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Abstract: The use of transfer learning (TL) techniques has become common practice in fields such
as computer vision (CV) and natural language processing (NLP). Leveraging prior knowledge
gained from data with different distributions, TL offers higher performance and reduced training
time, but has yet to be fully utilized in applications of machine learning (ML) and deep learning
(DL) techniques and applications related to wireless communications, a field loosely termed radio
frequency machine learning (RFML). This work examines whether existing transferability metrics,
used in other modalities, might be useful in the context of RFML. Results show that the two existing
metrics tested, Log Expected Empirical Prediction (LEEP) and Logarithm of Maximum Evidence
(LogME), correlate well with post-transfer accuracy and can therefore be used to select source models
for radio frequency (RF) domain adaptation and to predict post-transfer accuracy.

Keywords: machine learning; deep learning; transfer learning; domain adaptation; radio frequency
machine learning

1. Introduction

Modern day radio communications systems (Figure 1) allow users to send information
across vast distances at near instantaneous speeds. The introduction of ML and DL tech-
niques to modern radio communications systems has the potential to provide increased
performance and flexibility when compared to traditional signal processing techniques.
For example, cognitive radios (CRs) are capable of autonomously modifying parameters
such as the modulation scheme, center frequency, bandwidth, and power in response to the
external RF environment to provide continuous, high quality service to the end-user while
complying with system and regulatory constraints [1]. While RFML and CR approaches
inevitably overlap, RFML differs from CR in that RFML only aims to utilize autonomous
feature learning from raw RF data to learn the characteristics to detect, identify, and rec-
ognize signals-of-interest [2] and is sometimes used off-board the radio itself and without
the intent to re-configure the radio. In other words, RFML approaches can be seen as a
component of a larger CR system. Nevertheless, both CR and RFML have broad utility in
both the commercial and defense sectors [2–4] and are expected to be critical components
of the upcoming 6G standard [5].

The RF system overview shown in Figure 1 identifies the parameters/variables that
each component of an RF system impacts. Such components make up the domain that
may differ significantly across transmitters, receivers, and propagation environments
(also known as channels), as well as over time, impacting RFML performance [6]. For
example, preliminary results given in [7] showed that the performance of convolutional
neural network (CNN) and long short-term memory (LSTM)-based signal classification
algorithms trained on data from one transmitter/receiver pair dropped as much as 8% when
tested on data captured from other transmitter/receiver pairs even when augmentations
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were applied to improve performance. Similarly, [8] showed that performance of a CNN-
based transmitter identification algorithm degraded significantly when tested on data
captured at different times, as well as when tested on data captured in different locations,
because the propagation environment had changed. However, the vast majority of existing
RFML research focuses on using supervised learning techniques trained from random
initialization to perform tasks such as detecting and classifying signals-of-interest [9],
without consideration for the changes in domain that will almost certainly be encountered
during deployment causing unpredictable and unwanted changes in performance.

Figure 1. A system overview of a radio communications system. In a radio communications system,
the transmitter and receiver hardware and synchronization will be imperfect, causing non-zero values
of α∆[t], ω∆[t], and θ∆[t]. The wireless channel provides additive noise, ν[t].

Transfer learning (TL) is a means to mitigate such performance degradations by re-
using prior knowledge learned from a source domain and task to improve performance on
a “similar” target domain and task, as shown in Figure 2. However, the use of TL in RFML
algorithms is currently limited and not well understood [6]. Prior work began to address
this gap by investigating how the RF domain and task impact learned behavior, facilitating
or preventing successful transfer [10]. More specifically, RF TL performance, as measured
by post-transfer top-1 accuracy, was evaluated as a function of several metadata parameters-
of-interest for a signal classification or automatic modulation classification (AMC) use-case
using synthetic datasets. While post-transfer top-1 accuracy provides the ground truth
measure of transferability, in the scenario where many source models are available for
transfer to an alternate domain, evaluating the post-transfer top-1 accuracy for each source
model may be too time consuming and computationally expensive. This work continues
to examine RF TL performance across changes in domain specifically using two existing
transferability metrics—LEEP [11] and LogME [12]—that provide a measure of how well
a source model will transfer to a target dataset using a single forward pass through the
source model.

The primary contribution of this work is the application of LEEP and LogME to RFML.
Though LEEP and LogME are designed to be modality agnositic, they have not been used
in RFML previously. This work shows that both LEEP and LogME strongly correlate
with post-transfer top-1 accuracy in the context of this AMC use-case, as well as with
each other, and that results are consistent with those shown in the original publications.
The application of these metrics to RFML also provides additional insight into RF TL
performance and trends, building off of the results given in prior work [10].

Second, we present a method for using transferability metrics such as these to predict
post-transfer accuracy within a confidence interval and without further training. More
specifically, given a labeled raw In-phase/Quadrature (IQ) target dataset and a selection
of pre-trained source models, we show that transferability metrics such as LEEP and/or
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LogME can be used to provide a lower and upper bound on how well each source model
will perform once transferred to the target dataset, without performing head re-training
or fine-tuning.

(a) (b)

Figure 2. In traditional ML (a), a new model is trained from random initialization for each do-
main/task pairing. TL (b) utilizes prior knowledge learned on one domain/task, in the form of a
pre-trained model, to improve performance on a second domain and/or task. A concrete example for
environmental adaptation to signal-to-noise ratio (SNR) is given in blue.

This paper is organized as follows: Section 2 provides requisite background knowl-
edge in RFML, and discusses related and prior works in TL for RFML, transferability
metrics, and transfer accuracy prediction in other modalities such as CV and NLP. In
Section 3, each of the key methods and systems used and developed for this work are
described in detail, including the simulation environment and dataset creation, the model
architecture and training, and the transferability metrics. Section 4 presents experimental
results and analysis, as well as the proposed post-transfer accuracy prediction method.
Section 5 highlights several directions for future work including extensions of this work
performed herein using alternative transferability metrics and captured and/or augmented
data, generalizations of this work to inductive TL settings, and the development of more
robust or RF-specific transferability metrics. Finally, Section 6 offers conclusions about the
effectiveness of TL and existing transferability metrics for RFML and the next steps for
incorporating and extending TL techniques in RFML-based research. A list of the acronyms
used in this work is provided in the appendix for reference.

2. Background and Related Work
2.1. Radio Frequency Machine Learning (RFML)

While the term RFML can be loosely defined as the application of ML or DL to the
RF domain, in this work, we use the more rigorous definition of RFML developed by
DARPA: the use of DL techniques to reduce the amount of expert-defined features and
prior knowledge needed to perform the intended application. This typically means that
little-to-no pre-processing is applied to the received signal, which can also reduce latency
and computational complexity.

The vast majority of RFML literature has focused on delivering state-of-the-art perfor-
mance on spectrum awareness and cognitive radio tasks such as signal detection, signal
classification or AMC, and spectrum anomaly detection while substantially reducing the
expert knowledge needed to perform tradition signal processing techniques. One of the
most common, and arguably the most mature spectrum awareness or cognitive radio
application explored in the literature, and the example use-case examined in this work is
AMC, which is described further in the following sub-section.

2.2. Automatic Modulation Classification (AMC)

AMC is the classification of the format or modulation scheme of a signal-of-interest
and is a necessary step in demodulating or recovering the data encoded in a signal [9].
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Traditional signal processing approaches to AMC typically consist of a feature extraction
stage using hand-crafted “expert features” and a pattern recognition stage [13]. These
expert features are pre-defined and designed by a human domain-expert to statistically
distinguish between the modulation classes-of-interest and can be time intensive and
computationally expensive to extract. Pattern recognition is then performed on these signal
features, extracted from the raw RF data during pre-processing, using algorithms such
as decision trees, support vector machines (SVMs), or simple neural networks (NNs) to
identify the modulation class of the signal-of-interest.

RFML-based approaches both replace the use of hand-crafted expert features using
deep NNs, typically CNNs or recurrent neural networks (RNNs), and combine the fea-
ture extraction and pattern recognition steps into a single architecture [7,14]. Replacing
traditional signal processing techniques with RFML allows for blind and automatic feature
learning and classification with little-to-no pre-processing and less prior knowledge and has
achieved state-of-the-art performance.

2.3. RF Domain Adaptation

The recent RFML and TL taxonomies and surveys [6,9] highlight the limited existing
works that successfully use sequential TL techniques for domain adaptation—transferring
pre-trained models across channel environments [15,16], across wireless protocols [17,18],
and from synthetic data to real data [19–22]—for tasks such as signal detection, AMC,
and specific emitter identification (SEI). Until recently, little-to-no work has examined
what characteristics within RF data facilitate or restrict transfer [6], outside of observing
a lack of direct transfer [7,23,24], restricting RF TL algorithms to those borrowed from
other modalities, such as CV and NLP. While correlations can be drawn between the vision
or language spaces and the RF space, these parallels do not always align, and therefore,
algorithms designed for CV and NLP may not always be appropriate for use in RFML.

Our prior work systematically evaluated RF TL performance as a function of signal-to-
noise ratio (SNR), frequency offset (FO), and modulation type for an AMC use-case using
the same synthetic dataset used herein and a post-transfer top-1 accuracy as the perfor-
mance metric. (The impact of changing SNR and/or FO on the RF domain is discussed
further in Section 3.1.) Across both changes in domain, modeled using changes in SNR and
FO, and changes in task, modeled using changes in modulation type, results indicated that
source/target similarity was key to successful transfer, as well as domain/task difficulty.
More specifically, transfer is more often successful when the source domain/task is more
challenging than the target (i.e., the source domain has a lower SNR, or the source task
has more output classes than the target task). Discrepancies in the channel environment,
as modeled by changes in SNR, were shown to be more challenging to overcome via TL than
discrepancies in the RF hardware or platform, as modeled by changes in FO. Additionally,
in the cases when TL provided a performance benefit over training from random initial-
ization, head re-training generally outperformed fine-tuning. In this work, post-transfer
top-1 accuracy is paired with existing transferability metrics, LEEP and LogME, to further
identify how changes in the RF domain impact transferability and for model selection and
post-transfer accuracy prediction.

2.4. Transferability Metrics

TL techniques use prior knowledge obtained from a source domain/task to improve
performance on a similar target domain/task. More specifically, TL techniques aim to
further refine a pre-trained source model using a target dataset and specialized training
techniques. However, not all pre-trained source models will transfer well to a given target
dataset. Though it is generally understood that TL is successful when the source and target
domains/tasks are “similar” [25], this notion of source/target similarity is ill-defined. The
goal of a transferability metric is to quantify how well a given pre-trained source model will
transfer to a target dataset. While the area of transferability metrics is growing increasingly
popular, to our knowledge, no prior works have examined these metrics in the context of
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RFML. Transferability metrics developed and examined in the context of other modalities
can broadly be categorized into one of two types: those requiring partial re-training and
those that do not.

Partial re-training methods such as Taskonomy [26] and Task2Vec [27] require some
amount of training to occur, whether that be the initial stages of TL, full TL, or the training
of an additional probe network, in order to quantify transferability. Partial re-training
methods are typically used to identify relationships between source and target tasks and
are useful in meta-learning settings but are not well suited to settings where time and/or
computational resources are limited. Though the computational complexity of partial
re-training methods varies, it vastly exceeds the computational complexity of methods that
do not require any additional training, such as those used in this work.

This work focuses on methods that do not require additional training, which typically
use a single forward pass through a pre-trained model to ascertain transferability. Methods
such as these are often used to select a pre-trained model from a model library for transfer
to a target dataset, a problem known as source model selection. LEEP [11] and LogME [12]
were chosen as example metrics for this work because they are often used as baselines in
the transferability metric literature [28–31], are designed to be modality agnostic, and have
outperformed similar metrics such as Negative Conditional Entropy (NCE) [32] and H-
scores [33] in CV and NLP-based experiments. Moreover, LEEP and LogME are intuitive
to understand, gauging transferability using the source model’s response to the target
dataset in the form of logits or layer activations. More recent transferability metrics that
also show promise include Optimal Transport-based Conditional Entropy (OTCE) [29]
and Joint Correspondences Negative Conditional Entropy (JC-NCE) [30], TransRate [28],
and Gaussian Bhattacharyya Coefficient (GBC) [31] and may be examined as follow-on
work. The success of both LEEP and LogME in the context of RFML shown herein suggests
that other modality agnostic transferability metrics such as these would also likely be
appropriate for use in RFML.

Related works examine source model ranking or selection procedures [34,35], which
either rank a set of models by transferability or select the model(s) most likely to pro-
vide successful transfer. However, source model ranking or selection methods are less
flexible than transferability metrics in online or active learning scenarios. More specifi-
cally, source model ranking or selection methods are unable to identify how a new source
model compares to the already ranked/selected source models without performing the
ranking/selection procedure again. Related works also include methods for selecting the
best data to use for pre-training [36] or during the transfer phase [37], and approaches to
measuring domain, task, and/or dataset similarity [38].

2.5. Predicting Transfer Accuracy

The problem of predicting transfer accuracy is still an open field. To the best of our
knowledge, no prior works have examined predicting transfer accuracy specifically for
RFML, but approaches have been developed for other modalities. Most similar to our
work is the approach given in [39], where the authors showed a linear correlation between
several domain similarity metrics and transfer accuracy, using statistical inference to derive
performance predictions for NLP tools. In this work, we show that LEEP and LogME
can be used in place of the domain similarity metrics considered in [39] to similar effect.
Similarly, work in [40] used domain similarity metrics to predict performance drops as a
result in domain shift. However, the domain similarity metrics used in [40] are not easily
applicable to RF data, which are high-dimensional, fast-changing, and highly dependent
on the underlying bit pattern. More recently, [41] proposed using a simple multi-layer
perceptron (MLP) to determine how well a source dataset will transfer to a target dataset,
again in an NLP setting. However, the method proposed [41] required the training of an
additional model, as well as the use of domain similarity metrics specific to NLP.
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3. Methodology

This section presents the experimental setup used in this work, shown in Figure 3,
which includes the data and dataset creation process, the model architecture and train-
ing, and the transferability metrics. These three key components and processes are each
described in detail in the following subsections.

(a)

(b)

(c)

Figure 3. A system overview of the (a) dataset creation, (b) model pre-training and TL, and (c) model
evaluation and transferability metric calculation processes used in this work.
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3.1. Dataset Creation

This work uses the same custom synthetic dataset used in our prior work [10], which is
publicly available on IEEE DataPort [42]. The dataset creation process, shown in Figure 3a,
began with the construction of a large “master” dataset containing 600,000 examples of
each of the signal types given in Table 1, for a total of 13.8 million examples. For each
example in the master dataset, the SNR is selected uniformly at random within [−10 dB, 20
dB], and the FO is selected uniformly at random within [−10%, 10%] of the sample rate.
All further signal generation parameters such as filtering parameters, symbol order, etc.,
are specified in Table 1.

Table 1. Signal types included in this work and generation parameters.

Modulation
Name

Parameter
Space

BPSK
Symbol Order {2}
RRC Pulse Shape
Excess Bandwidth {0.35, 0.5}
Symbol Overlap ∈ [3, 5]

QPSK
Symbol Order {4}
RRC Pulse Shape
Excess Bandwidth {0.35, 0.5}
Symbol Overlap ∈ [3, 5]

PSK8
Symbol Order {8}
RRC Pulse Shape
Excess Bandwidth {0.35, 0.5}
Symbol Overlap ∈ [3, 5]

PSK16
Symbol Order {16}
RRC Pulse Shape
Excess Bandwidth {0.35, 0.5}
Symbol Overlap ∈ [3, 5]

OQPSK
Symbol Order {4}
RRC Pulse Shape
Excess Bandwidth {0.35, 0.5}
Symbol Overlap ∈ [3, 5]

QAM16
Symbol Order {16}
RRC Pulse Shape
Excess Bandwidth {0.35, 0.5}
Symbol Overlap ∈ [3, 5]

QAM32
Symbol Order {32}
RRC Pulse Shape
Excess Bandwidth {0.35, 0.5}
Symbol Overlap ∈ [3, 5]

QAM64
Symbol Order {64}
RRC Pulse Shape
Excess Bandwidth {0.35, 0.5}
Symbol Overlap ∈ [3, 5]

APSK16
Symbol Order {16}
RRC Pulse Shape
Excess Bandwidth {0.35, 0.5}
Symbol Overlap ∈ [3, 5]

APSK32
Symbol Order {32}
RRC Pulse Shape
Excess Bandwidth {0.35, 0.5}
Symbol Overlap ∈ [3, 5]

FSK5k Carrier Spacing {5 kHz}
Rect Phase Shape
Symbol Overlap {1}
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Table 1. Cont.

Modulation
Name

Parameter
Space

FSK75k Carrier Spacing {75 kHz}
Rect Phase Shape
Symbol Overlap {1}

GFSK5k
Carrier Spacing {5 kHz}
Gaussian Phase Shape
Symbol Overlap {2, 3, 4}
Beta ∈ [0.3, 0.5]

GFSK75k
Carrier Spacing {75 kHz}
Gaussian Phase Shape
Symbol Overlap {2, 3, 4 }
Beta ∈ [0.3, 0.5]

MSK Carrier Spacing {2.5 kHz}
Rect Phase Shape
Symbol Overlap {1}

GMSK
Carrier Spacing {2.5 kHz}
Gaussian Phase Shape
Symbol Overlap {2, 3, 4}
Beta ∈ [0.3, 0.5]

FM-NB Modulation Index ∈ [0.05, 0.4]
FM-WB Modulation Index ∈ [0.825, 1.88]
AM-DSB Modulation Index ∈ [0.5, 0.9]
AM-DSBSC Modulation Index ∈ [0.5, 0.9]
AM-LSB Modulation Index ∈ [0.5, 0.9]
AM-USB Modulation Index ∈ [0.5, 0.9]
AWGN

Then, as in [10], subsets of the master dataset were selected to create different RF
domains varying:

• Only SNR—Varying only SNR represents an environment adaptation problem, char-
acterized by a change in the RF channel environment (i.e., an increase/decrease in
the additive interference, ν[t], of the channel). Twnety-six source data subsets were
constructed from the larger master dataset, with SNRs selected uniformly at random
from a 5 dB range sweeping from −10 dB to 20 dB in 1 dB steps (i.e., [−10 dB, −5 dB],
[−9 dB, −4 dB], . . . , [15 dB, 20 dB]), and for each data subset in this SNR sweep, FO
was selected uniformly at random within [−5%, 5%] of the sample rate.

• Only FO—Varying only FO represents a platform adaptation problem, characterized by
a change in the transmitting and/or receiving devices (i.e., an increase/decrease in
ω∆[t] due to hardware imperfections or a lack of synchronization). Thirty-one source
data subsets were constructed from the larger master dataset containing examples
with FOs selected uniformly at random from a 5% range sweeping from −10% of
sample rate to 10% of sample rate in 0.5% steps (i.e., [−10%, −5%], [−9.5%, −4.5%],
. . . , [5%, 10%]). For each data subset in this FO sweep, SNR was selected uniformly at
random within [0 dB, 20 dB].

• Both SNR and FO—Varying both SNR and FO, represents an environment platform co-
adaptation problem, characterized by a change in both the RF channel environment and
the transmitting/receiving devices. Twnty-five source data subsets were constructed
from the larger master dataset containing examples with SNRs selected uniformly at
random from a 10 dB range sweeping from−10 dB to 20 dB in 5 dB steps (i.e., [−10 dB,
0 dB], [−5 dB, 5 dB], . . . , [10 dB, 20 dB]) and with FOs selected uniformly at random
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from a 10% range sweeping from −10% of sample rate to 10% of sample rate in 2.5%
steps (i.e., [−10%, 0%], [−7.5%, 2.5%], . . . , [0%, 10%]).

These three parameter sweeps address each type of RF domain adaptation discussed
in the RFML TL taxonomy [6].

3.2. Simulation Environment

All data used in this work were generated using the same noise generation, signal
parameters, and signal types as in [10]. More specifically, in this work, the signal space has
been restricted to the 23 signal types shown in Table 1, observed at a complex baseband in
the form of discrete time-series signals, s[t], where

s[t] = α∆[t] · α[t]e(jω[t]+jθ[t]) · e(jω∆ [t]+jθ∆ [t]) + ν[t] (1)

α[t], ω[t], and θ[t] are the magnitude, frequency, and phase of the signal at time t, and ν[t]
is the additive interference from the channel. Any values subscripted with a ∆ represent
imperfections/offsets caused by the transmitter/receiver and/or synchronization. Without
loss of generality, all offsets caused by hardware imperfections or lack of synchronization
have been consolidated onto the transmitter during simulation.

Signals are initially synthesized in an additive white Gaussian noise (AWGN) channel
environment with unit channel gain, no phase offset, and frequency offset held constant for
each observation. Like in [10], SNR is defined as

SNR = 10 log10

(
∑N−1

t=1 |s[t]− ν[t]|2

∑N−1
t=1 |ν[t]|2

)
(2)

and with the exception of the AWGN signal that has a Nyquist rate of 1, all signals have a
Nyquist rate of either 0.5 or 0.33 (twice or three times the Nyquist bandwidth).

3.3. Model Architecture and Training

The aim of this work is to use the selected metrics to quantify the ability to trans-
fer the features learned by a single architecture trained across pairwise combinations of
source/target datasets with varying (1) SNRs, (2) FOs, or (3) SNRs and FO in order to iden-
tify the impact of these parameters-of-interest on transferability. Given the large number
of models trained for this work, training time was a primary concern when selecting the
model architecture. Therefore, this work uses a simple CNN architecture, shown in Table 2,
that is based off of the architectures used in [7].

Table 2. Model architecture.

Layer Type Num Kernels/Nodes Kernel Size
Input size = (2, 128)
Conv2d 1500 (1, 7)
ReLU
Conv2d 96 (2, 7)
ReLU
Dropout rate = 0.5
Flatten
Linear 65
Linear 23

Trainable Parameters: 7,434,243

The model pre-training and TL process is shown in Figure 3b and represents a standard
training pipeline. For pre-training, the training dataset contained 5000 examples per class,
and the validation dataset contained 500 examples per class. These dataset sizes are
consistent with [43] and adequate to achieve consistent convergence. Each model was
trained using the Adam optimizer [44] and cross-entropy loss [45], with the PyTorch default
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hyper-parameters [46] (a learning rate of 0.001, without weight decay), for a total of 100
epochs. A checkpoint was saved after the epoch with the lowest validation loss and was
reloaded at the conclusion of the 100 epochs.

As in the prior work [10], both head-retraining and model fine-tuning methods are
examined for transfer. For both methods, the training dataset contained 500 examples
per class, and the validation dataset contained 50 examples per class, representing a
smaller sample of available target data. Both methods also used the Adam optimizer and
cross-entropy loss, with checkpoints saved at the lowest validation loss over 100 epochs.
However, during head re-training, only the final layer of the model was trained, again
using the PyTorch default hyper-parameters, while the rest of the model’s parameters were
frozen. During fine-tuning, the entire model was trained with a learning rate of 0.0001,
an order of magnitude smaller than the PyTorch default of 0.001 used during pre-training.

3.4. Transferability Metrics

As previously discussed, while transfer accuracy provides the ground truth measure
of transferability, calculating transfer accuracy requires performing sequential learning
techniques such as head re-training or fine-tuning to completion, in addition to the la-
beled target dataset. LEEP [11] and LogME [12] are existing metrics designed to predict
how well a pre-trained source model will transfer to a labeled target dataset without per-
forming transfer learning techniques and using only a single forward pass through the
pre-trained source model. These metrics in particular were shown to outperform similar
metrics, NCE [32] and H-scores [33] and are designed to be modality agnostic. Therefore,
though neither metric is known to have been shown to correlate with transfer accuracy in
the context of RFML, the success both metrics showed in CV and NLP applications bodes
well for the RF case.

LEEP [11] can be described as the “average log-likelihood of the expected empirical
predictor, a simple classifier that makes prediction[s] based on the expected empirical
conditional distribution between source and target labels,” and is calculated as

T( fS, XT) =
1
n

n

∑
i=1

log

(
∑

yS∈YS

P̂(xi
T |yS) fS(xi

T)yS

)
(3)

such that fS is the pre-trained source model, XT is the target dataset, n is the number of
examples in the target dataset, YT is the set of all target labels, YS is the set of all source
labels. P̂(yT |yS) is computed using P̂(yT , yS) and P̂(yS) with

P̂(yT |yS) =
P̂(yT , yS)

P̂(yS)
(4)

where
P̂(yT , yS) =

1
n ∑

i:yi
T=yT

f (xi
T)yS (5)

and

P̂(yS) = ∑
yT∈YT

P̂(yT , yS) =
1
n

n

∑
i=1

f (xi
T)yS (6)

Log Expected Empirical Prediction (LEEP) has been shown to correlate well with
transfer accuracy using image data, even when the target datasets are small or imbalanced.
The metric is bounded between (−∞, 0], such that values closest to zero indicate best
transferability, though the scores tend to be smaller when there are more output classes in
the target task. The calculation does not make any assumptions about the similarity of the
source/target input data, except that they are the same size. For example, if the source data
are raw IQ data of size 2 × 128, then the target data must also be of size 2 × 128 but need
not be in raw IQ format (i.e., the target data could be in polar format). Therefore, the metric
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is suitable for estimating transferability when the source and target tasks (output classes)
differ. However, the calculation of the metric does assume the use of a Softmax output
layer, limiting the technique to supervised classifiers.

In comparison to LEEP, which measures the expected empirical distribution between
the source and target labels, Logarithm of Maximum Evidence (LogME) [12] estimates the
maximum evidence, or marginal likelihood, of a label given the features extracted by the pre-
trained model at some layer j using a computationally efficient Bayesian algorithm. Letting
y be the groundtruth labels of the target dataset, XT , of size n, and D be the dimensionality
of the feature space F extracted from the pre-trained model at layer j given XT as input,
LogME is computed as follows: The logarithm of the evidence is computed using

argmaxα,βL(α, β) = log p(y|F, α, β)

=
n
2

log β +
D
2

log α− n
2

log 2π − β

2
∥Fm− y∥2

2 −
α

2
mTm− 1

2
log |A|

(7)

where A = αI + βFTT and m = βA−1FTy. The full derivation of Equation (7) can be found
in [12]. Maximization of L(α, β) is achieved by iteratively evaluating m and

γ =
D

∑
i=1

βσi
α + βσi

(8)

with σ being the singular values of FT F, and updating

α← γ

mTm
, β← n− γ

∥Fm− y∥2
2

(9)

until α and β converge, generally in 1–3 iterations. Finally, argmaxα,βL(α, β) is scaled
by n to compute the average maximum log evidence of yi given Fi for all i ∈ {1, . . . n},
or LogME.

Like LEEP, this calculation only assumes that the source and target input data are the
same size. The metric is bounded within [−1, 1], such that values closes to −1 indicate
worst transferability, and values closest to 1 indicate best transferability. LogME does not
require the use of a Softmax output layer and is therefore appropriate in un-supervised
settings, regression settings, and the like. Further, LogME was shown to outperform LEEP
in an image classification setting, better correlating with transfer accuracy and has also
shown positive results in an NLP setting.

4. Experimental Results and Analysis

The product of the experiments performed herein is 82 data subsets, each with dis-
tinct RF domains, 82 source models trained from random initialization, and 4360 transfer
learned models, half transferred using head re-training and the remaining half transferred
using fine-tuning. Associated with each of the 4360 transfer learned models is a top-1
accuracy value, a LEEP score, and a LogME score. The following subsections present the
results obtained from the experiments performed and discuss how well LEEP and LogME
perform in the RF modality, how to use transferability metrics to predict post-transfer
performance, as well as some insights and practical takeaways that can be gleaned from
the results given, including a preliminary understanding of when and how to use TL for
RF domain adaptation.

4.1. Transferability Metrics for Model Selection in RF Domain Adaptation

When evaluating whether a transferability metric is accurate, the primary consider-
ation is how well the metric reflects or correlates with the performance metric(s) used.
Therefore, to identify whether LEEP and/or LogME can be used to select models for RF
domain adaptation is to identify how well LEEP and LogME correlate with post-transfer
top-1 accuracy. To this end, Figures 4–6 show LEEP and LogME versus the achieved
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transfer accuracy for each of the parameter sweeps described in Section 3.1. These figures
qualitatively show that both LEEP and LogME correlate well with top-1 accuracy after
transfer learning, whether through head re-training or fine-tuning for all domain adaptation
settings studied.

(a) (b)
Figure 4. The LEEP (a) and LogME (b) scores versus post-transfer top-1 accuracy for the sweep over
SNR. The dashed lines present the linear fits for all target domains.

(a) (b)
Figure 5. The LEEP (a) and LogME (b) scores versus post-transfer top-1 accuracy for the sweep over
FO. The dashed lines present the linear fits for all target domains.

To quantify whether or not the metrics are useful, two correlation measures are also
examined—the Pearson correlation coefficient [47] and the weighted τ [48]—and specified
in the shaded boxes of Figures 4–6. The Pearson correlation coefficient, or Pearson’s r, is
a measure of linear correlation between two variables used in a wide variety of works,
including the original LEEP paper. However, Pearson’s r makes a number of assumptions
about the data, some of which may not be met by these data. Most notably, Pearson’s r
assumes that both variables (LEEP/LogME and post-transfer top-1 accuracy, herein) are
normally distributed and have a linear relationship. Alternatively, weighted τ, a weighted
version of the Kendall rank correlation coefficient (Kendall τ), is used in the original
LogME work. Weighted τ is a measure of correspondence between pairwise rankings,
where higher performing/scoring models receive higher weight, and it only assumes the
variables (LEEP/LogME and post-transfer top-1 accuracy, herein) are continuous. Both
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Pearson’s r and weighted τ have a range of [−1,1]. These correlation coefficients confirm
the results discussed above. Finally, Figure 7 confirms the LEEP and LogME scores are
highly linearly correlated with each other.

(a) (b)
Figure 6. The LEEP (a) and LogME (b) scores versus post-transfer top-1 accuracy for the sweep over
both SNR and FO. The dashed lines present the linear fits for all target domains.

From these figures and metrics, it can be concluded that both LEEP and LogME are
strong measures for selecting models for RF domain adaptation. However, head re-training
is more consistent with LEEP and LogME scores than fine-tuning, as evidenced by higher
correlation coefficients. Therefore, when using LEEP or LogME for model selection, using
head re-training as a TL method would be more reliable than using fine-tuning. In contrast,
fine-tuning, while less reliable than head re-training when used in conjunction with LEEP
or LogME for model selection, offers potential for small performance gains over head
re-training. In practice, this indicates that unless top performance is of more value than
reliability, head re-training should be used for TL when using LEEP or LogME for model
selection. In the setting where model accuracy is of the utmost importance, it may be
advantageous to try both head re-training and fine-tuning.

It should also be noted that the results shown in Figures 4–6 are consistent with the
results presented in the original LEEP and LogME publications where the metrics were
tested in CV and NLP settings, supporting the claim that these metrics are truly modality
agnostic. Therefore, other modality agnostic metrics seem likely to perform well in RFML
settings as well and may be examined as follow-on work.

4.2. When and How RF Domain Adaptation Is Most Successful
4.2.1. Environment Adaptation vs. Platform Adaptation

Recalling that the sweep over SNR can be regarded as an environment adaptation
experiment and the sweep over FO can be regarded as a platform adaptation experiment,
more general conclusions can be drawn regarding the challenges that environment and
platform adaptation present. Results given in prior work [6] indicated that changes in
FO are easier to overcome than changes in SNR. That is, environment adaptation is more
difficult to achieve than platform adaptation, and changes in transmitter/receiver hardware
are likely easier to overcome using TL techniques than changes in the channel environment.
This trend is also shown in Figure 7, which presents the LogME scores as a function of
the LEEP scores for each of the parameter sweeps performed, showing both the LEEP
and LogME scores are significantly higher for the FO sweep than the SNR sweep or SNR
and FO sweep, indicating better transferability. Of course, this conclusion is dependent
upon the results presented in Section 4.1, which show that LEEP and LogME correlate
with post-transfer accuracy. Therefore, in practice, one should consider the similarity of
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the source/target channel environment before the similarity of the source/target platform,
as changes in the transmitter/receiver pair are more easily overcome during TL.

Figure 7. The LEEP versus LogME scores for the sweep over SNR, FO, and both SNR and FO.
The dashed lines present the linear fit.

4.2.2. Head Re-Training vs. Fine-Tuning

In our prior work, results showed that in the cases when TL provided a performance
benefit over training from random initialization, head re-training generally outperformed
fine-tuning. This trend is also evident in Figures 4–6. However, in the sweep over FO,
especially when the LEEP and LogME scores were low, the fine-tuned models markedly
outperformed head re-trained models. A low LEEP/LogME score indicates a significant
change between the source and target domains, and in this case, a large change in FO. As a
result, new features are needed to discern between modulation types, and modifications
to the earlier layers of the pre-trained source model, where feature learning occurs, are
needed in order to best adapt to the new target domain. However, head re-training
is more time efficient and less computationally expensive than fine-tuning, making a
strong case for using head re-training over fine-tuning for RF domain adaptation. The
computational complexity of using head re-training versus fine-tuning is architecture- and
training algorithm-dependent, but as an example, for the CNN architecture used in this
work and shown in Table 2, the number of trainable parameters for head re-training and
fine-tuning is 1518 and 7,434,243, respectively.

4.3. Transferability Metrics for Predicting Post-Transfer Accuracy

Having confirmed that LEEP and LogME strongly correlate with post-transfer top-1
accuracy, it can be concluded that these metrics can be used to compare the transferability
of n source models to a single target dataset (i.e., whichever model provides the highest
LEEP/LogME score is most likely to provide the best transfer). What follows is an approach
to not only select or compare models for RF domain adaptation but also to predict the



Mach. Learn. Knowl. Extr. 2024, 6 1713

post-transfer top-1 accuracy without any further training. The approach is time- and
resource-intensive to initialize, but once initialized, is fast and relatively inexpensive to
compute and shows the predictive capabilities of these metrics. It should be noted that
the cost of initialization can be mitigated somewhat by using only a subset of the available
source/target pairs. However, the more source/target pairs used, the better the quality of
the transfer accuracy prediction and confidence interval.

Given n known domains and assuming a single model architecture, to initialize
the approach:

1. Run baseline simulations for all n known domains, including pre-training source
models on all domains, and use head re-training and/or fine-tuning to transfer each
source model to the remaining known domains

2. Compute LEEP/LogME scores using all n pre-trained source models and the remain-
ing known domains.

3. Compute post-transfer top-1 accuracy for all n transfer-learned models, constructing
datapoints like those displayed in Figures 4–6.

4. Fit a function of the desired form (i.e., linear, logarithmic, etc.) to the LEEP/LogME
scores and post-transfer top-1 accuracies. For example, a linear fit of the form y =
β0x + β1 is shown in Figures 4–6 such that x is the transferability score and y is the
post-transfer top-1 accuracy.

5. Compute the margin of error by first calculating the mean difference between the true
post-transfer top-1 accuracy and the predicted post-transfer top-1 accuracy (using the
linear fit), and then multiply this mean by the appropriate z-score(s) for the desired
confidence interval(s) [49].

Then, during deployment, given a newly labeled target dataset:

1. Compute LEEP/LogME scores for all pre-trained source models and the new target
dataset.

2. Select the pre-trained source model yielding the highest LEEP/LogME score for TL.
3. Use the fitted linear function to estimate post-transfer accuracy, given the highest

LEEP/LogME score, and add/subtract the margin of error to construct the confidence
interval.

Optionally, after transferring to the new labeled target dataset, add this dataset to the
list of known domains and update the linear fit and margin of error, as needed.

The error in the predicted post-transfer accuracy using the proposed method is shown
in Figures 8–10. These plots show that not only are LEEP/LogME highly correlated with
post-transfer top-1 accuracy (as shown in Figures 4–6), but the error in the predicted post-
transfer top-1 accuracy using a linear fit to the LEEP and LogME scores, respectively, is
also highly correlated. More specifically, when the proposed method constructed using
LEEP predicts a lower/higher post-transfer accuracy than ground truth, the proposed
method constructed using LogME will do the same with the frequencies shown in Table 3.
This indicates that these scores could be combined to create a more robust transferability
metric and more robust post-transfer accuracy prediction with relative ease, which is left
for future work.
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Figure 8. The error in the predicted post-transfer accuracy using a linear fit to the LEEP scores (x-axis)
and LogME scores (y-axis) for the sweep over SNR.

Figure 9. The error in the predicted post-transfer accuracy using a linear fit to the LEEP scores (x-axis)
and LogME scores (y-axis) for the sweep over FO. Note the change in scale compared to Figures 8
and 10.



Mach. Learn. Knowl. Extr. 2024, 6 1715

Figure 10. The error in the predicted post-transfer accuracy using a linear fit to the LEEP scores
(x-axis) and LogME scores (y-axis) for the sweep over both SNR and FO.

Table 3. The frequency with which the proposed method constructed using LEEP and LogME agree
in over/under-predicting post-transfer accuracy.

SNR Sweep FO Sweep SNR + FO Sweep
Head Re-Training 0.6175 0.7856 0.7258

Fine-Tuning 0.7496 0.8803 0.7468

5. Future Work

As previously mentioned, several new transferability metrics were developed concur-
rently with this work and are suitable as replacements for LEEP and LogME in any of the
above experiments. Therefore, the first direction for future work is replicating this work
using alternative metrics, such as OTCE [29], JC-NCE [30], TransRate [28], and GBC [31],
to identify if these metrics are also suitable for use in the context of RFML and if these met-
rics might outperform those used herein. Given that this work supports the claim that LEEP
and LogME are modality agnostic, it seems likely that additional transferability metrics that
are also modality agnostic by design will also follow this trend. Additionally, the concept
of transferability metrics and the experiments performed herein should be extended to
inductive TL settings, including multi-task learning and sequential learning settings in
which the source and target tasks differ (i.e., adding/removing output classes), as well as
to different model architectures, as this work only considered RF domain adaptation.

Another direction for future work is the development of new transferability metrics
that are more robust than LEEP or LogME alone or are RFML-specific. Most apparently,
results discussed previously in Section 4.3 indicate that LEEP and LogME could be com-
bined to create a more robust transferability metric with relative ease. However, while
modality agnostic metrics such as LEEP and LogME are shown herein to be suitable for
use in RFML, a transferability metric purpose-built for the RF space would likely be more
widely accepted amongst traditional RF engineers [9].
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Towards such an approach, transferability can be gauged in numerous, potentially
synergistic, ways. While metrics such as LEEP and LogME measure the source model’s
activations in response to the target dataset, a supplementary approach could include
quantifing the similarity between the source and target datasets, independent of the source
model.

Finally, this work provided additional conclusions about how best to use TL in the con-
text of RFML, which should be verified and refined with experiments using captured and
augmented data [23]. If verified, these metrics could be used to select RFML models or pre-
dict transfer performance for online or incremental learning during continuous deployment
to help overcome the highly fluid nature of modern communication systems [9].

6. Conclusions

TL has yielded tremendous performance benefits in CV and NLP, and as a result, TL
is all but commonplace in these fields. However, the benefits of TL have yet to be fully
demonstrated and integrated into RFML systems. While prior work began addressing this
deficit by systematically evaluating RF domain adaptation performance as a function of
several parameters-of-interest, this work introduced two existing transferability metrics,
LEEP and LogME. Results presented herein demonstrated that LEEP and LogME correlate
well with post-transfer accuracy and can therefore be used for model selection in the context
of RF domain adaptation. The addition of these metrics also provided further insight into
RF TL performance trends, generally echoing the guidelines for when and how to use
RF TL presented in [10]. Finally, an approach was presented for predicting post-transfer
accuracy using these metrics within a confidence interval and without further training.
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Abbreviations
The following abbreviations are used in this manuscript:

AM-DSB amplitude modulation, double-sideband
AM-DSBSC amplitude modulation, double-sideband suppressed-carrier
AM-LSB amplitude modulation, lower-sideband
AM-USB amplitude modulation, upper-sideband
AMC automatic modulation classification
APSK16 amplitude and phase-shift keying, order 16
APSK32 amplitude and phase-shift keying, order 32
AWGN additive white Gaussian noise
BPSK binary phase-shift keying
CNN convolutional neural network
CR cognitive radio
CV computer vision
DL deep learning
FM-NB narrow band frequency modulation
FM-WB wide band frequency modulation
FO frequency offset
FSK5k frequency-shift keying, 5 kHz carrier spacing
FSK75k frequency-shift keying, 75 kHz carrier spacing
GFSK5k Gaussian frequency-shift keying, 5 kHz carrier spacing
GFSK75k Gaussian frequency-shift keying, 75 kHz carrier spacing
GMSK Gaussian minimum-shift keying
IQ in-phase/quadrature
LEEP Log Expected Empirical Prediction
LogME Logarithm of Maximum Evidence
ML machine learning
MSK minimum-shift keying
NLP natural language processing
NN neural network
OQPSK offset quadrature phase-shift keying
PSK16 phase-shift keying, order 16
PSK8 phase-shift keying, order 8
QAM16 quadrature amplitude modulation, order 16
QAM32 quadrature amplitude modulation, order 32
QAM64 quadrature amplitude modulation, order 64
QPSK quadrature phase-shift keying
RF radio frequency
RRC root-raised cosine
SNR signal-to-noise ratio
TL transfer learning
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