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Abstract: Operating a powered wheelchair involves significant risks and requires considerable
cognitive effort to maintain effective awareness of the surrounding environment. Therefore, people
with significant disabilities are at a higher risk, leading to a decrease in their social interactions, which
can impact their overall health and well-being. Thus, we propose an intelligent driving-assistance
system that innovatively uses Transformers, typically employed in Natural Language Processing,
for navigation and a retrieval mechanism, allowing users to specify their destinations using natural
language. The system records the areas visited and enables users to pinpoint these locations through
descriptions, which will be considered later in the retrieval phase. Taking a foundational model,
the system is fine-tuned with simulated data. The preliminary results demonstrate the system’s
effectiveness compared to non-assisted solutions and its readiness for deployment on edge devices.
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1. Introduction
1.1. Motivation

Based on data provided by the World Health Organization, approximately 16% of
the global population, which is roughly 1.3 billion individuals, are living with signifi-
cant disabilities [1]. More than 200 million people in this group have mobility problems.
The impact of mobility on social interactions has been the subject of numerous studies [2–5].
These studies demonstrate that limiting mobility lowers social engagement, which in turn
negatively affects overall well-being. For everyday tasks, people with motor impairments
frequently use wheelchairs; some are even unable to push themselves when using a manual
wheelchair. A power wheelchair can greatly increase these people’s level of independence.
Using a motorized wheelchair can pose major challenges for individuals with cognitive
impairments, restricted vision, a limited visual field, spasticity, and tremors. Additionally,
navigating a wheelchair demands significant mental concentration, which can become
exhausting over time and increase the risk of accidents. Technological advancements in
assistive driving systems are opening new frontiers in improving the safety and comfort of
wheelchair navigation [6]. Therefore, we propose an intelligent driving-assistance system
that relies on Transformers and a retrieval mechanism, allowing users to specify their
destinations using natural language. The system records the areas visited and enables users
to pinpoint these locations through descriptions. If the system finds a similarity between
the provided command and the stored description, it will navigate the wheelchair there
while ensuring user safety. Unlike fully automated systems, during navigation, our system
allows the user to take control of the wheelchair at any time and decide when to return
control to the system.

1.2. Related Works

Intelligent driving systems have been extensively investigated over the past decades.
Initially, these systems relied on rule-based policies, but recent years have seen a significant
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shift and boost due to the proliferation of Machine Learning (ML), especially Deep Learning
(DL) techniques. As a result, neural networks are increasingly being integrated into robotic
navigation methods.

1.2.1. Deep Reinforcement Learning and Its Challenges

The notion of Deep Reinforcement Learning (DRL) was initially presented in 2013 [7],
wherein a system was developed to play Atari games by receiving solely positive or neg-
ative rewards contingent upon the actions taken, and since then a growing number of
efforts have focused on developing DRL-based intelligent driving-assistance systems. Var-
ious techniques have been employed, including Deep Q Learning [8–10], Double Deep
Q Learning [11,12], Deep Deterministic Policy Gradient [13,14], and Twin Delayed Deep
Deterministic Policy Gradient (TD3) [15]. Despite the promise that these methods hold,
DRL comes with significant challenges [16]. Since real situations are significantly more
complicated than simulations, problems including sparse rewards, the simulation-to-reality
gap, and poor generalization make it difficult to execute real-world applications effectively.
A well-known challenge arises when systems require multi-modality, such as integrating
image and voice navigation, or multi-objective optimization, like navigating both indoor
and outdoor environments, handling crowded spaces, or facilitating user–system coop-
eration. Crafting a reward function to accommodate these diverse objectives increases
complexity, making it difficult for the training phase to guide the learned policy to a stable
point. Furthermore, all these techniques require large datasets, which are often costly and
time consuming to collect. Available datasets are frequently unsuitable due to differences
in the robots used for data collection.

1.2.2. A New Avenue: Transformers

Over the last couple of years, there has been a shift in fields like vision and Natural
Language Processing from using isolated, limited datasets and models to extensive, univer-
sal models pretrained on vast, diverse datasets. The effectiveness of these models relies on
unrestricted, task-agnostic training paired with high-capacity structures that can assimilate
vast amounts of information from large-scale combined datasets. When a model is able
to assimilate experiences and grasp general language or perception patterns, it can better
apply this comprehension to particular tasks. In order for this to be successful, the tasks
within the dataset need to be sufficiently interconnected to facilitate generalization. This
will enable the model to recognize patterns among tasks that are structurally similar and
carry out new tasks by merging these patterns in creative ways. As a result, there will be
no requirement to gather extensive ad hoc datasets. Successful robotic multi-task learning
necessitates a model with substantial capacity, and the Transformer architecture [17] has
demonstrated its efficacy across various fields. Transformers function as sequence gen-
erators using tokens, where each token is influenced by the previous ones through the
attention mechanism. Reframing this, we can view the Transformer as being influenced by
previously generated actions and states, making it a novel approach to DRL. This method
avoids the need to craft a reward function, instead relying on the attention layer to implic-
itly create it [18]. Several attempts have been made to develop “foundation models” like
RT-1 [19] and ViNT [20], which are general-purpose models trained on multi-task aggregate
datasets. These models exhibit zero-shot capabilities and can be fine-tuned for specific
tasks with significantly smaller datasets compared to training from scratch.

1.3. Main Contributions

The following summarizes this study’s main contributions:

• Fine-tuning the model, achieving up to 29% of the goal-reaching time reduction with
respect to the foundational model on the collected dataset;

• Designing a retrieval mechanism to perform a language-based image search;
• The deployment and evaluation of performances on an embedded device.
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The remaining portions of the article are divided into the following categories: the sim-
ulation environment is described in Section 2; the presentation of the system’s submodules
and structure is described in Section 3; the simulation results in several tested scenarios are
shown in Section 4; a critical review and discussion of the results are presented in Section 5;
and our conclusions and suggestions for further work are presented in Section 6.

2. Simulation Environment and Setup
2.1. DRL-Based Driving Assistance

In our previous research [15], we designed and simulated a DRL-based assisted-
driving system using the TD3 neural network architecture. The objective was to create a
cooperative driving system which supervises the user to prevent collisions. The system
was designed to activate only in dangerous situations, and the suggested actions to avoid
collisions were intended to be minimally disruptive, closely matching the user’s input.
Additionally, as part of motorizing a manual wheelchair through a plug-and-play portable
kit [21], the system needed to rely on easy-to-setup sensors. For this reason, we selected a
2D lidar sensor, which was placed between the two footrests.

2.2. System Definition

From a robotics standpoint, when ignoring the impact of the pivoting front wheels,
we can model a wheelchair as a unicycle, considering only the two rear wheels. As a result,
the movement is governed by the following kinematic equations:

Ωo = (wA − wB)
R
2d

, (1)

Vo = (wA + wB)
R
2

(2)

In this context, d symbolizes the distance between point O, which is considered
the barycenter of the wheelchair, and the rear wheels of the wheelchair. R represents
the radius of the rear wheels, while Vo and Ωo denote the linear and rotational speeds,
respectively, both with respect to the barycenter O. Figure 1 depicts the wheelchair’s
geometrical representation.

Figure 1. Wheelchair’s geometrical representation.

As largely discussed in [15], we are going to take the same 3D wheelchair model used
there. Table 1 provides information about the wheelchair’s dimensions.

The Show Me Once System (SMOS) output will be in the form of waypoints, namely
relative distances between the current position and the next one. The reason behind this
design choice is to let the output be independent with respect to the robot, in our case
the wheelchair. Obviously, the wheelchair low-level controller needs a pair of rotational
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speeds ωA and ωB to let the wheelchair move. For this reason, a higher controller is
instantiated whose task is to translate the waypoints into rotational speeds by making use
of the Model Predictive Control (MPC) technique. Figure 2 provides an overview of the
controller hierarchy.

Table 1. Wheelchair’s components’ dimensions.

Parameter Value

Castor wheel radius—r 0.17 m
Rear wheel width—w 0.05 m
Rear wheel radius—R 0.27 m

Length—L 1.1 m
Width—2 × (d + w) 0.7 m

Figure 2. Schematic representation of the system overview.

MPC is a sophisticated control method that forecasts and optimizes control actions
across a future time horizon by using a mathematical model of the system. In the context of
assisted driving for an electrified wheelchair, MPC is used to determine the optimal inputs
that minimize a predefined cost function, considering both desired performance and the
physical and operational constraints of the system [22,23]. The adoption of MPC offers
numerous advantages over traditional low-level controls, such as proportional–integral–
derivative (PID) control or fixed-rule closed-loop control. Firstly, MPC utilizes predictive
optimization to anticipate the system’s future dynamics, calculating optimal control ac-
tions in advance. This approach allows for the compensation of potential disturbances or
variations in system behavior, ensuring more responsive and precise control. Additionally,
MPC can integrate the Field-Oriented Control (FOC) law, which is particularly effective
for controlling alternating current motors [24,25]. FOC allows for direct control of motor
torque and flux, enhancing system efficiency and the dynamic response. Another signifi-
cant advantage of MPC is its ability to explicitly manage the system’s physical limitations,
such as its current, voltage, and speed limits, ensuring safe and reliable operations while
preventing overloads. The implementation of MPC significantly contributes to making
the driving experience of the electrified wheelchair smoother and more comfortable. MPC
reduces unwanted oscillations and vibrations that can arise from sudden changes in control
inputs, resulting in more stable and continuous movement of the wheelchair. Transitions
between different speeds or directions of movement are handled more gradually, avoiding
abrupt changes in acceleration that could be uncomfortable for the user. Thanks to its
predictive capability, MPC can quickly adapt to changes in operating conditions, such as
variations in terrain or slope, ensuring more consistent and predictable driving and en-
hancing comfort and safety. Furthermore, MPC optimizes the response to user commands,
ensuring the wheelchair follows directions accurately and smoothly and improving the
overall driving experience. The implementation of MPC for the electric wheel motors of
an electrified wheelchair offers numerous advantages in terms of driving smoothness and
quality. Compared to traditional controls, MPC not only optimizes the system’s dynamic
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performance but also contributes to a more stable, comfortable, and safe driving experience,
significantly improving the user’s experience.

2.3. Setup

The logic of the navigation system was constructed utilizing the Robotic Operating
System (ROS), a well-established suite of software libraries and tools intended for the
development of robotic applications. The popular open-source robotics simulator Gazebo
was selected for the simulation because it has a strong physics engine and intuitive pro-
grammatic and graphical user interfaces. PyTorch, a Machine Learning framework widely
used in many domains, such as robotics and Natural Language Processing, was used to
create the neural networks. The fine-tuning of the foundational model was performed
on a server equipped with 4 NVIDIA Tesla T4 [26], 264 GB of RAM, and an AMD EPYC
7301 16-core CPU [27]. A PC with an Intel Core i7-9750 H CPU, 16 GB of RAM, and an
NVIDIA GTX 2080 graphics card was used to deploy the SMOS [28]. An NVIDIA Jetson
Nano 2GB Developer Kit was used [29] to measure the inference time of the SMOS. For
testing, we selected a driver without disabilities. Four trials are conducted: the first assesses
the effectiveness of image retrieval and the ability of the SMOS to guide the wheelchair
to the target; the second examines the relationship between the topology graph and sys-
tem performance, noting that although the SMOS can operate without prior knowledge
by generating the graph while attempting to reach the target, its performance improves
when a prebuilt graph is provided; the third investigates the usability of the system in the
presence of moving obstacles and ramps; and the fourth evaluates the system’s usability on
an embedded or resource-constrained device. Every test was run through a minimum of
three times, and the figures that are shown are the average of the data that were gathered.
The standard deviation is also provided where applicable. To ensure statistical significance,
the test for collecting the inference time counted 100 executions.

3. Show Me Once System Architecture
3.1. Workflow

The SMOS architecture consists of three modules: (i) Wheelchair Navigator, responsi-
ble for guiding the wheelchair toward the goal image; (ii) Goal Retrieval, offering the user
the possibility to specify the goal by providing a description; and (iii) Episodic Memory,
responsible for mitigating the issue of long-distance goals. An overview of the architecture
can be found in Figure 3.

Before deep-diving into the details of each module, we start by describing the log-
ical workflow. To make it easier, we will specify it via a pseudo-code algorithm—see
Algorithm 1.

Algorithm 1 Pseudo-code for SMOS workflow.

description← get_description_ f rom_user()
goal_image← Goal_Retrieval_module(description)
current_observation← get_current_observation()
while current_observation ̸= goal_image do

proximity_goal← Episodic_Memory_module(
goal_image,
current_observation)

observations← get_observations()
H_waypoints, dynamical_distance←Wheelchair_Navigator_module(

observations,
proximity_goal)

guide_wheelchair(H_waypoints)
end while
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In particular, the users provide the description of the target place they would like to
reach. Hence, the Goal Retrieval module processes it and yields an image whose description
is the most similar to the one provided by the user. If the target location is determined
to be distant based on the current observation, the Episodic Memory module produces a
proximity goal, which eventually coincides with the actual goal. Using this proximity goal
along with current and past observations, the Wheelchair Navigator module suggests the
next H waypoints to reach the proximity goal, along with a dynamic distance. The controller
then guides the wheelchair to these waypoints. The generation of new waypoints ceases
once the current observation is, within certain thresholds, similar to the goal image.

Figure 3. Show Me Once System structure overview with submodules’ details.

3.2. Insights

Let us now deep-dive into each module. The Wheelchair Navigator module is an
image–goal navigation system based on ViNT [20] and adapted for wheelchair navigation.
The inputs are composed of a subgoal image os and the P + 1 visual observations o[t:t−P]—
present and P past ones. The results consist of two components: the amount of time steps
required to achieve the subgoal—named dynamic distance—and a series of H upcoming
waypoints that guide the wheelchair toward the subgoal. The input includes the P + 1
distinct observation images and the superimposition of the current observation ot and the
subgoal image os. This approach provides a brief summary of previous locations as context
using the P + 1 observation images, and it also provides a relative measurement of the
disparity between the current observation and the subgoal. The core of the module is a
Transformer, which requires tokenized input. The tokenization process involves encoding
the images using an EfficientNet-B0 [30] encoder. An input image of 85× 64× 3 is converted
into a flattened feature vector ϕ(oi). To reduce the vector components and thus reduce the
computational effort required to process them, the feature vector is compressed through a
feed-forward neural network to produce a token of 512 elements for each image. Given
the different purposes of the P + 1 observations and the superimposition of the current
observation ot and the subgoal image os, these two groups use distinct sets of EfficientNet-
B0 encoders and feed-forward neural networks. At this point, the P + 2 tokens are flattened
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and preprocessed through positional encoding to retain information about their order. They
are then ready to be processed by the Transformer backbone. More precisely, the core is
made up of a Transformer that only encodes, containing nL encoder blocks, each consisting
of traditional operations such as multi-head attention with nH heads and a feed-forward
layer with dFF hidden units. Uniquely, in this implementation, normalization is performed
before each of these operations rather than after.

In theory, we could input the goal image og to the first submodule and let it guide the
wheelchair toward the goal. However, in practice, when the goal is far from the current posi-
tion, the module struggles to effectively guide the wheelchair to the destination. In order to
tackle this issue, the Episodic Memory module upholds an Episodic Memory structured as
a topological graph, offering short-term subgoals to reach remote locations. The topological
graph contains nodes representing past environmental observations, and their connections
are determined by the distance predicted by the previous module. Subsequently, subgoals
are chosen using the A* algorithm [31].

Finally, the Goal Retrieval module is responsible for providing the goal image og.
To allow the users to describe in natural language the goal they would like to achieve,
a text-based image search is implemented. Exploiting the topological graph built during
navigation, the user can pinpoint a specific location by providing a description. The descrip-
tion is then transformed into an embedding vector by the Universal Sentence Encoder [32]
text-embedding model. The embedding vector is then stored in a vector database. When
the user wants to reach a specific place, by providing a description of the target, this will be
turned into an embedding vector and a similarity search will be performed. In our case,
by calculating the cosine similarity between the stored goal descriptions and the newly
provided description, the closest stored description that reports a similarity score above the
s threshold will be selected and the associated image will become the goal image.

3.3. Fine-Tuning

Our environment in which the SMOS is going to operate is simulated, unlike the envi-
ronment in which the module guiding the wheelchair was originally trained. For this reason,
this module requires fine-tuning. We achieve this by using the same training-objective func-
tion employed in training the foundational model, as detailed in the following equation:

L(ϕ, ψ, f ) = EτEtEd[λ log p(d | f (ψ(o)t:t−P, ϕ(ot, os)) + log p(â | f (ψ(o)t:t−P, ϕ(ot, os))] (3)

Specifically, given the dataset D, in every training epoch, we select τ, a minibatch
of trajectories. Subsequently, we pick a random subgoal os := ot+d, where d is uniformly
sampled from the range [lmin, lmax] and P consecutive observations create the context ot:t−P.
Additionally, we extract the H future actions â := at:t+H from the dataset and use them,
along with d, as labels. Since the model will output a and d, we use a maximum likelihood
objective to adjust the parameters involved in their generation, namely f (.) given by the
Transformer and ψ(.) and ϕ(.) for, respectively, the observation tokenizer and the goal
tokenizer, using λ to balance the losses. We collected approximately 1.5 h of simulated
trajectories in several environments, including speed and odometry information. Camera
images were sampled at a rate of 1 Hz, forming our dataset. Examples of observations are
in Figure A1.

3.4. Waypoints Generations

The pretrained navigator module was trained on robots of various sizes, speeds,
and dynamics. To accommodate this diversity, an embodiment-agnostic action space was
selected. Specifically, relative waypoints are used as the action space instead of low-level
controls. To account for speed variance, these waypoints are normalized based on each
robot’s top speed. During deployment, the Wheelchair Navigator module receives P + 1
visual observations and a subgoal, which is determined by the execution of the A* algorithm
over the topological graph. The dynamical distance d is used to update the topological
graph, while the actions â guide the wheelchair toward the subgoal. A robot-specific
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controller un-normalizes and tracks these waypoints using low-level controls. Once the
model reaches the subgoal, a new iteration begins, a new subgoal is selected, and the
process continues until the final goal og is reached.

3.5. Software Infrastructure

The software infrastructure is made up of several elements that are spread through-
out the different levels of the technology stack. The Wheelchair Navigator module was
implemented using PyTorch [33] and consists of the tokenizers and Transformer classes.
Specifically, they employ the EfficientNet and TransformerEncoderLayer PyTorch imple-
mentations, respectively. The Goal Retrieval module is composed of a sentence embedder
and a vector database. For the sentence embedder, the Universal Sentence Encoder [32]
text-embedding model was employed due to its good performance and open-source avail-
ability. For the vector database, Chroma [34] was selected because of its native support for
embedding storage and open-source availability. However, other solutions can be used for
both the embedding model and vector database. The logic implementation utilized the
LangChain framework [35]. The Wheelchair Navigator module yields waypoints. To trans-
form waypoints into barycenter speeds for wheelchair motion, a PD controller using MPC is
implemented. This is identified as the H-Controller due to its higher-level nature compared
to the L-Controller, which effectively considers the dynamics of the wheelchair and its
actuators. To realize the tasks related to wheelchair navigation, the ROS was employed.
For safety reasons, while the wheelchair is guided by the SMOS, it can still be controlled by
the user or recovery procedures thanks to collision sensors. To avoid command overlap,
the wheelchair controller employs a speed multiplexer that selects the highest-priority
available command: in order, recovery procedures, user input, and H-Controller output. A
simulator was used for the fine-tuning and testing of the Wheelchair Navigator module.
In particular, Gazebo was chosen because of the smooth integration in the ROS, which was
used to implement the wheelchair-navigation tasks.

4. Simulations

The Wheelchair Navigator module relies on the ViNT [20] foundational model. The foun-
dational model was trained on real observation data and achieved promising results. How-
ever, our environment is a simulated one, so the vanilla (i.e., without fine-tuning) version
will not perform best. For this reason, we performed a fine-tuning of the model based
on three different environments filled with obstacles with different shapes and dynamics,
as depicted in Figure 4.

(a) First environment. (b) Second environment. (c) Third environment.

Figure 4. Environments used for SMOS fine-tuning.

We collected observations at the frequency of 1 Hz for a total of approximately 1.5 h.
To facilitate generalization, Gaussian noise was added to the sensors. To validate the
effectiveness of the fine-tuned system, we decided to compare the SMOS with and without
fine-tuning. For the sake of comparison, we provide both systems with the same topological
graph. To be able to compare them, we collect the following metrics:

• Goal-reaching time—the time needed from the instant in which the system receives
the goal image till the instant in which the wheelchair reaches the goal;
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• Collision risk—the number of occurred collisions.

For each environment depicted in Figure 5, the metrics are calculated over three
executions. Table 2 presents the test results.

(a) First environment. (b) Second environment. (c) Third environment.

Figure 5. In all the environments, point A and B represent, respectively, the starting position and
the location where the target image (green frame) was captured. The system is provided with the
target image as input, and the objective is to observe how the system navigates the wheelchair from
point A to point B. The tests are arranged in order of increasing difficulty, from the easiest to the
most challenging.

Table 2. Result of first experiment.

Vanilla Fine-Tuned

First test Goal-reaching time [s] 43.1 ± 2.3 37.6 ± 1.4
Max collision 0 0

Second test Goal-reaching time [s] 61.1 ± 3.7 52.1 ± 1.6
Max collision 0 0

Third test Goal-reaching time [s] 84.8 ± 6.9 60.3 ± 2.1
Max collision 2 0

Trajectory samples can be found in Figure A2. The effectiveness of the SMOS depends
highly on the Episodic Memory module. A rich topological graph allows the system to
better plan the trajectory, and sometimes, by traversing the graph, it could even find that
shortcuts spawned due to the obstacles’ disposition change that was not present during
the first exploration. However, it comes with the storage price. The amount of images
that can be stored depends on the storage resource availability. Defining the performance
of the system as how fast the wheelchair is reaching the goal, we take as reference the
performance obtained with a “rich” topological graph. The definition of “rich” is not easy
to measure since it depends on the environment. However, we tried to estimate it for the
environments depicted in Figure 5. We then created the topological graphs by navigating
in those environments by randomly generating waypoints for a variable amount of time
t ∈ [0, Ẽ], where Ẽ depends on the environment. The size S of the topological graph is
linearly dependent on the time t according to the following equation:

S = a f × (is + eb)× t (4)

where a f is the acquisition frequency, is is the image size, eb is the embedding size of the
transformed description, and t is the time that elapsed since the beginning of the graph
creation. Once obtained, taking the fine-tuned SMOS, we instantiate one system per each
topological graph and give them the same goal. We then measure the performance in
terms of goal-reaching time with respect to the reference one, namely the one with a “rich”
topological graph. Figure 6 presents the results.
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(a) Results obtained in the first environment. (b) Results obtained in the second environment.

(c) Results obtained in the third environment.

Figure 6. Results related to the performance against the topological graph experiment. For all
three graphs, the Y-axis shows the ratio of the current performance, given by a specific topological
graph, to the performance provided by a “rich” topological graph for that environment. The X-axis
represents the time spent building the topological graph. The orange line indicates the performance
reference at t = Ẽ, while the green line marks t = E∗, the point at which the system reaches 80% of
the performance of a “rich” graph.

Another important feature to test is the ability to navigate outdoors. In outdoor
scenarios, the presence of moving objects and ramps may compromise the safety of the
system. For this reason, we decided to test the system against both obstacles. By using the
fine-tuned system, we tested it in the environments depicted in Figure 7.

(a) Moving-objects environment. (b) Environment with ramps.

Figure 7. In all the environments, points A and B(x) represent, respectively, the starting position and
the location where the target image was captured. The system is provided with the target image
as input, and the objective is to observe if the system is able to avoid collisions. For the moving
objects, each object moves according to the arrows. For the environment with ramps, multiple goals
are evaluated.

The result we are interested in is the ability to reach the goal and to avoid collisions.
For the moving-obstacles test, we analyzed the system’s behavior as the obstacles’ speed
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varied. Regarding the environment with ramps, we tested the system with and without a
simulation constraint to ban areas in the proximity of the curbs. The results can be found in
Figure 8.

(a) (b)

Figure 8. Moving-obstacles environment: the number of collisions tends to be infinite as the speed
exceeds roughly 4 m/s (red area). Ramps environment: the red trajectory terminates with an
overturning; the orange one is related to the usage of banned areas around curbs. (a) Moving objects’
graph result. (b) Trajectories in the environment with ramps.

Ultimately, the goal is to deploy the system on a real wheelchair. For this reason,
we decided to compare the performances of the system deploying it on an unconstrained
device [28] and on a constrained device, in particular an NVIDIA Jetson Nano 2 GB
Developer Kit [29]. As a metric, we collected the inference time of the SMOS. We deployed
only the Wheelchair Navigator module because the execution times of the Goal Retriever
and the Episodic Memory module are a few orders of magnitude less than the Wheelchair
Navigator itself. The result of the test can be found in Table 3.

Table 3. Inference execution results across various computing devices.

Computing Device Execution Time

Laptop (with GPU) 0.025 ± 0.015 ms
Jetson Nano 0.028 ± 0.047 ms

5. Results and Discussion

The investigations looked into several facets of the SMOS. The first experiment showed
how the fine-tuning procedure affected performance in three different situations, ranging
from the easiest to the most difficult, by comparing the performance of the basic system
with the fine-tuned version. Notably, the fine-tuned system saw average reductions in
goal-reaching time of 13%, 15%, and 29%, which can be attributed to smoother navigation
and better planning. In terms of collision avoidance, both systems performed well in the
first two environments; however, only the fine-tuned system achieved the zero-collision
objective in the third environment. This improvement is due to the domain mismatch in
the vanilla system, trained on real images, and the fine-tuned ones, trained on a simulated
environment. Despite this, the vanilla system still performed relatively well, demonstrating
the robustness of the foundational model in providing good wheelchair navigation and
sufficient collision avoidance. A notable feature of the system is related to the fine-tuning
process and its connection to the concept of a foundational model: thanks to its architecture
and effective pretraining phase, the fine-tuning process achieved excellent results with only
1.5 h of collected observations.

In the second experiment, the impact of the topological graph on performance in
terms of goal-reaching time was analyzed. Due to the linear relationship between the
graph and its size, the longer the system operates, the larger the topological graph becomes,
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enhancing system performance. However, storing the topological graph incurs a storage
cost as it requires saving snapshots collected via the on-board camera along with some
odometry information. Depending on hardware availability, a tradeoff may be necessary.
The results indicate that while the exact behavior depends on the environment, a trend is
evident. The most significant performance enhancement occurs when the system transitions
from having no graph to having some connected nodes. Subsequently, the impact of the
topological graph on performance increases at a slower rate, suggesting that in cases of
storage limitation, a proper tradeoff between target performance and storage usage should
be determined, likely leaning toward fewer nodes. For reference, aiming for a balance
between performance and storage, the system often reaches 80% of the performance that a
rich graph would provide at a time t = E∗, which depends on the environment’s complexity
but is on average less than half of t = Ẽ, potentially saving at least 50% in storage space.

The third experiment assessed the system’s usability in outdoor environments. The re-
sults highlighted three key areas. In the left-most area, where obstacles moved at speeds
below 3.2 m/s, the system reported no collisions. This is a positive outcome, particularly
considering the worst-case scenario of a pedestrian moving at a maximum speed of 1.5 m/s
walking toward the wheelchair, which navigates at a maximum speed of 1 m/s. However,
as obstacle speed increases, the system begins to report some collisions, entering the more
dangerous second area. As expected, there is an upper threshold beyond which the sys-
tem can no longer prevent collisions, and this area should be avoided. This threshold is
determined by the combination of the maximum speeds (both linear and angular) set on
the controller and the operating rate of the Wheelchair Navigator module. In theory, this
limit could be extended by increasing these values, but safety considerations and available
computing resources must be taken into account. Overall, the system appears to have
inherited the ability to avoid moving obstacles from the foundational model. For the test
involving ramps, the system without restrictions reported one instance of overturning.
In contrast, the system with banned areas exhibited an excellent performance, with no
collisions. Finding the reason why the system struggles to detect these kinds of obstacles is
far from simple. Certainly, these kinds of obstacles are not present in the fine-tuning we
performed and are rare in the foundational model dataset. Further investigation is required,
but promising results from previous work [6] might support the decision to incorporate a
banned-area constraint.

Regarding inference time, the fourth experiment highlighted the system’s suitability
for deployment on embedded devices. However, it is important to note that even though
the embedded device used has limited resources, it is still equipped with a GPU. Empirical
evidence suggests that for a smooth user experience, the Wheelchair Navigator module
should run at a frequency of at least 6 Hz. The low inference time then offers a good margin
for model improvement.

6. Conclusions

Traditional Deep Reinforcement Learning often struggles with designing reward
functions for multi-objective optimization. The recent usage of the Transformer in the
reinforcement learning framework prefigures a significant advancement in this domain.
The Transformer architecture enables it to “absorb” policies through a composite dataset,
allowing fine-tuning for downstream applications with significantly less data. This inno-
vation poses the basis for foundational models in robotics, particularly for wheelchairs,
enabling the development of more effective and versatile policies. This study demonstrates
how a foundational model like ViNT can be fine-tuned to assist wheelchair navigation,
creating an assistive driving system where users can specify their target location through
a description. While the results are preliminary, they are promising. However, there are
limitations, as the testing did not include people with disabilities and was conducted only
in a simulated environment. Future research will address these limitations and expand
comparisons with existing navigation systems.
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Appendix A

Parameters list for SMOS in the testing phase.

Table A1. Parameters of SMOS employed in simulation.

Parameters Value

P 5
H 5
nL 2
nH 2
dFF 4
lmin −3
lmax 3

λ 0.5

Extra information about the fine-tuning procedure.

Figure A1. Sample of images collected during training.

https://drive.google.com/file/d/1ckrceGb5m_uUtq3pD8KHwnqtJgPl6kF5/view?usp=drive_link
https://drive.google.com/file/d/1ckrceGb5m_uUtq3pD8KHwnqtJgPl6kF5/view?usp=drive_link
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Appendix B

Additional content regarding the first experiment execution.

Figure A2. Trajectory samples during the experiment, which compared the fine-tuned system (W_FT)
against the vanilla one (WO_FT).
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