Examining the Global Patent Landscape of Artificial Intelligence-Driven Solutions for COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Review
2.2. Bibliometrics and Network Analysis
2.3. Limitations of the Study
3. Results
3.1. Systematic Review
3.2. Bibliometrics and Network Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Russell, S.; Norvig, P. Artificial Intelligence a Modern Approach, 4th ed.; Pearson Education, Inc.: London, UK, 2020; ISBN 978-0134610993. [Google Scholar]
- Meskó, B.; Görög, M. A Short Guide for Medical Professionals in the Era of Artificial Intelligence. NPJ Digit. Med. 2020, 3, 126. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Kendall, F.; Khozin, S.; Goosen, R.; Hu, J.; Laramie, J.; Ringel, M.; Schork, N. Artificial Intelligence and Machine Learning in Clinical Development: A Translational Perspective. NPJ Digit. Med. 2019, 2, 69. [Google Scholar] [CrossRef] [PubMed]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the Game of Go without Human Knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in Health and Medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef]
- Yin, J.; Ngiam, K.Y.; Teo, H.H. Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review. J. Med. Internet Res. 2021, 23, e25759. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Wang, D.; Tong, X.; Liu, T.; Zhang, S.; Huang, J.; Zhang, L.; Chen, L.; Fan, H.; et al. Artificial Intelligence for COVID-19: A Systematic Review. Front. Med. 2021, 8, 704256. [Google Scholar] [CrossRef]
- Oyewole, A.O.; Barrass, L.; Robertson, E.G.; Woltmann, J.; O’keefe, H.; Sarpal, H.; Dangova, K.; Richmond, C.; Craig, D. Covid-19 Impact on Diagnostic Innovations: Emerging Trends and Implications. Diagnostics 2021, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Ge, Q.; Li, S.; Xiong, M. Artificial Intelligence Forecasting of Covid-19 in China. Int. J. Educ. Excell. 2020, 6, 71–94. [Google Scholar] [CrossRef]
- Thomas, S.; Abraham, A.; Baldwin, J.; Piplani, S.; Petrovsky, N. Artificial Intelligence in Vaccine and Drug Design. In Vaccine Design; Thomas, S., Ed.; Humana: New York, NY, USA, 2022; pp. 131–146. [Google Scholar]
- Miao, Y.; Song, J.; Lee, K.; Jin, C. Technological Catch-up by East Asian Firms: Trends, Issues, and Future Research Agenda. Asia Pac. J. Manag. 2018, 35, 639–669. [Google Scholar] [CrossRef]
- Suominen, A.; Toivanen, H.; Seppänen, M. Firms’ Knowledge Profiles: Mapping Patent Data with Unsupervised Learning. Technol. Forecast. Soc. Change 2017, 115, 131–142. [Google Scholar] [CrossRef]
- Lee, C.; Kang, B.; Shin, J. Novelty-Focused Patent Mapping for Technology Opportunity Analysis. Technol. Forecast. Soc. Change 2015, 90, 355–365. [Google Scholar] [CrossRef]
- Aharonson, B.S.; Schilling, M.A. Mapping the Technological Landscape: Measuring Technology Distance, Technological Footprints, and Technology Evolution. Res. Policy 2016, 45, 81–96. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Arshad, Z.; Trippe, A.; Collins, G.S.; Brindley, D.A.; Carr, A.J. The Reporting Items for Patent Landscapes Statement. Nat. Biotechnol. 2018, 36, 1043–1047. [Google Scholar] [CrossRef]
- Braga, L.A.M.; Mota, F.B. Early Cancer Diagnosis Using Lab-on-a-Chip Devices: A Bibliometric and Network Analysis. COLLNET J. Scientometr. Inf. Manag. 2021, 15, 163–196. [Google Scholar] [CrossRef]
- Abdel-Jaber, H.; Devassy, D.; Al Salam, A.; Hidaytallah, L.; EL-Amir, M. A Review of Deep Learning Algorithms and Their Applications in Healthcare. Algorithms 2022, 15, 71. [Google Scholar] [CrossRef]
- Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.-L.; Chen, S.-C.; Iyengar, S.S. A Survey on Deep Learning. ACM Comput. Surv. 2019, 51, 1–36. [Google Scholar] [CrossRef]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal Deep Learning LSTM Model for Electric Load Forecasting Using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches. Energies 2018, 11, 1636. [Google Scholar] [CrossRef]
- Tiwari, S.; Chanak, P.; Singh, S.K. A Review of the Machine Learning Algorithms for Covid-19 Case Analysis. IEEE Trans. Artif. Intell. 2023, 4, 44–59. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, B. Machine Learning Algorithms—A Review. Int. J. Sci. Res. 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Ben-david, S.; Shalev-Shwartz, S. Understanding Machine Learning-Theory Algorithms; Cambridge University Press: New York, NY, USA, 2014; ISBN 9781107057135. [Google Scholar]
- Mah, P.M.; Skalna, I.; Muzam, J. Natural Language Processing and Artificial Intelligence for Enterprise Management in the Era of Industry 4.0. Appl. Sci. 2022, 12, 9207. [Google Scholar] [CrossRef]
- Chang, C.-W.; Lee, H.-W.; Liu, C.-H. A Review of Artificial Intelligence Algorithms Used for Smart Machine Tools. Inventions 2018, 3, 41. [Google Scholar] [CrossRef]
- Jakhar, D.; Kaur, I. Artificial Intelligence, Machine Learning and Deep Learning: Definitions and Differences. Clin. Exp. Dermatol. 2020, 45, 131–132. [Google Scholar] [CrossRef] [PubMed]
- Robins, G.; Pattison, P.; Kalish, Y.; Lusher, D. An Introduction to Exponential Random Graph (P*) Models for Social Networks. Soc. Netw. 2007, 29, 173–191. [Google Scholar] [CrossRef]
- Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Secinaro, S.; Calandra, D.; Secinaro, A.; Muthurangu, V.; Biancone, P. The Role of Artificial Intelligence in Healthcare: A Structured Literature Review. BMC Med. Inform. Decis. Mak. 2021, 21, 125. [Google Scholar] [CrossRef]
- Vaishya, R.; Javaid, M.; Khan, I.H.; Haleem, A. Artificial Intelligence (AI) Applications for COVID-19 Pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 337–339. [Google Scholar] [CrossRef]
- Riccaboni, M.; Verginer, L. The Impact of the COVID-19 Pandemic on Scientific Research in the Life Sciences. PLoS ONE 2022, 17, e0263001. [Google Scholar] [CrossRef]
- Yuan, X.; Li, X. Pledging Patent Rights for Fighting Against the COVID-19: From the Ethical and Efficiency Perspective. J. Bus. Ethics 2022, 179, 683–696. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhang, X.; Hu, Y.; Chen, W.; Kong, X.; Yao, P.; Cong, J.; Zuo, H.; Wang, J.; Li, X.; et al. What, Where, When and How of COVID-19 Patents Landscape: A Bibliometrics Review. Front. Med. 2022, 9, 925369. [Google Scholar] [CrossRef] [PubMed]
- de Melo, D.R.A.; Vilela, D.C.J.; Rodrigues, L.G.; Pereira, K.S.D. Applications of Artificial Intelligence to Combat COVID-19: A Technology Prospection Based on Patents. Rev. Bras. Inov. 2023, 22, e023021. [Google Scholar] [CrossRef]
- Wang, L.; Lin, Z.Q.; Wong, A. COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images. Sci. Rep. 2020, 10, 19549. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Mpesiana, T.A. Covid-19: Automatic Detection from X-Ray Images Utilizing Transfer Learning with Convolutional Neural Networks. Phys. Eng. Sci. Med. 2020, 43, 635–640. [Google Scholar] [CrossRef]
- Ardakani, A.A.; Kanafi, A.R.; Acharya, U.R.; Khadem, N.; Mohammadi, A. Application of Deep Learning Technique to Manage COVID-19 in Routine Clinical Practice Using CT Images: Results of 10 Convolutional Neural Networks. Comput. Biol. Med. 2020, 121, 103795. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M. Pandemic Prevention: Lessons from COVID-19. Encyclopedia 2021, 1, 433–444. [Google Scholar] [CrossRef]
- Malav, A.; Kadam, K.; Kamat, P. Prediction of Heart Disease Using K-Means and Artificial Neural Network as Hybrid Approach to Improve Accuracy. Int. J. Eng. Technol. 2017, 9, 3081–3085. [Google Scholar] [CrossRef]
- Awotunde, J.B.; Folorunso, S.O.; Jimoh, R.G.; Adeniyi, E.A.; Abiodun, K.M.; Ajamu, G.J. Application of Artificial Intelligence for COVID-19 Epidemic: An Exploratory Study, Opportunities, Challenges, and Future Prospects. In Artificial Intelligence for COVID-19; Oliva, D., Hassan, S.A., Mohamed, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 47–61. [Google Scholar]
- Alloghani, M.; Al-Jumeily, D.; Aljaaf, A.J.; Khalaf, M.; Mustafina, J.; Tan, S.Y. The Application of Artificial Intelligence Technology in Healthcare: A Systematic Review. In Applied Computing to Support Industry: Innovation and Technology; Khalaf, M., Al-Jumeily, D., Lisitsa, A., Eds.; Springer: Cham, Switzerland, 2020; pp. 248–261. [Google Scholar]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A Survey on Deep Learning in Medical Image Analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- The Lancet India’s COVID-19 Emergency. Lancet 2021, 397, 1683. [CrossRef]
- Kumar, V.M.; Pandi-Perumal, S.R.; Trakht, I.; Thyagarajan, S.P. Strategy for COVID-19 Vaccination in India: The Country with the Second Highest Population and Number of Cases. NPJ Vaccines 2021, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Paul, Y.; Hickok, E.; Sinha, A.; Tiwari, U.; Mohandas, S.; Ray, S.; Hickok, E.; Bidare, P.M. Artificial Intelligence in the Healthcare Industry in India. Available online: https://cis-india.org/internet-governance/files/ai-and-healtchare-report (accessed on 2 May 2024).
- Yao, X.; Wang, X.; Wang, S.H.; Zhang, Y.D. A Comprehensive Survey on Convolutional Neural Network in Medical Image Analysis. Multimed. Tools Appl. 2022, 81, 41361–41405. [Google Scholar] [CrossRef]
- Mohammad-Rahimi, H.; Nadimi, M.; Ghalyanchi-Langeroudi, A.; Taheri, M.; Ghafouri-Fard, S. Application of Machine Learning in Diagnosis of COVID-19 Through X-Ray and CT Images: A Scoping Review. Front. Cardiovasc. Med. 2021, 8, 638011. [Google Scholar] [CrossRef] [PubMed]
- Keerthana, D.; Venugopal, V.; Nath, M.K.; Mishra, M. Hybrid Convolutional Neural Networks with SVM Classifier for Classification of Skin Cancer. Biomed. Eng. Adv. 2023, 5, 100069. [Google Scholar] [CrossRef]
Set | Query | Timespan | Records of Patents |
---|---|---|---|
#4 | #1 NOT #2 | 83 | |
#3 | #1 OR #2 | 170 | |
#2 | TI = ((“Artificial Intelligence” OR “Computational Intelligence” OR “Machine Intelligence” OR “Computer Reasoning” OR “Computer Vision System*” OR “Machine learning” OR “Transfer Learning” OR “Deep Learning” OR “Hierarchical Learning”) AND (“COVID-19” OR “SARS-CoV-2” OR “2019 Novel Coronavirus” OR “2019-nCoV” OR “Coronavirus Disease 2019” OR “Severe Acute Respiratory Syndrome Coronavirus 2” OR “SARS Coronavirus 2”)) | 1 January 2020 to 31 December 2022 (Publication Date) | 87 |
#1 | TI = (“Artificial Intelligence” OR “Computational Intelligence” OR “Machine Intelligence” OR “Computer Reasoning” OR “Computer Vision System*” OR “Machine learning” OR “Transfer Learning” OR “Deep Learning” OR “Hierarchical Learning”) AND TS = (“COVID-19” OR “SARS-CoV-2” OR “2019 Novel Coronavirus” OR “2019-nCoV” OR “Coronavirus Disease 2019” OR “Severe Acute Respiratory Syndrome Coronavirus 2” OR “SARS Coronavirus 2”) | 1 January 2020 to 31 December 2022 (Publication Date) | 170 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota, F.; Braga, L.A.M.; Cabral, B.P.; Ferreira, N.C.d.S.; Pinto, C.D.; Coelho, J.A.; Alves, L.A. Examining the Global Patent Landscape of Artificial Intelligence-Driven Solutions for COVID-19. Mach. Learn. Knowl. Extr. 2024, 6, 1619-1632. https://doi.org/10.3390/make6030078
Mota F, Braga LAM, Cabral BP, Ferreira NCdS, Pinto CD, Coelho JA, Alves LA. Examining the Global Patent Landscape of Artificial Intelligence-Driven Solutions for COVID-19. Machine Learning and Knowledge Extraction. 2024; 6(3):1619-1632. https://doi.org/10.3390/make6030078
Chicago/Turabian StyleMota, Fabio, Luiza Amara Maciel Braga, Bernardo Pereira Cabral, Natiele Carla da Silva Ferreira, Cláudio Damasceno Pinto, José Aguiar Coelho, and Luiz Anastacio Alves. 2024. "Examining the Global Patent Landscape of Artificial Intelligence-Driven Solutions for COVID-19" Machine Learning and Knowledge Extraction 6, no. 3: 1619-1632. https://doi.org/10.3390/make6030078
APA StyleMota, F., Braga, L. A. M., Cabral, B. P., Ferreira, N. C. d. S., Pinto, C. D., Coelho, J. A., & Alves, L. A. (2024). Examining the Global Patent Landscape of Artificial Intelligence-Driven Solutions for COVID-19. Machine Learning and Knowledge Extraction, 6(3), 1619-1632. https://doi.org/10.3390/make6030078