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Abstract: Securing the structural safety of blades has become crucial, owing to the increasing size
and weight of blades resulting from the recent development of large wind turbines. Composites
are primarily used for blade manufacturing because of their high specific strength and specific stiff‑
ness. However, in composite blades, joints may experience fractures from the loads generated dur‑
ing wind turbine operation, leading to deformation caused by changes in structural stiffness. In this
study, 7132 debonding damage data, classified by damage type, position, and size, were selected to
predict debonding damage based on natural frequency. The change in the natural frequency caused
by debonding damage was acquired through finite element (FE) modeling and modal analysis. Syn‑
chronization between the FE analysis model and manufactured blades was achieved through modal
testing and data analysis. Finally, the relationship between debonding damage and the change in
natural frequency was examined using artificial neural network techniques.

Keywords: artificial neural network; composite blade; debonding; machine learning; modal analysis;
natural frequency

1. Introduction
Owing to recent problems, such as environmental pollution, there is a growing in‑

terest in wind power, an eco‑friendly energy source. The size of wind turbines has been
increasing annually for larger annual energy production (AEP) in limited land. Because
this increases the length and weight of the components, blades are manufactured using
composites with high specific strength and specific stiffness [1–4]. In addition, the cost of
producing a wind turbine blade is 15% to 20% of the total cost of producing a wind turbine.
Its blade design cost is less than the total production cost, that is, the initial investment cost.
Numerical modeling and optimization are required to reduce the LCOE (Levelized Cost of
Electricity) through better composition models, the use of composite materials, and better
manufacturing techniques [5]. Composite blades may suffer debonding damage that sep‑
arates the spar cap–shear web joints and the joints of the leading and trailing edges owing
to problems in the manufacturing process, drag and centrifugal force during operation,
and external factors. Because debonding damage is caused to wind turbine blades, tech‑
nology to detect debonding damage is required to secure structural safety and power gen‑
eration efficiency [6–8]. Damage detection techniques that are currently available include
visual inspection, ultrasonic waves, thermal image cameras, and machine vision [9–12].
Du et al. [13] introduced damage detection techniques for wind turbine blades using ther‑
mal imaging cameras or acoustic emission techniques. Kim et al. [14] introduced damage
detection techniques for blades using image detection and tracking techniques. However,
these studies could only detect external damage to blades, and damage detection through
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internal sensors could not be applied to the wind turbine blades already installed. To ad‑
dress these problems, research has been conducted using vibration to detect the changes in
stiffness caused by internal damage through changes in the natural frequency [15].
Joshuva et al. [16] acquired vibration response data by attaching acceleration sensors to
a 50 W‑class wind turbine model and compared and presented the vibration data caused
by blade damage. Awadallah and El‑Sinawi [17] acquired vibration response data by at‑
taching acceleration sensors to 400 W blades and classified different vibration characteris‑
tics depending on damage through machine learning. These studies, however, were con‑
ducted on ultra‑small wind turbine models, which had structural differences from large
wind turbine blades (e.g., shear web and spar cap), and they only considered external dam‑
age to ultra‑small wind turbine blades. In general, it is difficult to analyze the vibration
data of large blades because they vary in a complexmanner depending on various damage
factors, such as the size, position, and number of internal debonding damages. Therefore,
studies have been conducted to address data or problems that are difficult to analyze us‑
ing machine learning. Kim et al. [18] predicted damage, using machine learning models
to diagnose defects in a rotating body. Adrian et al. [19] explained the learning model co‑
ordination method according to the characteristics of the data to be used. It is practically
difficult to apply these two studies to damage detection for composite blades because the
objects are structurally different. Thus, a previous study [20] proposed a damage predic‑
tion algorithm based on the change in the natural frequency caused by debonding damage
to a 5MWblade. From that study, the possibility of predicting debonding damage through
natural frequency was determined; however, it was difficult to consider the vibration char‑
acteristics that vary depending on the complex damage factors of the blades. Therefore,
research on the improvement of the accuracy of machine learning algorithms by secur‑
ing more detailed damage information and natural frequency data is required to consider
complex factors.

This study aims to predict debonding damage to composite blades for 20 kW‑class
wind turbines considering the internal structure of the blades using the artificial neural
network (ANN) technique based on natural frequency characteristics according to stiff‑
ness change. To this end, joints subjected to damage, the damage position, and the dam‑
age size were defined first, and 7132 debonding damage data for composite blades were
modeled using ABAQUS 2022 [21], a finite element analysis (FEA) software program. A
modal test was conducted by manufacturing a blade in the same way as the FEA model,
and the model was improved through the acquired natural frequency data. To predict
debonding damage by acquiring natural frequency data according to the debonding dam‑
age of the model, the debonding damage accuracy for composite blades was improved by
designing and reinforcing the ANN model of MATLAB 2020a [22], a numerical analysis
software program.

2. Damage Prediction Model Development
The blade used to predict debonding damage was the blade model for 20 kW‑class

wind turbines developed in Kunsan National University, featuring a spar cap and shear
web, which are the structural characteristics of large composite blades [23]. This modeling
method is shown in Figure 1, and the specifications are listed in Table 1. And as shown
in Figure 1, the modeling method implemented the bonding and debonding conditions by
applying multi‑point bonding conditions.
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Figure 1. Modeling method of wind turbine blade.

Table 1. Specification of wind turbine blade.

Rated power 20 kW

Cut‑in wind speed 3 m/s

Rated wind speed 11 m/s

Cut‑out wind speed 24 m/s

Number of blades 3

Blade length 4.95 m

Inertia location to root 2 m

Number of shear web 2

2.1. Damage Selection
This study developed and demonstrated a procedure for identifying debonding dam‑

age using an ANN on the changes in the natural frequency characteristics of a wind tur‑
bine blade, as shown in Figure 2. The procedure consists of (1) selecting the target blade
and constructing a corresponding FE model, (2) defining the debonding damage configu‑
ration through selecting proper debonding damage variables, (3) constructing a debond‑
ing damage map using the natural frequency changes obtained through modal analysis,
(4) selecting important key features using a preprocessing technique such as PCA, and
(5) identifying debonding damage using an ANN. In this study, the authors employed the
blades of the 5‑MW class Sandia offshore wind turbine [24].

In this study, the debonding damage that can occur at six blade joints (Figure 3)
was classified based on the damage type, damage start position, and damage size, and
7132 damage data were selected. First, as shown in Figure 4, the damage type was classi‑
fied into three types. Type 1 has one instance of damage in a single web, while type 2 has
two instances of damages in a single web. Type 3 has one instance of damage in each of
the two webs. The damage start position includes points that are 18% away from the root
of the blade, where debonding damage has the greatest impact on the safety of the blade,
and the points 0.5 m, 1.3 m, and 2.1 m away from the root were selected to consider all
the shear web–spar cap joints. The damage size was selected differently depending on the
type to examine changes in the natural frequency for the entire range of damaged joints,
as shown in Figure 5a–c. For type 1, 0.2 m sized damage began at the damage start point
of the joint and increased by 0.2 m to 1.8 m. For type 2, 0.1 m sized damage began at the
damage start point and increased by 0.1 m to 0.5 m. In type 3, the maximum damage size
was selected differently depending on the damage start point to express the occurrence of
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one instance of debonding damage at each of the two joints. At the 0.5 m point from the
root, 0.2 m sized damage began and increased by 0.2 m to 1.8 m. At the 1.3 m point from
the root, 0.2 m sized damage began and increased by 0.2 m to 1.6 m. Finally, at the 2.1 m
point from the root, 0.2 m sized damage began and increased by 0.2 m to 0.8 m.
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2.2. Acquisition of Unique Characteristics
Modal analysis and/or natural frequency analysis identify the natural frequency of a

structure and its geometric deformation according to the natural frequency of each mode.
They are used to predict the resonance of a structure or its geometric deformation by vibra‑
tion. In this study, a modal analysis of debonding damage was conducted using ABAQUS,
an FEA software program. As shown in Table 2, the FE model used S4R shell elements,
and the numbers of the elements and nodes were 40,153 and 41,736, respectively. A blade
model without damage was constructed by bonding the spar cap–shear web joints and
the joints of the leading and trailing edges using the multi‑point constraint (MPC) tech‑
nique. Subsequently, 7132 damage models were constructed by removing the bonds of
the debonding damage occurrence points according to the damage selection criteria in
Section 2.1. Modal analysis was conducted by restraining the degrees of freedom of the
root of the model in the X, Y, and Z axes as initial constraints. Based on this, the first to
sixth natural frequency data were acquired for 7132 debonding damage models.

Table 2. Conditions and datasets for blade FEM.

Number of nodes 41,736 Total number of data sets 7132

Number of elements 40,153 Number of training data 4992

Natural frequency order 6 Number of testing data 1070

Bonding contact method MPCs Number of validation data 1070

2.3. Prediction Model Construction
TheANN technique, a type of supervised learning, was used to analyze changes in the

natural frequency data for each damagemodel according to the damage selection criteria in
Section 2.1. The ANN technique is mainly used to solve problems in certain areas without
clear definitions, such as images, voice recognition, inference, and association, because
it facilitates fast calculations through patterns trained with various types of input/output
data and can express a number of input/output relationships with multiple hidden layers.
It is necessary to prevent overfitting, which cannot properly perform the prediction of other
data learning models, owing to excessive fitting to one learning model during the learning
process. To this end, the data required for machine learning were classified into data for
training, testing, and validation. In addition, a cross‑validation technique that re‑selects
new training datasets and repeats training was used to minimize data redundancy. In
addition to this, 70% (4992) of the debonding damage configurations were used as training
data, 15% (1070) were used as testing, and 15% (1070) were used as validation data.

3. Modal Test for Model Synchronization
3.1. Blade Manufacturing

In this study, composite blades for 20 kW‑class wind turbines were manufactured
for the validation of the blade debonding damage prediction algorithm in Section 2. The
weight difference from the FEA model was less than 5%. The specifications of the blades
are listed in Table 3. Amodal test was conducted to improve the FEAmodel through the ac‑
quisition and analysis of vibration characteristics. In addition, four blades with debonding
damage were manufactured for validation of the algorithm.



Mach. Learn. Knowl. Extr. 2024, 6 1863

Table 3. Blade specifications.

Properties

GFRP
(Glass‑Fiber‑Reinforced Plastic)

CFRP
(Carbon‑Fiber‑

Reinforced Plastic)

Uni‑Directional [0◦] Two‑Axial
[±45◦]

Tri‑Axial
[0◦, ±45◦] UD

Long. Elastic
modulus [GPa] 40,100 12,000 30,500 133,000

Trans. Elastic
modulus [GPa] 12,300 12,000 15,100 9000

Shear modulus [GPa] 3400 11,000 7100 4400

Long. Poisson’s ratio 0.26 0.55 0.43 0.34

Layer thickness [mm] 0.91 0.59 0.91 0.1

3.2. Modal Test
To acquire and analyze the vibration characteristics of the composite blades, a fixing

jig and a blade were combined, and an impact was applied to the blade using an impact
hammer. Vibration response and natural frequency data were then acquired using a non‑
contact sensor. Table 4 lists the specifications of the PRT sensor and high‑speed camera
used for measurement. Vibration response data were measured at a distance 2.7 m away
from the root because of the measurement range limit of the sensor. The related contents
are shown in Figures 6–8. And As shown in Figure 6, composite blades for a 20 kW wind
power generator manufactured using GFRP (Glass Fiber Reinforcement Plastic) and CFRP
(Carbon Fiber Reinforcement Plastic) materials were fixed. A test was conducted by hitting
these blades with an impact hammer at a 4.5 m point. In particular, the position measured
through the PRT sensor wasmeasured at a point of 2.7 m, as shown in Figure 7. The reason
for this selection is that it is the location where the most common data can be obtained as
a result of testing several locations.

Table 4. Sensor specifications.

Properties PRT Sensor High‑Speed Camera Data Logger

Model ILD 1700‑100 Photron Fastcam Mini GTDL‑360

Maximum
measurement rate [Hz] 100 kHz 2 kHz 1 kHz
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4. Results and Discussion
4.1. Blade Model Synchronization

Natural frequency data were acquired by conducting the test described in Section 3.2
and constructing a model without damage. Figure 9 shows the vibration response data
and natural frequency data, while Table 5 lists the modal test results.
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Table 5. Modal test results.

Mode Frequency (PRT) [Hz] Frequency (Camera) [Hz]

1 4.81 4.82

2 11.76 11.76

3 16.41 16.40

4 32.91 32.9

5 50.53 50.5

6 56.3 56.28

4.2. Natural Frequency Analysis
The blade model was synchronized so that the error from the results in Table 5 could

be less than 5%. Amodal analysis of 7132 blade damagemodels was then conducted using
the method described in Section 2.2. Figure 10 shows the first to sixth natural frequency
results of the blade without damage and the corresponding behavior.
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4.3. Damage Prediction Model Results
Prediction accuracywas examined for the debonding damage predictionmodel using

the ANN technique and based on the natural frequency data acquired throughmodal anal‑
ysis, as shown in Figure 11. The input data were the first to sixth natural frequency data,
and the target data were set to predict joints subjected to the debonding damage, damage
start position, and damage size. Tables 6 and 7 list information on the input and target data.
The number of hidden layers was set to two considering the forms and numbers of the in‑
put and target data, as well as the learning time. Each hidden layer contained 100 neurons.
Figure 12 shows the damage prediction results by type. The x‑axis represents the target
damage information to be predicted, while the y‑axis indicates the damage information
predicted through machine learning. As shown in Figure 12a, the damage prediction ac‑
curacy of type 1 was found to be 97%, whereas the damage size from 200 to 1800 mm was
not completely distinguished. Figure 12b shows that the damage prediction accuracy of
type 2was 86%. Unlike type 1, 1800mmdamagewas predicted even though themaximum
damage size was set to 500 mm. Finally, as shown in Figure 12c, the damage prediction
accuracy of type 3 was 86%, and it was found that the damage size was not completely pre‑
dicted owing to the large difference from the diagonal values obtained using a regression
equation caused by complex changes in the natural frequency depending on the damage.
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Table 6. Input data.

Input
data

Natural frequency (Hz)

No. 1st 2nd 3rd 4th 5th 6th

1 4.63 12.34 16.03 33.84 52.18 54.64

2 4.57 12 15.84 33.58 52.06 54.33

3 4.54 11.95 15.78 33.45 52 54.16

4 4.53 11.93 15.77 33.33 51.94 54.09

︙ ︙ ︙ ︙ ︙ ︙ ︙

7129 4.63 12.31 15.98 33.74 51.65 54.43

7130 4.62 12.30 15.96 33.73 51.54 54.42

7131 4.62 12.28 15.93 33.67 51.39 54.42

7132 4.62 12.27 15.90 33.53 51.09 54.33

Table 7. Target data.

Target
data

No. joint 1 location 1
(mm)

length 1
(mm) joint 2 location 2

(mm)
length 2
(mm)

1 0 0 0 0 0 0

2 1 500 200 0 0 0

3 1 500 600 0 0 0

4 1 500 1000 0 0 0

︙ ︙ ︙ ︙ ︙ ︙ ︙

7129 5 2100 800 6 2100 200

7130 5 2100 800 6 2100 400

7131 5 2100 800 6 2100 600

7132 5 2100 800 6 2100 800
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4.4. Learning Model Improvement for Higher Accuracy
To supplement the results that failed to accurately predict damage information from

the complex changes in the natural frequency caused by changes in the damage factors,
a secondary learning model was established. This model was established by raising the
weight of the first to third natural frequencies, which exhibited larger changes in the event
of debonding damage, and increasing the number of hidden layers to five for more com‑
plex forms of data prediction despite the increased learning time. The prediction accuracy
of the model was examined. As shown in Figure 13a, the damage prediction accuracy of
type 1 was found to be 91%, and damage size from 200 to 1800 mm was predicted, unlike
the prediction results before the improvement. As shown in Figure 13b, type 2 damage
prediction accuracy was improved to 99%, and the damage start position and damage size
were predicted within the selected range. Finally, Figure 13c shows that the damage pre‑
diction accuracy of type 3 was improved to 99%, and predictions were performed within
the selected range. For all the types, the damage prediction resultswere distributed accord‑
ing to the damage selection criteria and compared to the results before the improvement.
These results confirmed the accuracy improvement of the debonding damage prediction
model based on the natural frequency of composite blades.
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4.5. Composite Blade Damage Detection Performance Verification
To verify the performance of the improved algorithm, the natural frequency data of

the blades with debonding damage were measured, and the ability of machine learning
to obtain debonding damage information was examined. Figure 14 shows the damage de‑
tection accuracy of the manufactured blades. The damage prediction accuracy was found
to be 67%, but no damage prediction tendency was observed. This appears to be because
there was a difference between the damage prediction algorithm based on the modal anal‑
ysis results and the damage characteristics of the manufactured blades. To address this
problem, the algorithm was improved by examining the detailed damage information of
the manufactured blades and performing further training with 1000 sets of similar dam‑
age characteristics. Figure 15 shows the accuracy of the improved algorithm based on the
manufactured blade data. The damage prediction accuracy was found to be 86%, and a
damage prediction tendency was observed, unlike in the initial model. This indicates that
the damage prediction algorithm for composite blades requires the development of a learn‑
ing model using a dataset based on the FEA of the target blade and the improvement of
learning using a dataset based on the actual environment.
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5. Conclusions
In this study, the accuracy of a damage prediction algorithm was analyzed by acquir‑

ing data on the change in the natural frequency caused by debonding damage to the inside
of composite blades, and the following results were obtained:
(1) Initially, the prediction accuracy was confirmed for each type of debonding damage,

and the prediction result was reviewedwith a damage detection accuracy of 67%, but
a damage prediction trend did not appear.

(2) It was found that there was a difference between the damage prediction algorithm
based on the results of the modal analysis of the FEM and the damage characteristics
of the actual manufactured blade.

(3) For the initialmodel, we reviewed algorithms that improved damage estimation accu‑
racy through the addition and segmentation of hidden layers for the type of debond‑
ing damage.

(4) We improved the learning model to reflect complex damage factor characteristics by
training it with 1000 additional training data, improving its prediction accuracy ac‑
cording to damage classification to 86%.

(5) In order to apply the damage prediction algorithm in the operation stage, it was
judged that it is necessary to increase the accuracy of the algorithm through field
data and periodic measurement data.

(6) In the future, research is needed to improve the accuracy of machine learning algo‑
rithms and verify practical effectiveness through securing detailed damage informa‑
tion and unique frequency data.
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