Global and Local Interpretable Machine Learning Allow Early Prediction of Unscheduled Hospital Readmission
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Data Collection
2.3. Outcome Variable
2.4. Statistical Analyisis
2.5. Machine Leaning Procedure
2.5.1. Data Cleaning and Pre-Processing
2.5.2. Machine Learning Analysis
3. Results
3.1. Preliminary Analysis
3.2. Prediction Models of Unscheduled Hospital Readmission
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guntaka, S.M.; Tarazi, J.M.; Chen, Z.; Vakharia, R.; Mont, M.A.; Roche, M.W. Higher Patient Complexities Are Associated with Increased Length of Stay, Complications, and Readmissions After Total Hip Arthroplasty. Surg. Technol. Int. 2021, 38, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A New Method of Classifying Prognostic Comorbidity in Longitudinal Studies: Development and Validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- De Groot, V.; Beckerman, H.; Lankhorst, G.J.; Bouter, L.M. How to Measure Comorbidity: A Critical Review of Available Methods. J. Clin. Epidemiol. 2003, 56, 221–229. [Google Scholar] [CrossRef]
- Ministerio de Sanidad Ministerio de Sanidad—Sanidad En Datos—Registro de Altas de Los Hospitales Del Sistema Nacional de Salud. CMBD. Available online: https://www.sanidad.gob.es/estadEstudios/estadisticas/cmbdhome.htm (accessed on 28 June 2024).
- Pohjanpää, M.; Ojala, R.; Luukkaala, T.; Gissler, M.; Tammela, O. Association of Early Discharge with Increased Likelihood of Hospital Readmission in First Four Weeks for Vaginally Delivered Neonates. Acta Paediatr. Int. J. Paediatr. 2022, 111, 1144–1156. [Google Scholar] [CrossRef]
- Xue, H.T.; Stanley-Baker, M.; Kong, A.W.K.; Li, H.L.; Goh, W.W. Bin Data Considerations for Predictive Modeling Applied to the Discovery of Bioactive Natural Products. Drug Discov. Today 2022, 27, 2235–2243. [Google Scholar] [CrossRef] [PubMed]
- Sutter, T.; Roth, J.A.; Chin-Cheong, K.; Hug, B.L.; Vogt, J.E. A Comparison of General and Disease-Specific Machine Learning Models for the Prediction of Unplanned Hospital Readmissions. J. Am. Med. Inform. Assoc. 2021, 28, 868–873. [Google Scholar] [CrossRef]
- Habehh, H.; Gohel, S. Machine Learning in Healthcare. Curr. Genom. 2021, 22, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Han, W.; Yao, X.; Xue, J.J.; Li, Z.; Li, Y. Developing a Machine Learning Model for Detecting Depression, Anxiety, and Apathy in Older Adults with Mild Cognitive Impairment Using Speech and Facial Expressions: A Cross-Sectional Observational Study. Int. J. Nurs. Stud. 2023, 146, 104562. [Google Scholar] [CrossRef] [PubMed]
- Sammut, S.J.; Crispin-Ortuzar, M.; Chin, S.F.; Provenzano, E.; Bardwell, H.A.; Ma, W.; Cope, W.; Dariush, A.; Dawson, S.J.; Abraham, J.E.; et al. Multi-Omic Machine Learning Predictor of Breast Cancer Therapy Response. Nature 2022, 601, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.; Howie-Esquivel, J.; Vlahov, D. Readmission Risk Factors after Hospital Discharge Among the Elderly. Popul. Health Manag. 2012, 15, 338–351. [Google Scholar] [CrossRef]
- Laniéce, I.; Couturier, P.; Dramé, M.; Gavazzi, G.; Lehman, S.; Jolly, D.; Voisin, T.; Lang, P.O.; Jovenin, N.; Gauvain, J.B.; et al. Incidence and Main Factors Associated with Early Unplanned Hospital Readmission among French Medical Inpatients Aged 75 and over Admitted through Emergency Units. Age Ageing 2008, 37, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Donzé, J.; Lipsitz, S.; Bates, D.W.; Schnipper, J.L. Causes and Patterns of Readmissions in Patients with Common Comorbidities: Retrospective Cohort Study. BMJ 2013, 347, f7171. [Google Scholar] [CrossRef] [PubMed]
- Cornette, P.; D’Hoore, W.; Malhomme, B.; Van Pee, D.; Meert, P.; Swine, C. Differential Risk Factors for Early and Later Hospital Readmission of Older Patients. Aging Clin. Exp. Res. 2005, 17, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Jencks, S.F.; Williams, M.V.; Coleman, E.A. Rehospitalizations among Patients in the Medicare Fee-for-Service Program. N. Engl. J. Med. 2009, 360, 1418–1428. [Google Scholar] [CrossRef] [PubMed]
- Billings, J.; Blunt, I.; Steventon, A.; Georghiou, T.; Lewis, G.; Bardsley, M. Development of a Predictive Model to Identify Inpatients at Risk of Re-Admission within 30 Days of Discharge (PARR-30). BMJ Open 2012, 2, e001667. [Google Scholar] [CrossRef] [PubMed]
- Allaudeen, N.; Vidyarthi, A.; Maselli, J.; Auerbach, A. Redefining Readmission Risk Factors for General Medicine Patients. J. Hosp. Med. 2011, 6, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Coderch, J.; Sánchez-Pérez, I.; Ibern, P.; Carreras, M.; Pérez-Berruezo, X.; Inoriza, J.M. Predicción Del Riesgo Individual de Alto Coste Sanitario Para La Identificación de Pacientes Crónicos Complejos. Gac. Sanit. 2014, 28, 292–300. [Google Scholar] [CrossRef]
- Fleming, L.M.; Gavin, M.; Piatkowski, G.; Chang, J.D.; Mukamal, K.J. Derivation and Validation of a 30-Day Heart Failure Readmission Model. Am. J. Cardiol. 2014, 114, 1379–1382. [Google Scholar] [CrossRef]
- Dharmarajan, K.; Hsieh, A.F.; Lin, Z.; Bueno, H.; Ross, J.S.; Horwitz, L.I.; Barreto-Filho, J.A.; Kim, N.; Bernheim, S.M.; Suter, L.G.; et al. Diagnoses and Timing of 30-Day Readmissions after Hospitalization for Heart Failure, Acute Myocardial Infarction, or Pneumonia. JAMA 2013, 309, 355–363. [Google Scholar] [CrossRef]
- Kansagara, D.; Englander, H.; Salanitro, A.; Kagen, D.; Theobald, C.; Freeman, M.; Kripalani, S. Risk Prediction Models for Hospital Readmission: A Systematic Review. JAMA 2011, 306, 1688–1698. [Google Scholar] [CrossRef]
- Glans, M.; Kragh Ekstam, A.; Jakobsson, U.; Bondesson, Å.; Midlöv, P. Risk Factors for Hospital Readmission in Older Adults within 30 Days of Discharge—A Comparative Retrospective Study. BMC Geriatr. 2020, 20, 467. [Google Scholar] [CrossRef] [PubMed]
- Liperoti, R.; Vetrano, D.L.; Palmer, K.; Targowski, T.; Cipriani, M.C.; Lo Monaco, M.R.; Giovannini, S.; Acampora, N.; Villani, E.R.; Bernabei, R.; et al. Association between Frailty and Ischemic Heart Disease: A Systematic Review and Meta-Analysis. BMC Geriatr. 2021, 21, 357. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, M.D.; Qin, H.; Mercer, S.Q.; Fong, J.; Haydar, Z. Risk Factors for 30-Day Hospital Readmission in Patients ≥ 65 Years of Age. Bayl. Univ. Med. Cent. Proc. 2008, 21, 363. [Google Scholar] [CrossRef]
- Amarasingham, R.; Moore, B.J.; Tabak, Y.P.; Drazner, M.H.; Clark, C.A.; Zhang, S.; Reed, W.G.; Swanson, T.S.; Ma, Y.; Halm, E.A. An Automated Model to Identify Heart Failure Patients at Risk for 30-Day Readmission or Death Using Electronic Medical Record Data. Med. Care 2010, 48, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Bisiani, M.A.; Jurgens, C.Y. Do Collaborative Case Management Models Decrease Hospital Readmission Rates among High-Risk Patients? Prof. Case Manag. 2015, 20, 188–196. [Google Scholar] [CrossRef]
- Fabbian, F.; Boccafogli, A.; De Giorgi, A.; Pala, M.; Salmi, R.; Melandri, R.; Gallerani, M.; Gardini, A.; Rinaldi, G.; Manfredini, R. The Crucial Factor of Hospital Readmissions: A Retrospective Cohort Study of Patients Evaluated in the Emergency Department and Admitted to the Department of Medicine of a General Hospital in Italy. Eur. J. Med. Res. 2015, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Kroeze, E.D.; de Groot, A.J.; Smorenburg, S.M.; Mac Neil Vroomen, J.L.; van Vught, A.J.A.H.; Buurman, B.M. A Case Vignette Study to Refine the Target Group of an Intermediate Care Model: The Acute Geriatric Community Hospital. Eur. Geriatr. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Westert, G.P.; Lagoe, R.J.; Keskimäki, I.; Leyland, A.; Murphy, M. An International Study of Hospital Readmissions and Related Utilization in Europe and the USA. Health Policy 2002, 61, 269–278. [Google Scholar] [CrossRef]
- Morandi, A.; Bellelli, G.; Vasilevskis, E.E.; Turco, R.; Guerini, F.; Torpilliesi, T.; Speciale, S.; Emiliani, V.; Gentile, S.; Schnelle, J.; et al. Predictors of Rehospitalization among Elderly Patients Admitted to a Rehabilitation Hospital: The Role of Polypharmacy, Functional Status and Length of Stay. J. Am. Med. Dir. Assoc. 2013, 14, 761. [Google Scholar] [CrossRef]
- Grovu, R.; Huo, Y.; Nguyen, A.; Mourad, O.; Pan, Z.; El-Gharib, K.; Wei, C.; Mustafa, A.; Quan, T.; Slobodnick, A. Machine Learning: Predicting Hospital Length of Stay in Patients Admitted for Lupus Flares. Lupus 2023, 32, 1418–1429. [Google Scholar] [CrossRef]
- Zanocchi, M.; Maero, B.; Martinelli, E.; Cerrato, F.; Corsinovi, L.; Gonella, M.; Ponte, E.; Luppino, A.; Margolicci, A.; Molaschi, M. Early Re-Hospitalization of Elderly People Discharged from a Geriatric Ward. Aging Clin. Exp. Res. 2006, 18, 63–69. [Google Scholar] [CrossRef]
- Im, K.M.; Kim, E.Y. Identification of ICU Patients with High Nutritional Risk after Abdominal Surgery Using Modified NUTRIC Score and the Association of Energy Adequacy with 90-Day Mortality. Nutrients 2022, 14, 946. [Google Scholar] [CrossRef] [PubMed]
- Albinali, H.H.; Singh, R.; Al Arabi, A.; Al Qahtani, A.; Asaad, N.; Al Suwaidi, J. Predictors of 30-Day Re-Admission in Cardiac Patients at Heart Hospital, Qatar. Heart Views 2023, 24, 125. [Google Scholar] [CrossRef] [PubMed]
- Mechelli, A.; Lin, A.; Wood, S.; McGorry, P.; Amminger, P.; Tognin, S.; McGuire, P.; Young, J.; Nelson, B.; Yung, A. Using Clinical Information to Make Individualized Prognostic Predictions in People at Ultra High Risk for Psychosis. Schizophr. Res. 2017, 184, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Barrios, M.; Altamar-Maldonado, Z.; Martínez-Solano, C.; Petrillo, A.; De Felice, F.; Jiménez-Delgado, G.; García-Cuan, A.; Medina-Buelvas, A.M. Predicting 15-Day Unplanned Readmissions in Hospitalization Departments: An Application of Logistic Regression. Ingeniare Rev. Chil. Ing. 2021, 29, 378–398. [Google Scholar] [CrossRef]
- Conilione, P.; Jessup, R.; Gust, A. Novel Machine Learning Model for Predicting Multiple Unplanned Hospitalisations. BMJ Health Care Inform. 2023, 30, e100682. [Google Scholar] [CrossRef]
- Yhdego, H.H.; Nayebnazar, A.; Amrollahi, F.; Boussina, A.; Shashikumar, S.; Wardi, G.; Nemati, S. Prediction of Unplanned Hospital Readmission Using Clinical and Longitudinal Wearable Sensor Features. medRxiv 2023. [Google Scholar] [CrossRef]
- The Lancet Public Health. COVID-19 in Spain: A Predictable Storm? Lancet Public Health 2020, 5, e568. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.T.; Liao, J.C.H.; Chen, M.H.; Chang, C.M.; Li, C.T. Predictive Modeling for 14-Day Unplanned Hospital Readmission Risk by Using Machine Learning Algorithms. BMC Med. Inform. Decis. Mak. 2021, 21, 288. [Google Scholar] [CrossRef]
- Yu, M.-Y.; Son, Y.-J. Machine Learning-Based 30-Day Readmission Prediction Models for Patients with Heart Failure: A Systematic Review. Eur. J. Cardiovasc. Nurs. 2024, zvae031. [Google Scholar] [CrossRef]
- Fusco, A.; Galluccio, C.; Castelli, L.; Pazzaglia, C.; Pastorino, R.; Pires Marafon, D.; Bernabei, R.; Giovannini, S.; Padua, L. Severe Acquired Brain Injury: Prognostic Factors of Discharge Outcome in Older Adults. Brain Sci. 2022, 12, 1232. [Google Scholar] [CrossRef]
B | S.E. (B) | p. | Odd Ratio | Lower CI95% | Upper CI95% | |
---|---|---|---|---|---|---|
Chronic therapy | 1.322 | 0.485 | 0.006 | 3.752 | 1.451 | 9.699 |
Diabetes mellitus | 0.127 | 0.037 | 0.001 | 1.135 | 1.055 | 1.221 |
Days of stay | 0.020 | 0.004 | 0.000 | 1.020 | 1.012 | 1.029 |
CCS-16 | −1.457 | 0.530 | 0.006 | 0.233 | 0.082 | 0.658 |
CCS-17 | −0.946 | 0.369 | 0.010 | 0.388 | 0.188 | 0.801 |
Adm:Cardiology | −0.697 | 0.238 | 0.003 | 0.498 | 0.312 | 0.793 |
Adm:Digestive Surgery | 1.096 | 0.396 | 0.006 | 2.991 | 1.376 | 6.500 |
Adm:Haematology | 0.819 | 0.412 | 0.047 | 2.267 | 1.011 | 5.083 |
Adm:Oncology | 0.456 | 0.197 | 0.021 | 1.578 | 1.073 | 2.322 |
Adm:Internal Medicine | −0.257 | 0.127 | 0.042 | 0.773 | 0.603 | 0.991 |
Dis:Digestive Surgery | −0.777 | 0.377 | 0.039 | 0.460 | 0.220 | 0.963 |
Dis:Pneumology | −1.143 | 0.406 | 0.005 | 0.319 | 0.144 | 0.706 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz de San Martín, R.; Morales-Hernández, C.; Barberá, C.; Martínez-Cortés, C.; Banegas-Luna, A.J.; Segura-Méndez, F.J.; Pérez-Sánchez, H.; Morales-Moreno, I.; Hernández-Morante, J.J. Global and Local Interpretable Machine Learning Allow Early Prediction of Unscheduled Hospital Readmission. Mach. Learn. Knowl. Extr. 2024, 6, 1653-1666. https://doi.org/10.3390/make6030080
Ruiz de San Martín R, Morales-Hernández C, Barberá C, Martínez-Cortés C, Banegas-Luna AJ, Segura-Méndez FJ, Pérez-Sánchez H, Morales-Moreno I, Hernández-Morante JJ. Global and Local Interpretable Machine Learning Allow Early Prediction of Unscheduled Hospital Readmission. Machine Learning and Knowledge Extraction. 2024; 6(3):1653-1666. https://doi.org/10.3390/make6030080
Chicago/Turabian StyleRuiz de San Martín, Rafael, Catalina Morales-Hernández, Carmen Barberá, Carlos Martínez-Cortés, Antonio Jesús Banegas-Luna, Francisco José Segura-Méndez, Horacio Pérez-Sánchez, Isabel Morales-Moreno, and Juan José Hernández-Morante. 2024. "Global and Local Interpretable Machine Learning Allow Early Prediction of Unscheduled Hospital Readmission" Machine Learning and Knowledge Extraction 6, no. 3: 1653-1666. https://doi.org/10.3390/make6030080
APA StyleRuiz de San Martín, R., Morales-Hernández, C., Barberá, C., Martínez-Cortés, C., Banegas-Luna, A. J., Segura-Méndez, F. J., Pérez-Sánchez, H., Morales-Moreno, I., & Hernández-Morante, J. J. (2024). Global and Local Interpretable Machine Learning Allow Early Prediction of Unscheduled Hospital Readmission. Machine Learning and Knowledge Extraction, 6(3), 1653-1666. https://doi.org/10.3390/make6030080