Comment on Novozhilova et al. More Capable, Less Benevolent: Trust Perceptions of AI Systems across Societal Contexts. Mach. Learn. Knowl. Extr. 2024, 6, 342–366
Funding
Acknowledgments
Conflicts of Interest
References
- Novozhilova, E.; Mays, K.; Paik, S.; Katz, J.E. More Capable, Less Benevolent: Trust Perceptions of AI Systems across Societal Contexts. Mach. Learn. Knowl. Extr. 2024, 6, 342–366. [Google Scholar] [CrossRef]
- Choung, H.; David, P.; Ross, A. Trust in AI and Its Role in the Acceptance of AI Technologies. Int. J. Hum.-Comput. Interact. 2022, 39, 1727–1739. [Google Scholar] [CrossRef]
- Herse, S.; Vitale, J.; Williams, M.-A. Using agent features to influence user trust, decision making and task outcome during human-agent collaboration. Int. J. Hum.-Comput. Interact. 2023, 39, 1740–1761. [Google Scholar] [CrossRef]
- Nakao, Y.; Strappelli, L.; Stumpf, S.; Naseer, A.; Regoli, D.; Del Gamba, G. Towards responsible AI: A design space exploration of human-centered artificial intelligence user interfaces to investigate fairness. Int. J. Hum.-Comput. Interact. 2022, 39, 1762–1788. [Google Scholar] [CrossRef]
- Danks, D. The Value of Trustworthy AI. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, Honolulu, HI, USA, 27–28 January 2019. [Google Scholar] [CrossRef]
- Plotnikova, V.; Dumas, M.; Nolte, A.; Milani, F. Designing a data mining process for the financial services domain. J. Bus. Anal. 2023, 6, 140–166. [Google Scholar] [CrossRef]
- Schmidt, P.; Biessmann, F.; Teubner, T. Transparency and trust in artificial intelligence systems. J. Decis. Syst. 2020, 29, 260–278. [Google Scholar] [CrossRef]
- Karran, A.; Demazure, T.; Hudon, A.; Sénécal, S.; Léger, P.M. Designing for Confidence: The Impact of Visualizing Artificial Intelligence Decisions. Front. Neurosci. 2022, 16, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Ajenaghughrure, I.B.; Sousa, S.; Lamas, D. Psychophysiological Modeling of Trust In Technology. Proc. ACM Hum.-Comput. Interact. 2021, 5, 1–25. [Google Scholar] [CrossRef]
- Zolanvari, M.; Yang, Z.; Khan, K.; Jain, R.; Meskin, N. TRUST XAI: Model-Agnostic Explanations for AI with a Case Study on IIoT Security. IEEE Internet Things J. 2022, 10, 2967–2978. [Google Scholar] [CrossRef]
- Yu, L.; Li, Y. Artificial Intelligence Decision-Making Transparency and Employees’ Trust: The Parallel Multiple Mediating Effect of Effectiveness and Discomfort. Behav. Sci. 2022, 12, 127. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Marriott, K.; Dwyer, T.; Tack, G. Increasing User Trust in Optimisation through Feedback and Interaction. ACM Trans. Comput.-Hum. Interact. 2022, 29, 1–34. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damaševičius, R. Comment on Novozhilova et al. More Capable, Less Benevolent: Trust Perceptions of AI Systems across Societal Contexts. Mach. Learn. Knowl. Extr. 2024, 6, 342–366. Mach. Learn. Knowl. Extr. 2024, 6, 1667-1669. https://doi.org/10.3390/make6030081
Damaševičius R. Comment on Novozhilova et al. More Capable, Less Benevolent: Trust Perceptions of AI Systems across Societal Contexts. Mach. Learn. Knowl. Extr. 2024, 6, 342–366. Machine Learning and Knowledge Extraction. 2024; 6(3):1667-1669. https://doi.org/10.3390/make6030081
Chicago/Turabian StyleDamaševičius, Robertas. 2024. "Comment on Novozhilova et al. More Capable, Less Benevolent: Trust Perceptions of AI Systems across Societal Contexts. Mach. Learn. Knowl. Extr. 2024, 6, 342–366" Machine Learning and Knowledge Extraction 6, no. 3: 1667-1669. https://doi.org/10.3390/make6030081
APA StyleDamaševičius, R. (2024). Comment on Novozhilova et al. More Capable, Less Benevolent: Trust Perceptions of AI Systems across Societal Contexts. Mach. Learn. Knowl. Extr. 2024, 6, 342–366. Machine Learning and Knowledge Extraction, 6(3), 1667-1669. https://doi.org/10.3390/make6030081