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Abstract: Studying gene regulatory networks (GRNs) is paramount for unraveling the complexities of
biological processes and their associated disorders, such as diabetes, cancer, and Alzheimer’s disease.
Recent advancements in computational biology have aimed to enhance the inference of GRNs from
gene expression data, a non-trivial task given the networks’ intricate nature. The challenge lies in
accurately identifying the myriad interactions among transcription factors and target genes, which
govern cellular functions. This research introduces a cutting-edge technique, EGRC (Effective GRN
Inference applying Graph Convolution with Self-Attention Graph Pooling), which innovatively
conceptualizes GRN reconstruction as a graph classification problem, where the task is to discern the
links within subgraphs that encapsulate pairs of nodes. By leveraging Spearman’s correlation, we
generate potential subgraphs that bring nonlinear associations between transcription factors and their
targets to light. We use mutual information to enhance this, capturing a broader spectrum of gene
interactions. Our methodology bifurcates these subgraphs into ‘Positive’ and ‘Negative’ categories.
‘Positive’ subgraphs are those where a transcription factor and its target gene are connected, including
interactions among their neighbors. ‘Negative’ subgraphs, conversely, denote pairs without a direct
connection. EGRC utilizes dual graph convolution network (GCN) models that exploit node attributes
from gene expression profiles and graph embedding techniques to classify these. The performance of
EGRC is substantiated by comprehensive evaluations using the DREAM5 datasets. Notably, EGRC
attained an AUROC of 0.856 and an AUPR of 0.841 on the E. coli dataset. In contrast, the in silico
dataset achieved an AUROC of 0.5058 and an AUPR of 0.958. Furthermore, on the S. cerevisiae dataset,
EGRC recorded an AUROC of 0.823 and an AUPR of 0.822. These results underscore the robustness
of EGRC in accurately inferring GRNs across various organisms. The advanced performance of
EGRC represents a substantial advancement in the field, promising to deepen our comprehension of
the intricate biological processes and their implications in both health and disease.

Keywords: graph classification; graph neural network; gene regulatory network; graph convolution
network; pooling layer; graph embedding; Spearman correlation; mutual information

1. Introduction

Distinct cell types exhibit unique gene expression profiles, and cells transition between
states by modifying these profiles through gene transcription. In this control process, a tran-
scription factor affects a target gene’s expression by attaching to the gene’s promoter. Gene
regulatory networks (GRNs) show the cause-and-effect relationships between transcription
factors (TFs) and the genes they control [1]. Understanding these networks is crucial for
unraveling biological processes and can aid in elucidating gene functions. Furthermore,
GRNs help rank candidate genes as molecular regulators and biomarkers in studying
complex diseases and traits [2].
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Despite advances in high-throughput sequencing and post-genomics technologies,
which enable statistical and machine learning methods to reconstruct gene regulatory
networks (GRNs), accurately deducing gene regulatory relationships from gene expression
data remains a thought-provoking optimization exercise [3]. Over the years, many ma-
chine learning and statistical methods have been suggested to figure out gene regulatory
relationships using gene expression data [4].

The task of inferring gene regulation is complex due to the disproportionate ratio of
potential interactions to available data [5,6]. A wide array of algorithms has been developed
in response to this challenge, each designed to unravel and tackle this issue. Efforts to map
out the complex structure of gene regulatory networks (GRNs) have led to the creation
of various approaches, primarily focusing on analyzing gene interactions on a pairwise
basis. These methods employ distinct machine learning techniques to estimate regulatory
influences between gene pairs, varying their approach based on the underlying machine
learning principles. To address this, machine learning methods are classified into three cat-
egories according to their supervisory requirement: unsupervised learning methods [7–10],
supervised learning methods [11,12], and semi-supervised learning methods [13,14].

Methods without supervision use gene expression data to deduce GRNs and can be
classified into three types: regression-based, information theory-based, and correlation-
based. For instance, TIGRESS, a regression-based technique, picks transcription factors
for the target gene using sparse linear regression [9]. Information theory-based methods,
exemplified by ARACNE, CLR, and MRNET [15], evaluate edges by ranking them based
on diverse types of mutual information. Correlation-based techniques assess edge rankings
by utilizing correlations, for instance, the coefficients of Pearson’s or Spearman’s correla-
tion [16]. Additionally, the LINGER approach infers gene regulatory networks by iteratively
refining an initial network structure through data-driven optimization techniques, identify-
ing potential regulatory interactions from gene expression data. It combines elements of
machine learning and statistical analysis to improve the accuracy of the inferred network
without requiring prior knowledge or labeled data [17].

Unlike unsupervised methods, supervised methods work under the assumption that if
one transcription factor (TF) is identified as controlling a specific gene, then other TF–gene
combinations with similar characteristics are likely to interact. As a result, supervised
techniques involve translating expression profiles for a TF–gene pair into feature vectors,
which serve as input for a supervised learning method. For instance, Fantine Mordelet
et al. introduced SIRENE, a supervised method specifically created to identify gene pairs
involved in regulatory interactions. This approach uses attributes to build a binary classifier
employing a support vector machine (SVM) that distinguishes between target genes and
non-target genes for each TF [18]. Additionally, Guo et al. introduced a partial least squares
network (PLSNET) [19]. They employed an ensemble-based approach for gene regulatory
network (GRN) inference, breaking down the GRN interpretation target with p genes
into p subproblems. Using a feature selection technique based on partial least squares,
PLSNET addresses these subproblems. The predictions are then refined using a statistical
tool. Moreover, the GRADIS approach infers gene regulatory networks by using a support
vector machine (SVM) to classify gene pairs based on graph distance profiles derived
from gene expression data [20]. It involves clustering expression samples, constructing
Euclidean-metric graphs for each transcription factor–gene pair, and training an SVM
classifier to differentiate between interacting and non-interacting pairs, validated with
experimental data.

Semi-supervised approaches blend unsupervised and supervised learning charac-
teristics using labeled and unlabeled data. Augustine and the team propose a two-step
semi-supervised method that begins with clustering to identify valid negative samples, fol-
lowed by an iterative classification [21]. Additionally, notable methodologies from authors
such as Qian Wang et al. proposed a pseudo-Siamese GRN (PSGRN), which uses a pseudo-
Siamese network and the DenseNet framework for analyzing and learning from time-series
expression data to deduce gene regulatory networks [22]. Moreover, Yanglan Gan’s BiR-
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GRN leverages a bidirectional recurrent neural network to infer GRNs from time-series
single-cell RNA-seq data, improving accuracy and stability through a regression-based
approach and bidirectional analysis [23]. Mengyuan Zhao’s team introduces DGRNS, a
hybrid deep learning model that merges recurrent and convolutional neural networks
for GRN inference from single-cell transcriptomic data, achieving enhanced performance
by identifying gene pair relationships and novel regulatory interactions, showcasing its
superiority and potential for uncovering unexplored regulatory dynamics [24].

Introducing pooling techniques in the context of gene regulatory network (GRN)
analysis through graph convolution networks (GCNs) is crucial in enhancing the model’s
efficiency and accuracy. Pooling methods are essential for reducing the dimensionality of
the data, which in turn helps simplify the complexity of gene expression patterns. This
simplification is vital for extracting relevant features and improving the computational
efficiency of the model. Additionally, by summarizing the features of nodes within a graph,
pooling techniques enable the model to focus on the most significant aspects of the data,
thereby increasing the robustness and generalization capability of the model. However,
selecting appropriate pooling strategies is essential to ensure that critical information is not
lost during the process. This balance between the simplification and preservation of critical
information underscores the advantages of pooling techniques in GRN analysis.

In our approach, we leverage the attributes of GCNs, which are particularly suited
for GRN analysis. These attributes include the ability to capture complex patterns of gene
regulation that are often challenging for conventional methods. Our research focuses on
refining the gene regulation prediction model by integrating graph convolution networks,
particularly by applying varied pooling techniques. By optimizing pooling within a well-
structured GCN, we can discern complex relationships more effectively than many other
models, leading to enhanced precision in understanding gene regulatory relations.

To infer GRNs, we conceptualize the problem as a graph classification challenge,
aiming to identify connections between two central nodes within a specific subgraph. This
involves distinguishing between positive subgraphs, which contain connected transcription
factors (TFs), their target genes, and neighboring nodes, and negative subgraphs, which
consist of unconnected TFs and target genes, along with their neighbors. The initial gene
subgraph is constructed using various heuristic methods applied to gene expression data,
such as a Spearman correlation and mutual information. After generating feature vectors
for each node in the subgraph, our GCN model classifies the subgraph as either positive or
negative, demonstrating its capability to analyze gene regulatory networks effectively.

This study uses graph convolutional networks (GCNs) to infer gene regulatory net-
works (GRNs). Similar methodologies have been successfully applied in other domains,
notably in analyzing electronic health records (EHRs). For instance, the Electronic Health
Record Hierarchical Graph Convolutional Network (EHR-HGCN) reframes EHR text
classification as a graph classification task to effectively capture structural information.
EHR-HGCN combines context-sensitive word and sentence embeddings with structural re-
lationships represented in a heterogeneous graph, demonstrating significant improvements
in accuracy and F1 scores on various benchmarks [25]. Additionally, G-BERT is a model
that integrates GCNs with BERT for medication recommendation by leveraging hierarchical
structures in EHRs to improve the representation of medical codes [26]. By referencing such
related works, we provide a more comprehensive background highlighting the versatility
and robustness of GCNs across different applications, thereby emphasizing the novelty
and effectiveness of our approach in the context of GRN inference.

This paper makes several contributions to the field of gene regulatory network infer-
ence. First, we introduce an enhanced graph classification framework designed for GRN
inference. Second, we integrate a preliminary noisy subgraph generation step to facilitate
link prediction within the graph. Third, and most importantly, we explore, using various
pooling layers, our graph classification model. By diversifying pooling strategies within
GCNs, we achieve more efficient computational processes, improved feature extraction,
increased model robustness, and enhanced generalization capabilities. This comprehensive
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approach underscores the significance of pooling techniques in the context of GRN analysis,
providing a robust framework for understanding the complex patterns of gene regulation.

2. Materials and Methods

This section delves into three key components: the dataset used to assess the proposed
approach, the performance assessment metrics employed, and a synopsis of the EGRC
framework designed to predict gene regulatory networks (GRNs).

2.1. Benchmark Dataset

This study utilizes three datasets; their specific details are elucidated in Table 1. These
datasets, obtained from, are outlined as follows: the count of genes represented by the
frequency of nodes (#Nodes); the frequency of transcription factors (#TF); the count of
genes targeted by the TFs, denoted as the frequency of target genes (#Target Genes); and the
connections between transcription factors and their target genes, indicated by a ‘1’ in the
gold standard file, known as the number of links (#Links). Additionally, the table includes
the number of samples in each dataset (#Samples).

Table 1. A summary of the in silico, E. coli, and S. cerevisiae datasets, offering details on the node
count (#Nodes), transcription factors (#TF), target genes (#Target Genes), the count of links between
the transcription factors and target genes as indicated in the gold standard (#Links), and the sample
size (#Samples) for each dataset.

Species #Nodes #TF #Target
Genes #Links #Samples

In silico 1643 195 1448 4012 805
E. coli 4511 334 4177 2066 805

S. cerevisiae 5950 333 5617 3940 536

2.2. EGRC Framework

Representing the inference of gene regulation in the GRN involves transcription factors
T, a set of non-transcription factor target genes G, and gene expression data Ei,j where
i ∈ {T, G} and j ∈ [1, n], with n representing the count of the samples. The objective
is to infer the binary adjacency matrix, MT,T+G, representing the relation between the T
and G sets within the GRN. The GRN comprises multiple bipartite graphs < T, G, L >
where both TF and G constitute the vertices in the graph, and L represents the edges
connecting TFs from set T or connecting TFs from set T to genes in set G. Notably, there
are no edges between genes in set G. If Mx, y = 1, it signifies an edge between vertices ‘x’
and ‘y’; otherwise, there is no connection. Nx denotes the node information associated with
an individual node, x. Since this study focuses on predicting the presence of edges, we
consistently treat L as an undirected edge in our formulation. If the edge exists between the
two central nodes, as shown in Figure 1, this graph will be labeled as a positive subgraph;
otherwise, it will be labeled as a negative subgraph.

We introduce the EGRC framework, illustrated in Figure 2, to classify subgraphs as
positive or negative. The four phases make up the entire EGRC process: (1) constructing
noisy skeletons; (2) extracting enclosed subgraphs; (3) constructing node features in each
subgraph; and (4) building ensemble GCN classifiers.
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Figure 1. Noisy skeletons derived from Spearman’s correlation generate two subgraphs: positive 
(left) and negative (right). The positive subgraph is a bipartite graph with centers A and B. Here, A 
symbolizes the transcription factor, while B denotes its associated target gene. A link exists between 
A and B if their Spearman correlation exceeds a threshold set at 0.8. Conversely, the negative sub-
graph is a bipartite graph centering with C and D. C represents the transcription factor here, while 
D denotes its associated target gene. This negative subgraph is characterized by its lack of a link 
between C and D due to a Spearman correlation below the 0.8 threshold. 
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positive or negative. The four phases make up the entire EGRC process: (1) constructing 
noisy skeletons; (2) extracting enclosed subgraphs; (3) constructing node features in each 
subgraph; and (4) building ensemble GCN classifiers. 

 
Figure 2. The EGRC framework. Initial noisy skeletons are created through heuristic methods, such 
as Spearman’s correlation and mutual information, which are employed to identify relationships 
between transcription factors (TFs) and their target genes from gene expression data. These identi-
fied associations form bipartite graphs, each featuring two central nodes representing TF-G and TF-
TF relationships. A positive label is assigned to a bipartite graph if the central nodes are connected, 
while a negative label indicates unconnected nodes. Following this, a feature vector is generated for 
each node, incorporating two types of features—explicit features and structural embeddings. All 
the bipartite graphs and node features are inputs for the graph convolutional neural network. 

2.2.1. Creating Noisy Initial Skeletons 
To grasp the input’s local structure, we employ heuristic methods to deduce connec-

tions between transcription factors (TFs) and their target genes using gene expression data 
from training and testing datasets. This research applies commonly used techniques like 
Spearman’s correlation and mutual information as heuristics to establish edges between 
nodes. Despite the limitations inherent in existing heuristic methods, the edges inferred 

Figure 1. Noisy skeletons derived from Spearman’s correlation generate two subgraphs: positive
(left) and negative (right). The positive subgraph is a bipartite graph with centers A and B. Here, A
symbolizes the transcription factor, while B denotes its associated target gene. A link exists between A
and B if their Spearman correlation exceeds a threshold set at 0.8. Conversely, the negative subgraph
is a bipartite graph centering with C and D. C represents the transcription factor here, while D denotes
its associated target gene. This negative subgraph is characterized by its lack of a link between C and
D due to a Spearman correlation below the 0.8 threshold.
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Figure 2. The EGRC framework. Initial noisy skeletons are created through heuristic methods, such
as Spearman’s correlation and mutual information, which are employed to identify relationships
between transcription factors (TFs) and their target genes from gene expression data. These identified
associations form bipartite graphs, each featuring two central nodes representing TF-G and TF-TF
relationships. A positive label is assigned to a bipartite graph if the central nodes are connected,
while a negative label indicates unconnected nodes. Following this, a feature vector is generated for
each node, incorporating two types of features—explicit features and structural embeddings. All the
bipartite graphs and node features are inputs for the graph convolutional neural network.

2.2.1. Creating Noisy Initial Skeletons

To grasp the input’s local structure, we employ heuristic methods to deduce connec-
tions between transcription factors (TFs) and their target genes using gene expression data
from training and testing datasets. This research applies commonly used techniques like
Spearman’s correlation and mutual information as heuristics to establish edges between
nodes. Despite the limitations inherent in existing heuristic methods, the edges inferred
from them may contain noise. However, incorporating these links as an initial framework
provides valuable guidance for the training process. Initially, we construct GRN′ as a
noisy skeleton inferred from gene expression data, comprising a total of z noisy skeletons
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GRN′
i = <T, G, L′

i> where i ∈ [1, z] are created from z empirical functions. In each heuristic
function fi(T, G), the adjacent matrix (MT,G) is defined as in Equation (1):

MT,G=

{
1, fi(T, G) >= thresholdi
0, fi(T, G) < thresholdi

}
(1)

The thresholds used in Spearman’s correlation and the mutual information function
are 0.8 and 0.5, respectively.

2.2.2. Extracting Enclosed Subgraphs

At the initial approximation of the graph topology GRN′
i, we anticipate identifying

most transcription factor (TF) and target gene couples through co-expression. This is
particularly relevant as these pairs are inherently unlabeled and lack known regulatory
information. For each known regulatory pair, denoted as t ∈ [6] and g ∈ {G} and (t, g), (t,
t) ∈ L, we extract a subgraph Subi

(
t, g)+ that includes the known regulatory pairs and

their 1-hop neighbors on the noisy skeleton GRN′
i as positive subgraphs. Simultaneously,

we arbitrarily select t ∈ T and g ∈ {G}, (t, g), (t, t) /∈ L and obtain a subgraph Subi

(
t, g)− ;

these pairs and their 1-hop neighbors are contained on the noisy skeleton GRN′
i as negative

subgraphs.

2.2.3. Constructing Node Features in Each Subgraph

Every node within the gene regulatory network (GRN) carries valuable information,
unveiling its biological roles as either a transcription factor (TF) or a target gene. Node
features are constructed using two broad categories of features: explicit features and
structural embeddings. Explicit features are computed using the gene expression vector
Ei of gene i, i ∈{t, g}. It includes the mean (µ), standard deviation (σ), and quantiles of
expression values Q1, Q2, and Q3, as defined in Equation (2). Additionally, we designate
Q0 as the minimum expression value and Q4 as the maximum expression value.

Quantile Percentagez =
Qz+1 − Qz

Q4 − Q0
, z ∈ {0, 1, 2, 3} (2)

Structural embedding features adopt the shape of graph embeddings, which are a
learned continuous representation of features for network nodes. To accomplish this,
Node2vec is utilized to transform nodes into a low-dimensional space of features, opti-
mizing the likelihood of preserving the node network neighborhoods [27]. Going beyond
explicit features, graph embeddings encapsulate the topological structure of networks,
capturing the various connectivity patterns within them. Ultimately, we concatenate the
graph embeddings with the explicit features to construct the node feature vectors.

2.2.4. Constructing Ensemble GCN Classifiers

Utilizing the subgraph and its associated node features as input, we construct a graph
convolutional network employing various pooling layers to categorize the subgraphs into
positive and negative graphs.

Graph neural networks (GNNs) are a category of neural networks proposed for
effectively processing graph-structured data. Their popularity in graph analysis has surged
recently, largely owing to their remarkable performance [28]. These networks function
based on pairwise message passing, allowing for graph nodes to continuously enhance
their representations by exchanging information with neighboring nodes [29]. Within
GNNs, graph convolutional network models emerge as a subclass that leverages the
inherent graph structure. These models employ convolutional operations to aggregate
node information from the surrounding neighborhoods [30]. They directly manipulate
graphs and utilize their structural information. Furthermore, due to their potent ability to
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learn graph representations, GCNs have demonstrated outstanding performance across a
broad spectrum of tasks and applications [31].

According to the general principle of GCNs, each node’s feature vector is constructed
by gathering feature data from its neighbors and the node’s features. This process is
then replicated across all nodes. Following that, these features are input into a graph
convolutional network. The fundamental elements of the GCN include the convolutional
and pooling layers, enabling direct interaction with the graph data structure [30].

The pooling layer functions as a nonlinear down-sampling operation, diminishing the
dimensionality of feature representation. This reduction contributes to lower computation
costs and a smaller memory footprint and mitigates the risk of overfitting and a decrease in
the number of learned parameters [32]. Consequently, pooling facilitates the implementa-
tion of deeper networks in practice and is a measure against overfitting. Moreover, pooling
exhibits desirable translation-invariant properties in various applications. While there have
been debates about the use of pooling in CNNs lately, it still maintains its popularity. While
there are plenty of suggested graph convolutional layers for graph convolutional networks
(GCNs), the variety of proposed pooling layers is entirely restricted [33]. Despite this
constraint, strategic graph pooling holds promise as a direction for enhancing the model.
There are two typical kinds of pooling approaches: (1) clustering-based methods, which
cluster the original graph into subgraphs at each time of pooling, such as the DiffPool and
MinCutPool method; and (2) sorting-based methods, which rank nodes and only retain
them partially during pooling, such as the SAGPool method [34]. In this study, we present
three recent graph pooling algorithms:

(i) Differentiable Pooling (DiffPool) [30] is notable as a differentiable graph pooling
module created to obtain hierarchical representations of graphs by aggregating nodes
through multiple pooling layers. Experiment results for DiffPool demonstrate an average
accuracy enhancement for graph classification, ranging from 5% to 10%, compared to
other pooling methods [35]. DiffPool employs a learned assignment matrix S(l)∈ Rn1xnl+1 ,
updating the graph signal and topology through the following process:

X(l+1) = S(l)T
Z(l) (3)

A(l+1) = S(l)T
A(l)S(l) (4)

The matrix S(l) captures how nodes at layer l are linked to clusters at the next layer,
l + 1. Each column in S(l) represents a cluster in the subsequent layer, while each row
represents a node or cluster at layer l. In simpler terms, S(l) provides a flexible assignment
for nodes at layer l to clusters in the next simplified layer, l + 1.

Once S(l) is calculated, we label the input adjacency matrix at this layer as A(l) and the
input node embedding matrix as Z(l). Using these inputs, the DIFFPOOL ( A(l+1), X(l+1)

)
=

DIFFPOOL(A(l), X(l)) process refines the input graph, creating a fresh coarsened adjacency
matrix A(l+1) and a new set of embeddings X(l+1) for each node or cluster node within this
refined graph. In Equation (3), the node embeddings Z(l) become amalgamated based on
the cluster assignments S(l), generating embeddings for each of the nl+1 clusters. Similarly,
Equation (4) employs the adjacency matrix A(l) to formulate a condensed adjacency matrix
representing the connection strength between each pair of clusters.

Through the utilization of Equations (3) and (4), the fundamental idea behind the
DIFFPOOL layer is graph coarsening. This means that the adjacency matrix A(l+1) of the
following layer signifies a refined graph with nl+1 nodes or cluster nodes. Each cluster node
in this newly refined graph aligns with a cluster of nodes at layer l. Consequently, DiffPool
is recognized as a hierarchical approach to learning graph representations, grounded in the
concept of clustered nodes.

(ii) Self-Attention Graph Pooling (SAGPool) [36] surfaces as a method for graph pool-
ing that delves into hierarchical graph structures within graph neural networks (GNNs).
SAGPool enables pooling while considering both node attributes and the overall graph
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topology. This method incorporates a self-attention mechanism that distinguishes between
nodes to be dropped and those to be retained [9]. Beyond the consideration of graph
topology, SAGPool computes attention scores and node characteristics through graph con-
volution, resulting in hierarchical graph representation learning based on sorted nodes [37].
Moreover, as evidenced by the experimental findings, SAGPool showcases enhanced per-
formance in graph classification on benchmark datasets with a modest parameter count.
According to the authors, SAGPool was introduced as a pioneering approach utilizing
self-attention for top-notch graph pooling, presenting benefits over other methods outlined
in [31,33].

y = GNN
(

X(l), A(l)
)

(5)

i = topk(y) (6)

X(l+1) = X(l) ⊙ tanh(y)i (7)

A(l+1) = A(l)
i,i (8)

Equation (5) represents the graph neural network (GNN) operation. It takes the node
features X(l) and the adjacency matrix A(l) at layer l as input and produces the attention
scores y for the nodes. Next, as Equation (6) mentioned, it selects the indices of the top k
nodes based on the attention scores y. These are the nodes that will be retained after pooling.
Then in Equation (7), X(l+1) is the node feature matrix for the next layer. The operation
involves taking the node features X(l) and performing an element-wise multiplication
(denoted by ⊙) with the hyperbolic tangent of the attention scores y for the selected top
k nodes (yi). The tanh function ensures that the attention scores are scaled between −1
and 1, providing a non-linear transformation. Finally, in Equation (8) the adjacency matrix
for the next layer l + 1 is updated. It extracts the submatrix of A(l) corresponding to the
top k nodes selected in Equation (6). This submatrix represents the connections among the
retained nodes.

(iii) MinCut Pooling is a method employed in graph neural networks for data ag-
gregation. In graph neural networks, pooling serves the goal of roughly partitioning the
graph, efficiently diminishing its intricacy and dimensionality. This, in turn, facilitates a
more comprehensive understanding or interpretation of the graph’s features or compo-
nents. MinCut Pooling is one of the pooling methods that seeks to divide the graph into
multiple non-overlapping subgraphs or clusters [38]. This method is formulated as an
optimization problem to minimize the weights of the edges severed during partitioning
while maximizing the sum of internal degrees within each resulting subgraph. This method
attempts to preserve the most significant and tightly connected nodes within each subgraph
while reducing the connections between subgraphs. The advantage of such an approach is
maintaining the original graph’s structure and essential characteristics [39], even as its size
is decreased. This improves the efficacy of graph neural networks on various tasks [40],
including node classification, graph classification, etc.

S = so f tmax
(

GNN
(

X(l), A(l)
)

(9)

Apool = ST ǍS; Xpool = STX (10)

In the MinCut Pooling method, Equation (9) defines the generation of the cluster
assignment matrix S using a graph neural network (GNN). The GNN takes the node
features X(l) and the adjacency matrix A(l) at layer l as inputs, and the resulting output
is passed through a softmax function to produce S, where each element represents the
probability of a node being assigned to a specific cluster. Equation (10) shows the pooling
results: Apool = ST Â S is the refined adjacency matrix, and Xpool = STX is the pooled node
feature matrix. Here, Â represents the normalized adjacency matrix. These operations
project the original graph structure and node features into a reduced space defined by the
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clusters, effectively summarizing the graph into fewer nodes with aggregated connections
and features.

2.3. Performance Evaluation Metrics

EGRC is a useful subgraph extraction tool designed to work with diverse datasets,
including E. coli, S. cerevisiae, and in silico datasets. It leverages these datasets to extract
subgraphs, which are then classified as positive or negative. The classification procedure
entails building a graph convolution network with diverse pooling layers. We utilize a
training set and a distinct dataset as the test set to assess the models’ performance.

In assessing the efficiency of subgraph classification, our study employs two pivotal
evaluation metrics: the Precision–Recall (PR) curve and the Receiver Operating Characteris-
tic (ROC) curve. The PR curve, initially introduced by Jesse Davis in 2006 [41], alongside the
ROC curve, credited to Yang Shengping’s work in 2017 [42], is foundational in providing a
multifaceted evaluation of our algorithm’s performance. Utilizing these metrics facilitates
a nuanced understanding of the algorithm’s effectiveness in identifying accurate positives
within varied subgraph classifications.

Specifically, the PR curve emerges as a critical tool in elucidating the algorithm’s
operational precision and recall dynamics. Precision, defined as the proportion of true
positive predictions in relation to all positive predictions made, and recall, the measure of
the algorithm’s ability to correctly identify all relevant instances, are juxtaposed at various
threshold levels. This comparison yields invaluable insights into the trade-offs between
precision and recall, presenting a detailed picture of the algorithm’s performance under
different operational conditions. By meticulously analyzing these trade-offs, the PR curve
aids in pinpointing the optimal balance where both precision and recall are maximized,
thereby enhancing the algorithm’s efficiency in classifying subgraphs accurately.

Moreover, the PR curve’s significance is amplified when the balance between precision
and recall becomes critical to the algorithm’s application. For instance, prioritizing recall
may be necessary in applications where missing a relevant subgraph classification has
high stakes. Conversely, improving precision becomes paramount in contexts where the
cost of false positives is substantial. The PR curve’s ability to detail these aspects provides
a comprehensive framework for evaluating the algorithm’s performance beyond mere
accuracy metrics.

On the other hand, the ROC curve offers a different perspective by mapping the
true positive rate (sensitivity) against the false positive rate (1-specificity). This metric
is particularly useful in understanding how well the algorithm discriminates between
different classes under varying threshold settings. Together, the PR and ROC curves furnish
a robust evaluation framework, enabling us to discern the algorithm’s effectiveness not
only in terms of its accuracy but also in its practical applicability across various operational
contexts .

3. Results

This section comprises several main components. Firstly, we present the outcomes
obtained by employing three distinct pooling layers in graph convolutional networks for
inferring gene regulatory networks (GRNs). Through thorough analysis, we evaluate
and compare the results achieved by these pooling layers, providing insights into their
individual contributions to GRN inference. Next, utilizing the best pooling method, we
assemble the top-performing results obtained from Spearman’s correlation and mutual
information. By combining these results, we propose a final method that leverages the
strengths of both correlation measures. This ensemble approach aims to enhance the
accuracy and reliability of the GRN inference process. Lastly, we conduct a comparative
analysis where EGRC is benchmarked against other relevant methods documented in the
existing literature [43]. By undertaking this comparison, we assess EGRC’s performance in
relation to similar methods, thereby gaining a deeper understanding of its effectiveness
and potential advantages in the context of GRN inference.
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3.1. Comparing GRN Using Different Pooling Methods

A comparison of three pooling methods, MinCutPool, DiffPool, and SAGPool, has
been carried out regarding their AUROC and AUPR performance. These methods were
integrated into a graph convolution network to classify subgraphs extracted based on a
Spearman correlation and mutual information.

Table 2 presents a comprehensive performance comparison among MicutPooling, Diff-
Pooling, and SAGPool within the framework of a graph convolutional network, focusing
on their efficacy in analyzing the in silico dataset. Among these, the SAGPooling layer
distinguishes itself by demonstrating superior performance. Specifically, when leveraging
a subgraph based on a Spearman correlation, SAGPooling achieves notable results with an
AUROC of 0.834 and an AUPR of 0.623. Further, employing a mutual information-based
subgraph attains an AUROC of 0.793 and an AUPR of 0.476. A combined analysis of both
skeleton types further elevates its performance, yielding an impressive AUROC of 0.835
and an AUPR of 0.612.

Table 2. A comparative analysis of various pooling methods centered on AUROC and AUPR
metrics utilizing the in silico dataset. This table presents a side-by-side comparison of three different
pooling methods—DiffPool, MinCutPool, and SAGPool—across two evaluation metrics: Area Under
the Receiver Operating Characteristic curve (AUROC) and Area Under the Precision–Recall curve
(AUPR). Each method is assessed using three different skeleton types: a Spearman correlation (SP),
mutual information (MI), and an ensemble approach combining SP and MI.

Method Skeleton Type AUROC AUPR

DiffPool
Spearman correlation (SP) 0.600 0.287
Mutual information (MI) 0.834 0.556

Ensemble (SP + MI) 0.807 0.500

MinCutPool
Spearman correlation (SP) 0.745 0.426
Mutual information (MI) 0.844 0.590

Ensemble (SP + MI) 0.808 0.516

SAGPool
Spearman correlation (SP) 0.834 0.623
Mutual information (MI) 0.793 0.476

Ensemble (SP + MI) 0.835 0.612
The best score values are bold-faced.

The methodological insights extend across different pooling methods. For DiffPool,
the Spearman correlation (SP) struggles with class differentiation, as evidenced by its lower
AUROC and AUPR scores (0.600 and 0.287, respectively). On the other hand, mutual
information (MI) significantly outperforms SP, with scores of 0.834 in AUROC and 0.556
in AUPR, indicating superior predictive accuracy. The ensemble approach, blending SP
and MI, though slightly behind MI’s solo performance, still posts commendable scores of
0.807 in AUROC and 0.500 in AUPR, showcasing its effective adaptability. MinCutPool
observations reveal a similar trend, with MI outperforming SP and the ensemble approach
closely trailing MI, suggesting that integrating SP and MI offers enhanced performance
levels. In the case of SAGPool, SP’s performance in certain metrics either rivals or surpasses
the ensemble, pointing to instances where SP alone may be more effective. Although MI’s
performance is slightly lower than SP and the ensemble, it varies depending on the context,
indicating its nuanced impact.

Across various pooling methods and metrics, the ensemble strategy (SP + MI) con-
sistently delivers robust performances, illustrating its balanced and resilient nature. This
synergy likely benefits from the combined strengths of SP and MI, minimizing the risk
of specific scenario underperformance and enhancing the model’s overall reliability and
applicability. The analysis highlights the ensemble approach’s effectiveness in merging
SP and MI to achieve a consistently strong and balanced performance. Despite MI often
outperforming SP directly, the combined strategy effectively enhances the model’s efficacy,
particularly in achieving an optimal balance between classification accuracy (AUROC)
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and positive class precision (AUPR). The ensemble method’s adaptability and reliability
across different pooling methods and metrics underscore its potential to refine predictive
modeling, especially within complex in silico datasets.

In Table 3, our analysis extends to the S. cerevisiae dataset, highlighting the effective-
ness of various pooling techniques, with a particular focus on the SAGPooling layer’s
performance across different evaluation metrics. The table contrasts the performances of
three pooling methods—DiffPool, MinCutPool, and SAGPool—utilizing a Spearman corre-
lation, mutual information, and an ensemble approach that combines both the Spearman
correlation and mutual information. This comparison is grounded in two key performance
indicators: the Area Under the Receiver Operating Characteristic curve (AUROC) and the
Area Under the Precision–Recall curve (AUPR).

Table 3. A comparative analysis of diverse pooling methods centered on AUROC and AUPR metrics
utilizing the S. cerevisiae dataset. This table presents a side-by-side comparison of three different
pooling methods—DiffPool, MinCutPool, and SAGPool—across two evaluation metrics: Area Under
the Receiver Operating Characteristic curve (AUROC) and Area Under the Precision–Recall curve
(AUPR). Each method is assessed using three different skeleton types: a Spearman correlation (SP),
mutual information (MI), and an ensemble approach combining SP and MI.

Method Skeleton Type AUROC AUPR

DiffPool
Spearman correlation (SP) 0.382 0.442
Mutual information (MI) 0.731 0.679

Ensemble (SP + MI) 0.635 0.606

MinCutPool
Spearman correlation (SP) 0.837 0.821
Mutual information (MI) 0.797 0.725

Ensemble (SP + MI) 0.848 0.797

SAGPool
Spearman correlation (SP) 0.834 0.818
Mutual information (MI) 0.807 0.807

Ensemble (SP + MI) 0.854 0.807
The best score values are bold-faced.

Integrating a Spearman correlation and mutual information, the ensemble approach
consistently demonstrates superior efficacy, offering compelling evidence of its advantage.
For instance, within the SAGPooling analysis, employing Spearman correlation alone yields
an AUROC of 0.834 and an AUPR of 0.818. Meanwhile, utilizing mutual information as
a standalone measure results in closely matched AUROC and AUPR scores of 0.807. The
integration of these two methodologies—Spearman correlation and mutual information—
enhances performance, achieving an AUROC of 0.854 and maintaining an AUPR of 0.807.

Our comprehensive assessment underscores that while individual metrics like a Spear-
man correlation or mutual information offer valuable insights, combined use through an
ensemble strategy markedly improves performance. This is particularly evident in the
MinCutPool and SAGPool analyses, where the ensemble method outstrips the individual
performances of the Spearman correlation and mutual information, delivering the highest
AUROC and AUPR scores. Such outcomes firmly establish the ensemble approach as
a robust method that leverages the strengths of both Spearman correlation and mutual
information, culminating in enhanced predictive accuracy and reliability across different
pooling methods.

This synthesis of results from Table 3 clearly illustrates the ensemble method’s supe-
rior performance over the singular use of a Spearman correlation or mutual information.
It effectively harnesses each method’s unique advantages, leading to more effective and
generally superior performance across diverse pooling methods and evaluation metrics.
Therefore, the ensemble approach emerges as a more beneficial strategy for analyzing com-
plex datasets, especially when aiming for the highest performance accuracy and reliability
levels.
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Table 4 provides a detailed comparative analysis of various pooling methods applied
to the E. coli dataset, specifically focusing on their performance metrics, AUROC and AUPR.
This analysis evaluates three pooling methods, DiffPool, MinCutPool, and SAGPool, across
three different data representation approaches: a Spearman correlation (SP), mutual infor-
mation (MI), and an ensemble approach that synergizes SP and MI. The table meticulously
reports the AUROC and AUPR values for each method and approach, with superior scores
distinctly highlighted. The ensemble approach, combining SP and MI, emerges as a robust
performer, often outmatching or closely rivaling the individual performances of SP or MI
in terms of AUPR. This pattern underscores the ensemble’s efficacy in drawing upon the
strengths of both SP and MI to yield enhanced or equivalent outcomes compared to the
best-performing individual method.

Table 4. A comparative analysis of various pooling methods centered on AUROC and AUPR
metrics utilizing the E. coli dataset. This table presents a side-by-side comparison of three different
pooling methods—DiffPool, MinCutPool, and SAGPool—across two evaluation metrics: Area Under
the Receiver Operating Characteristic curve (AUROC) and Area Under the Precision–Recall curve
(AUPR). Each method is assessed using three different skeleton types: a Spearman correlation (SP),
mutual information (MI), and an ensemble approach combining SP and MI.

Method Skeleton Type AUROC AUPR

DiffPool
Spearman correlation (SP) 0.279 0.337
Mutual information (MI) 0.808 0.735

Ensemble (SP + MI) 0.715 0.655

MinCutPool
Spearman correlation (SP) 0.788 0.730
Mutual information (MI) 0.831 0.758

Ensemble (SP + MI) 0.828 0.781

SAGPool
Spearman correlation (SP) 0.805 0.771
Mutual information (MI) 0.860 0.825

Ensemble (SP + MI) 0.858 0.842
The best score values are bold-faced.

The ensemble approach’s relative superiority, particularly noted in the context of
AUPR, is significant for applications where precision and recall are paramount, such as in
imbalanced datasets. This advantage stems from the ensemble’s balanced and comprehen-
sive data representation, marrying the rank sensitivity of Spearman correlation with the
non-linear dependency detection afforded by mutual information. This blend addresses
the limitations inherent in each approach and capitalizes on their collective strengths to
boost overall model performance.

The analysis presented in Table 4 underscores the ensemble approach’s (SP + MI)
distinct advantage in handling the E. coli dataset across varied pooling methods. Although
the ensemble might not always lead in AUROC, its consistent uplift or competitive parity
in AUPR across all pooling methods solidifies its value. The ensemble’s ability to outper-
form or match the best individual methods’ performances highlights its potential as the
preferred choice for scenarios where precision and recall are critical, effectively leveraging
the integrated strengths of SP and MI to optimize model performance.

Upon confirming that the combined use of a Spearman correlation and mutual in-
formation (SP + MI) as an ensemble method leads to superior outcomes, we conducted
a detailed comparison of different pooling layers—namely DiffPool, MinCutPool, and
SAGPool—across several datasets, as outlined in Table 5. This comparison reveals the im-
pact of implementing the ensemble strategy within various pooling layers for datasets such
as in silico, S. cerevisiae, and E. coli, with a focus on two critical metrics: the Area Under the
Receiver Operating Characteristic curve (AUROC) and the Area Under the Precision–Recall
curve (AUPR). These metrics illustrate the ensemble method’s performance in each pooling
layer.
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Table 5. A comparative analysis of various pooling methods using an ensemble (SP + MI) ap-
proach centered on AUROC and AUPR metrics utilizing different datasets. The table showcases
a comparative analysis of three pooling methods—DiffPool, MinCutPool, and SAGPool—across
three datasets: in silico, S. cerevisiae, and E. coli. Each method utilizes an ensemble approach that
combines a Spearman correlation (SP) and mutual information (MI) as the skeleton type for the
analysis. The performance of each pooling method is measured in terms of Area Under the Receiver
Operating Characteristic curve (AUROC) and Area Under the Precision–Recall curve (AUPR), with
the best-performing scores for each dataset.

Dataset Method Skeleton Type AUROC AUPR

In silico
DiffPool Ensemble (SP + MI) 0.807 0.5

MinCutPool Ensemble (SP + MI) 0.808 0.516
SAGPool Ensemble (SP + MI) 0.835 0.612

S. cerevisiae
DiffPool Ensemble (SP + MI) 0.635 0.606

MinCutPool Ensemble (SP + MI) 0.848 0.797
SAGPool Ensemble (SP + MI) 0.854 0.807

Ecoli
DiffPool Ensemble (SP + MI) 0.715 0.655

MinCutPool Ensemble (SP + MI) 0.828 0.781
SAGPool Ensemble (SP + MI) 0.858 0.842

The best score values are bold-faced.

The patterns observed in Table 5 are striking, showing that SAGPool, when paired
with the SP + MI ensemble approach, consistently exceeds the performance of other pooling
layers across all datasets examined. For example, within the in silico dataset, SAGPool
achieves AUROC and AUPR scores of 0.835 and 0.612, respectively, outperforming the
scores obtained by both DiffPool and MinCutPool using the same ensemble method. This
trend of SAGPool’s dominance continues across the S. cerevisiae and E. coli datasets, where
it secures the highest AUROC and AUPR scores, solidifying its lead.

These results highlight SAGPool’s exceptional ability to leverage the combined strengths
of a Spearman correlation and mutual information effectively. This pooling layer demon-
strates superior adaptability to the nuances of different datasets and enhances the predictive
accuracy and reliability of the models. SAGPool’s consistently superior performance across
a variety of datasets underscores its robustness and efficiency in processing complex bio-
logical data, making it the preferred choice for researchers seeking the highest quality in
computational analysis.

In summary, Table 5 convincingly demonstrates that using the SAGPool layer in
conjunction with the SP + MI ensemble approach significantly surpasses other pooling
layers in various datasets. This is evidenced by the highest AUROC and AUPR scores,
signifying SAGPool’s superior capability in making accurate and reliable predictions.
Therefore, our study conclusively positions the ensemble method with SAGPool as the
most effective approach for analyzing complex datasets, emphasizing its importance in the
evolution of computational research methodologies.

In addition to performance evaluation, we also compared the execution times of
MinCutPool, DiffPool, and SAGPool on the E. coli datasets (Table 6). The findings revealed
that SAGPool was faster in execution time than the other methods.

Several reasons can explain the superior performance of SAGPooling over Diffpool
and MinCutPool, for instance,

- Selective pooling: SAGPooling employs a self-attention mechanism to selectively
pool a subset of nodes pertinent to the graph’s overall properties. This ability can
sometimes lead to improved performance by capturing significant structural features
of the graph more effectively than other methods.

- Adaptability: SAGPooling demonstrates superior adaptability to various graph struc-
tures. In contrast to DiffPool and MinCut Pooling, it does not require clustering the
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graph into a predetermined number of clusters or partitioning it into non-overlapping
clusters, affording it greater flexibility.

- Computational efficiency: SAGPooling is often more computationally efficient than
methods like DiffPool or MinCut Pooling, particularly for larger graphs. This effi-
ciency can facilitate the development of more complex or deeper graph convolutional
networks (GCNs), potentially enhancing performance.

- Less information loss: SAGPooling retains the most informative nodes and their
connections, reducing information loss during the pooling process compared to other
methods. This characteristic may lead to improved representation learning, thereby
enhancing performance.

Table 6. The runtime of EGRC with different pooling methods using the E. coli dataset. The results
show the parallel (64 cores) execution time (in minutes).

Method Skeleton Type Time in Minutes

MincutPool
Spearman’s correlation (SC) 14.24

Mutual information (MI) 14.21

DiffPool
Spearman’s correlation (SC) 19.50

Mutual information (MI) 19.14

SAGPool
Spearman’s correlation (SC) 3.21

Mutual information (MI) 3.19

After selecting the best pooling method (SAGPool), we combined the results from
Spearman’s correlation network and the mutual information network, which produces
useful information for our proposed model. In the subsequent sections, we assess the
performance of EGRC in comparison to other similar methods, including LEAP, GENIE3,
GRNBoost2, PIDC, and PPCOR.

3.2. Analytical Comparison with Existing Approaches

To evaluate the effectiveness of EGRC, we replicated five benchmarking techniques
stated in Pratapa et al., 2020—specifically, LEAP [44], GENIE3 [45], GRNBOOST2 [46],
PIDC [47], and PPCOR [48] —utilizing three datasets from DREAM5 [43] in silico, S.
cerevisiae, and E. coli. The benchmarking methods chosen for comparison with EGRC on
the DREAM5 dataset have been carefully selected to encompass diverse approaches to
gene regulatory network inference. Each method offers unique strengths and perspectives,
making them suitable for comprehensive evaluation.

LEAP constructs gene co-expression networks from single-cell RNA-sequencing data
by leveraging pseudo-time ordering to capture dynamic changes in gene expression over
time. This approach is particularly valuable for understanding temporal dynamics in gene
regulation, which aligns well with the goals of the EGRC method. We can assess how
well EGRC captures temporal gene expression patterns by comparing it with LEAP. LEAP
effectively captures dynamic co-expression patterns over time, providing insights into the
temporal progression of cellular states. GENIE3 infers gene regulatory networks using
ensemble methods of tree-based regression, where each gene’s expression is predicted
from the expression of all other genes. This method is known for its robustness and
ability to identify regulatory relationships based on feature importance scores. Comparing
EGRC with GENIE3 allows us to evaluate the efficacy of EGRC in capturing regulatory
relationships in a robust manner. Ensemble methods in GENIE3 enhance the accuracy and
robustness of inferred regulatory networks.

GRNBoost2 employs gradient-boosting machines to predict regulatory interactions,
offering an efficient and scalable approach. Its iterative decision tree-building process is
designed to handle large datasets effectively. By including GRNBoost2 in the comparison,
we can assess the scalability and efficiency of EGRC in inferring gene regulatory networks.
GRNBoost2 is highly efficient and scalable, making it suitable for large datasets. PIDC infers
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gene networks by quantifying multivariate information measures, focusing on identifying
non-linear dependencies and direct interactions between genes. This method’s ability to
capture non-linear relationships is crucial for a comprehensive evaluation of EGRC, which
aims to uncover complex regulatory interactions. PIDC’s strength lies in its ability to
capture non-linear dependencies and direct interactions, providing a nuanced view of gene
regulatory networks, while PPCOR calculates partial correlation coefficients to infer gene
regulatory networks by controlling for the effects of other variables. This method provides
a direct measure of the relationships between genes, making it a valuable benchmark for
assessing the precision of EGRC in identifying direct regulatory interactions. PPCOR’s
strength is in directly measuring relationships by controlling other variables, ensuring an
accurate identification of the regulatory interactions.

Regarding the datasets chosen for comparison, in silico datasets offer controlled
complexity, allowing researchers to design varying levels of complexity from simple linear
interactions to highly complex non-linear dependencies, with the ability to control the
number of genes, interaction density, and relationship types. Noise can be systematically
introduced and controlled to simulate different experimental conditions, enabling the
testing of inference methods’ robustness. Being synthetic, these datasets may lack the
biological variability and unexpected patterns found in real-world data, but they benefit
from known ground truth, making accuracy evaluation straightforward.

In contrast, S. cerevisiae, a model organism in genetics, presents a highly complex
gene regulatory network with numerous well-studied pathways and interactions, high
dimensionality, and non-linear dependencies, contributing to the complexity of network in-
ference. These datasets also contain biological noise and experimental variability. Similarly,
E. coli has a moderately complex gene regulatory network with well-annotated interactions,
influenced by interactions among many genes and regulatory elements, and is subject to
biological noise and variability from experimental conditions and genetic diversity. The
presence of direct and indirect gene interactions further complicates network inference, and
although there is substantial knowledge of E. coli’s gene network, it remains incomplete
with potential unknown interactions.

By selecting these methods and using these datasets, we ensure a comprehensive and
rigorous benchmarking process, allowing us to evaluate the performance of EGRC from
multiple perspectives. This includes link predictive accuracy, robustness, and resilience.
This holistic approach provides a thorough comparison, highlighting the strengths and
potential areas for improvement of the EGRC method.

Figures 3 and 4 illustrate the AUROC and AUPRC performance of the assessed
techniques across these three simulated DREAM5 datasets. Notably, EGRC consistently
surpasses the other methods on all three datasets. Figure 3a shows a distinct trend while
evaluating the in silico dataset. The initial AUROC value is relatively low but exhibits
gradual improvement over time. To assess the proposed method on the in silico dataset,
we utilized the E. coli dataset as the training dataset. The E. coli dataset comprises real data,
whereas the in silico dataset is generated synthetically. Figure 3a highlights the initial diffi-
culty our model faced in comprehending the relevant features within the data. However, as
the training process advanced, the model successfully learned to extract more meaningful
and informative features from the input data, improving its predictive performance. This
feature learning process significantly contributed to the rapid enhancement of the AUROC
score.

Figure 4 presents the comparative Precision–Recall curves for various GRN prediction
algorithms across three DREAM5 datasets: (a) in silico, (b) E. coli, and (c) S. cerevisiae. EGRC
consistently outperforms other methods, maintaining high precision and recall, especially
in real-world datasets like E. coli and S. cerevisiae, demonstrating its robustness in handling
complex gene regulatory networks with significant noise. GENIE3 and GRNBoost2 also
show strong performance with balanced precision and recall, though they are slightly less
effective in noisy environments. LEAP, PPCOR, and PIDC exhibit more variable perfor-
mance, particularly with real-world datasets due to lower precision and recall. Overall,
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EGRC’s superior performance highlights its capability to accurately detect true regulatory
links with minimal false positives across diverse datasets.
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Our observations highlight an enhancement compared to five other methods, namely
LEAP [44], GENIE3 [45], GRNBOOST2 [46], PIDC [47], and PPCOR [48]. EGRC exhibited
superior performance assessed to the commonly utilized technique, GENIE3.
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In addition, we compared the performance of five benchmark methods—LEAP, GE-
NIE3, GRNBoost2, PIDC, and PPCOR—against EGRC using three criteria: link predictive
accuracy, robustness, and resilience.

Link predictive accuracy evaluates a method’s ability to correctly predict the presence
or absence of regulatory links between genes. This is critical for identifying regulatory
relationships and is measured using standard performance metrics such as the Area Under
the Receiver Operating Characteristic curve (AUROC) and the Precision–Recall Curve
(AUPR). The comparative analysis shows LEAP performs well in E. coli and S. cerevisiae
datasets but less effectively in in silico datasets. GENIE3 demonstrates high accuracy, while
GRNBoost2 exhibits medium to high accuracy due to its ensemble learning approach. PIDC
achieves good accuracy, excelling in identifying non-linear dependencies in the in silico
dataset, and PPCOR also shows good accuracy, relying on partial correlations in the in
silico dataset.

Robustness refers to a method’s ability to maintain performance across different
datasets and conditions, ensuring consistent performance across diverse datasets. This
was assessed by testing each method on multiple datasets with different characteristics,
including in silico, E. coli, and S. cerevisiae. LEAP’s reliance on pseudo-time ordering
makes it less robust across different dataset types. GENIE3 is highly robust and performs
well across diverse datasets. GRNBoost2 is moderately robust, with performance varying
depending on dataset characteristics. PIDC’s robustness is low and influenced by data
complexity, while PPCOR also exhibits low robustness and struggles with larger networks.

Resilience measures a method’s ability to handle errors, missing data, or unexpected
variations in the data. This criterion was evaluated by introducing noise (perturbations)
into the datasets, simulating real-world conditions such as those found in the E. coli dataset,
where experimental data often contain noise and variability. The results indicate that LEAP
is moderately effective in noise mitigation, performing well in specific scenarios but lacking
comprehensiveness. GENIE3 shows low noise mitigation, with significant performance
drops in noisy data. GRNBoost2 manages noise better than some methods but maintains
only medium effectiveness. PIDC excels in noise mitigation due to its use of multivariate
measures, while PPCOR handles noise moderately well but is less effective compared to
others.

Conversely, EGRC demonstrates superior performance across all three criteria. Its
innovative use of Graph Convolution with Self-Attention Graph Pooling enhances link
predictive accuracy by capturing complex patterns in gene regulation. Additionally, dual
GCN models improve robustness and resilience by effectively classifying ‘Positive’ and
‘Negative’ subgraphs. The combination of Spearman’s correlation and mutual information
provides superior noise mitigation by capturing a broader spectrum of gene interactions,
making EGRC highly effective even in noisy datasets like E. coli.

4. Conclusions

Within this investigation, we have presented EGRC, a framework crafted to determine
the presence of a connection within a subgraph focused on two nodes. A subgraph receives
a positive label if associated with a transcription factor (TF) and its corresponding target
gene. Conversely, a subgraph without a connection between a TF and its target gene is
assigned a negative label.

Through our experimentation, we have pinpointed several factors influencing the
predictive capabilities of EGRC concerning gene regulatory networks (GRNs). Deploying an
ensemble strategy that fuses various heuristic frameworks empowers us to adeptly address
the inherent constraints within individual frameworks. This includes those constructed
using Spearman’s correlation coefficient or mutual information, particularly in scenarios
with relatively minimal noise levels. This ensemble technique leverages diverse information
obtained from different perspectives, including nonlinear correlation and information
theory, effectively mitigating noise-related issues. Additionally, training and testing the
heuristics enable graph convolution networks (GCNs) to learn the relationship mapping
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between the heuristics and the actual regulatory connections, thereby enhancing model
accuracy and effectiveness.

Furthermore, the pivotal role of graph embedding techniques lies in their adeptness
at capturing the innate topological structures of the network, constituting a significant
contribution to the realm of link prediction. Beyond extracting regulatory pairs alone, in-
corporating subgraphs encompassing neighboring nodes provides valuable supplementary
information. Node2vec, as a graph embedding technique, generates a more accurate and
precise representation of the graph, thereby enhancing link prediction capabilities. Effec-
tively extracting explicit features from gene expression data proves beneficial, considering
the critical role of gene expression in deducing gene regulatory networks (GRNs). Features
that portray the comprehensive distribution and patterns of input expression—such as
z-score, standard deviation, and quantile percentages—elevate the data representation of
the EGRC model, leading to enhanced performance.

Lastly, incorporating a graph convolutional network with an enhanced pooling layer,
such as the SAGPool technique, significantly augments the performance of the graph clas-
sifier. The advanced pooling capabilities of the SAGPool technique allow the network to
effectively capture and utilize crucial graph features, resulting in improved classification
outcomes. Conducting a thorough comparison, EGRC outshines five benchmark methods
(LEAP, GENIE3, GRNBoost2, PIDC, and PPCOR) across three DREAM5 networks. Through
the utilization of DREAM5′s in silico data, EGRC exhibits a 0.85% enhancement in AUROC
and a notable 74.07% improvement in AUPR compared to the runner-up method (GRN-
Boost2). For the E. coli dataset, EGRC showcases a remarkable 30.08% surge in AUROC
and an outstanding 95.01% boost in AUPR.

EGRC surpasses existing methods in terms of AUROC and AUPR across multiple
datasets, demonstrating its robustness and accuracy. Accurate GRN reconstruction aids in
identifying key regulatory genes involved in diseases such as cancer and diabetes, supports
gene function annotation, and facilitates biomarker discovery for early diagnosis and
monitoring. EGRC enhances the understanding of cellular pathways, supports systems
biology studies, and advances personalized medicine by enabling tailored treatment plans.
Comparing GRNs across species provides insights into the evolutionary conservation and
divergence of regulatory mechanisms.

Despite the encouraging outcomes of our methodology, it is crucial to recognize a
significant constraint: our dependence on DREAM5 datasets. These datasets, sourced
from extensively studied model species and featuring synthetic data, serve as the exclusive
benchmark data with empirically validated, gold-standard regulatory relationships. To
enhance the EGRC model, future plans involve integrating additional types of biological
data, such as epigenetic data, protein–DNA interaction data, and chromatin accessibility
data, to improve the accuracy and robustness of GRN inference. Incorporating more
sophisticated heuristic methods to generate initial noisy skeletons could enhance the initial
approximation of GRN structures. Applying the EGRC framework to a broader range
of species beyond model organisms like E. coli and S. cerevisiae, including human and
plant datasets, would help validate its generalizability and utility in diverse biological
contexts. Encouraging collaboration with experimental biologists to validate the inferred
GRNs through laboratory experiments is essential to ensure the practical applicability
of the predicted regulatory interactions. Additionally, leveraging methodologies such as
kTWAS, which integrates kernel machines with transcriptome-wide association studies, can
improve statistical power and reveal novel genes, providing further insights into complex
regulatory mechanisms. This integrated approach highlights the necessity for the continual
development and validation of computational models to unravel the intricacies of gene
regulation and its implications in health and disease.

In summary, the EGRC model holds the potential to accurately deduce gene regulatory
networks (GRNs) across a wide array of species, significantly advancing our understanding
of biological systems and disease processes.
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5. Expanded Discussion on Particular Biological Implications

Our study introduces the Enhanced Graph Representation Convolution (EGRC)
method, demonstrating superior performance in predicting gene regulatory networks
(GRNs) across multiple datasets. The biological implications of these findings are substan-
tial and multifaceted:

(a) Identification of Key Regulatory Genes: An accurate reconstruction of GRNs is crucial
for identifying key regulatory genes involved in various biological processes and
diseases. For instance, our method can help pinpoint transcription factors (TFs)
pivotal in cancer progression, metabolic disorders, or developmental processes. By
accurately mapping these regulatory relationships, EGRC aids in uncovering potential
targets for therapeutic intervention.

(b) Gene Function Annotation: Understanding gene regulatory interactions enhances gene
function annotation. Many genes, especially newly discovered or less studied, have
unknown or poorly characterized functions. By identifying regulatory connections,
EGRC contributes to predicting the roles of these genes within broader biological path-
ways, facilitating a deeper understanding of their contributions to cellular functions
and organismal development.

(c) Biomarker Discovery: EGRC’s high precision and recall demonstrated in noisy datasets
like E. coli suggest its robustness in handling real-world biological data, which often
contain variability. This capability is crucial for biomarker discovery, where identify-
ing reliable molecular signatures for disease diagnosis, prognosis, and monitoring is
essential. EGRC’s ability to accurately predict regulatory links can lead to identifying
novel biomarkers for early disease detection and personalized medicine.

(d) Systems Biology and Pathway Analysis: EGRC enhances the understanding of complex
cellular pathways by providing detailed maps of gene regulatory interactions. This
is particularly valuable in systems biology, where comprehensive models of cellular
networks are constructed to understand how various biological components interact
and give rise to phenotypic traits. EGRC’s accurate GRN predictions can be integrated
into these models, offering insights into pathway dynamics and cellular responses to
stimuli.

(e) Comparative Genomics and Evolutionary Studies: By applying EGRC to datasets from
different species, researchers can compare GRNs to explore the evolutionary conser-
vation and divergence of regulatory mechanisms. Understanding these evolutionary
aspects can reveal how regulatory networks have adapted to different environmental
conditions and evolutionary pressures, shedding light on fundamental biological
principles and species-specific adaptations.

(f) Advancements in Personalized Medicine: The precise prediction of GRNs supports
personalized medicine by enabling tailored treatment plans based on an individual’s
unique regulatory network profile. This approach can improve therapeutic efficacy
and reduce adverse effects by targeting specific regulatory pathways involved in a
patient’s disease.

In short, the EGRC model holds significant potential to advance our understanding
of biological systems and disease processes. By accurately deducing GRNs across vari-
ous species, EGRC contributes to identifying regulatory genes, gene function annotation,
biomarker discovery, systems biology studies, and personalized medicine. Future enhance-
ments and broader applications of the model will further impact biological research and
clinical practice.
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