic algorithm heuristic search in this study is configured with specific parame-
ters to optimize the solutions iteratively. A population of 10 solutions is initially generated,
which evolves over 20 generations. During each generation, four parent solutions are

https://github.com/bskracic/genie-nextflow
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selected for mating based on their fitness, utilizing crossover and mutation operations
to produce offspring solutions (Figure 2A). Each solution’s fitness is assessed using an
objective function, and the resulting value guides the selection process. The optimization
process yielded varying degrees of success across the 12 cancer cohorts and three clinical
variables evaluated. Notably, the LUAD cohort with the OS variable exhibited a modest
improvement in the final generations; however, the consistently low F1 scores suggest that
the cGAS–STING pathway may not adequately capture the underlying biological processes
associated with cancer survival in this context. In the Top 5 cancer cohort, the stage variable
showed steady, albeit limited, progress throughout the generations, reflected by a relatively
low overall F1 score. In contrast, the other variables in the Top 5 as well as all variables
in the Top 10 cohort and the LUAD stage use case demonstrated no significant improve-
ment, indicating potential limitations in the model’s ability to optimize for these scenarios.
Conversely, the BLCA and BRCA cohorts, when evaluated for the stage variable, exhibited
minimal progress, suggesting that the GA optimization may have reached a plateau early
in the generational cycle. Interestingly, the KIRC and SKCM cohorts for the stage variable
performed significantly better, with relatively high overall F1 scores and consistent progress
across generations, where in KIRC, the graph topology was found quite early, resulting in
minor improvements over generations, while SKCM showed improvements as epochs and
generations passed by (Figure 2A,B, Supplementary Figure S5).

3.2. Training Classification Model

To evaluate graph topology fitness for each use case, the final value of the F1 test
metric was used. We trained a GCN model with the aforementioned architecture for each
use case in each cancer entry. Each model was trained for 100 epochs, with the appropriate
dataset split into 75:25 for training and test sets, resulting in the performance measured
with the F1 measure (Supplementary Figure S5, Table 2). The following table shows the F1
metric of each classification model after completing the optimization process. For the DSS
use case, BRCA showed the highest F1 score at 0.9445, indicating the best performance,
while STAD had the lowest F1 score at 0.5234, marking the worst performance. In the OS
use case, THCA had the highest F1 score of 0.9921, demonstrating superior performance,
whereas STAD had the lowest at 0.4619. Regarding the stage use case, HNSC achieved
the highest F1 score of 0.8154, while STAD again had the lowest performance with an F1
score of 0.2755. On average, the DSS use case performed the best with a mean F1 score
of 0.7264 (Figure 3A). When all use cases were averaged, the best-performing cancer was
BRCA (breast cancer) with an average F1 of 0.8663 over all three use cases (Figure 3B).

Table 2. Summary of classification results.

Cancers OS (F1) DSS (F1) Stage (F1)

Top 10 0.6213 0.6892 0.4876

Top 5 0.6395 0.747 0.3875

SKCM 0.544 0.5378 0.5417

HNSC 0.7 0.7598 0.8154

STAD 0.4619 0.5234 0.2755

LUSC 0.5658 0.6485 0.7872

THCA 0.9921 0.9008 0.697

LUAD 0.698 0.8388 0.8087

KIRC 0.6406 0.7289 0.5461

LUNG 0.6564 0.8268 0.7781

BRCA 0.9035 0.9445 0.7508

BLCA 0.506 0.5716 0.7337
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Figure 3. Models’ performance. This figure compares the performance of the models across different
scenarios. (A) Figure shows the F1 scores for each use case (OS, DSS, and stage) across all cancer types
included in the study. (B) Figure illustrates the average F1 scores for each cancer type, providing a
summary of model performance by cancer cohort.

3.3. Integrated Gradients Show Important Genes in the cGAS–STING Pathway

To comprehensively visualize the acquired graphs, the consensus method was used.
For each use case, adjacency matrices were summed, and the final topology was deter-
mined using a 95th percentile filter. This approach ensured that only node connections
with a sum greater than the 95th percentile were included in the final adjacency matrix.
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Figure 4 illustrates the distinct patterns of cGAS–STING pathway activations, categorized
by key clinical variables: OS, DSS, and cancer stage (early and late). Each graph topology
depicting gene interactions results from a heuristic optimization process utilizing genetic
algorithms and GCN models, as previously described. For each cancer type and specific
use case, a combination of adjacency matrices was employed, integrating a method to filter
connections that represent the top 5% in terms of frequency across all cancers within each
variable category. This approach yielded consensus graphs that emphasized the prominent
network structures associated with each clinical class, providing insights into the differen-
tial molecular mechanisms in the cGAS–STING pathway. Therefore, each node within the
graphs is colored to reflect its impact on the model’s decision-making process, with purple
nodes indicating the least impactful and pink nodes representing the most impactful.
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Figure 4. Consensus feature-importance graphs. This figure visualizes the consensus feature impor-
tance across different clinical variables. (A) Figure compares feature importance between patients
with OS = false and OS = true, highlighting key genes involved in overall survival. (B) Panel contrasts
feature importance between patients with DSS = false and DSS = true, showcasing significant genes
in disease-specific survival. (C) Figure examines the differences in gene activation between the early
and late stages of cancer, identifying critical genes involved in tumor progression.

3.4. Integrated Gradients Distinguish between Non-Canonical and Canonical Sting Activation

Based on the evaluation of graph topology fitness using the F1 test metric for each can-
cer use case, a theoretical and empirical distinction between canonical and non-canonical
cGAS–STING pathway activations becomes apparent. The F1 metric, derived from training
each GCN model on specific datasets, reflects the model’s predictive accuracy in distin-
guishing between different clinical variables such as OS, DSS, and tumor stage. Figure 4
illustrates the diverse activations of the cGAS–STING pathway, delineated by these clin-
ical variables. Comparing the differences between OS, DSS, and stage graph topologies,
we observed expected similarities between the OS and DSS topologies. The connection
between TMEM173 (STING), NFKB1, IRF3, and interleukin (IL6 or IL8) shows consistent
signaling. CXCL9, CXCL10, CXCL11, and ATM are connected in both cases, suggesting a
close association. In the OS scenario, the CGAS (c6orf150) is the most impactful gene (ac-
cording to the gradients) while in the DSS scenario, CCL5 showed the highest enrichment
of gradients (Figure 4A,B). When predicting the stage, TMEM173 (STING), ATM, IKBKE,
and IL8 showed the highest impact (Figure 4C). Interestingly, IL8 was excluded from the
graph topology by heuristic search but was marked as highly important based on gradients,
suggesting the importance of the IL8 for prediction but not as a part of the cGAS–STING
pathway (Figure 4C). Finally, the graph topology of the stage is drastically different from
the graph topology for OS and DSS, suggesting a change in the cGAS–STING pathway
activation as a tumor becomes more aggressive (stage III and stage IV).

4. Discussion

This study evaluated the performance and explainability of a graph convolutional
network in predicting outcomes based on gene expression data across various cancer types.
Specifically, we focused on the cGAS–STING pathway’s role in tumor immunity and its
impact on patient survival. We evaluated a total of 36 scenarios, encompassing different
cancer types and survival metrics, to comprehensively understand the model’s capabilities.
The study revealed notable variability in model performance across different cancer types
and use cases. THCA for the OS use case (F1 = 0.9921) and BRCA for the DSS use case
(F1 = 0.9445) emerged as the best-performing models, whereas STAD for the stage use
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case (F1 = 0.2755) and SKCM for the DSS use case (F1 = 0.5378) demonstrated the lowest
performance. These variations can be attributed to the underlying biological complexity,
heterogeneity of these cancers, and dependency on cGAS–STING pathway activation.
Non-canonical cGAS–STING pathway activation is associated with a known hallmark
of cancer, DNA damage, and chromosomal instability. The DNA damage is associated
with the DNA damage sensor, the ATM gene [53]. Our results show that ATM is one of
the most important genes when predicting tumor stage in the context of cGAS–STING
pathway topology (Figure 4C), suggesting non-canonical cGAS–STING activation through
ATM DNA damage sensing [53]. Moreover, the best result for predicting tumor stage was
achieved in LUNG (LUAD and LUSC) and HNSC (Figure 3A,B). These results are further
strengthened by past studies as LUAD and LUSC are both primarily induced by smoking,
which is associated with DNA damage and chromosomal instability, while HNSC and
BRCA tumors are associated with copy number abnormalities [54,55]. Furthermore, in
the graph topology for predicting tumor stage, TMEM173 (STING) and ATM are closely
located, while in OS and DSS graph topologies, they are on the opposite sides of the graphs,
suggesting little if no interaction between these two genes. For predicting tumor stage, IL8
was excluded from the graph topology during the heuristic search, yet it was marked as
highly important based on gradients. This suggests that while IL8 is crucial for prediction,
it may not play a direct role in the non-canonical cGAS–STING pathway activation as IL8
often has the role of a downstream activator and provides feedback to the secreting cells to
reinforce senescence signaling [56–59].

This study showcases promising results in the application of graphs for projecting bio-
logical data, especially the genomic pathways, and applying GCN models for transforming
and interpreting complex gene expression data in cancer research. Incorporating integrated
gradients and graph visualization with feature importance into our study was instrumental
in addressing the commonly perceived issue of AI models functioning as “black boxes”,
which is a significant problem in many machine learning applications. By leveraging this
technique, we were able to identify which features were most influential in driving the
model’s predictions, and intuitively display graph visualizations which further comple-
mented the explainability with a clear and interpretable representation of the relationships
and interactions among genes in the cGAS–STING pathway. By employing GCNs, we were
able to not only predict outcomes but also visualize the complex interactions within the
cGAS–STING pathway. The use of GCNs allowed us to mathematically represent these
interactions as graphs, providing a more nuanced understanding of how the pathway
behaves across different cancer types and stages. We also aimed to distinguish between
the canonical and non-canonical activation of the cGAS–STING pathway, particularly in
the context of cancer progression and tumor stage prediction. Our findings offer some
intriguing clues that suggest differences in pathway activation when predicting tumor
stage, specifically, the activation patterns of ATM, TMEM173 (STING), and IL8 genes ob-
served through our analysis. Overall, our approach demonstrates the utility of graph-based
methods in cancer research, particularly in elucidating complex biological pathways like
cGAS–STING. To strengthen the validity and generalizability of our approach, further data
are needed to validate the methodology across multiple cohorts. Expanding the dataset to
include additional modalities, such as mutation data, gene amplifications and deletions,
and methylation profiles, could significantly enhance the model’s robustness. More im-
portantly, integrating these diverse data types into a comprehensive graph structure will
enable a more holistic representation of the underlying biological processes. This approach
would be advantageous as it bypasses the need for the classical statistical analyses that
often involve multiple testing corrections, which can lead to the exclusion of potentially
important findings [16]. By incorporating various data sources directly into the model, we
can utilize advanced interpretability methods such as integrated gradients, DeepLIFT [60],
SHAP (SHapley Additive exPlanations) [27,28], LIME (Local Interpretable Model-agnostic
Explanations) [29], Grad-CAM (Gradient-weighted Class Activation Mapping) [27], and
similar frameworks, to provide a non-parametric assessment of input importance. This
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would not only improve the model’s predictive power but also offer deeper insights into
the contributions of different data types, facilitating more precise and meaningful biological
interpretations, which are crucial for precision medicine. Future research should also focus
on integrating additional omics data and exploring the multiple pathways and their inter-
actions with other immune mechanisms to explore capabilities of this framework on other
use cases. The ability to visualize and quantify these interactions opens up new avenues
for understanding tumor biology and could eventually lead to more targeted therapeutic
strategies that consider the distinct activation states of critical immune pathways.
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across all cancer cohorts included in the study. Figure S3. The bar plot shows the sample count
of each cancer cohort included in the study. Figure S4. The plots display the fitness values over
generations, divided into three groups of 12 scenarios, demonstrating the progress and convergence
of the heuristic search process for different scenarios. Figure S5. Panel (A) shows the training loss
over epochs, split into three groups of 12 scenarios, indicating how well the model learns from the
training data over time. Panel (B) presents the validation loss over epochs, also split into three groups
of 12 scenarios, providing a measure of the model’s performance on unseen data and its ability
to generalize.
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